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Abstract. Concerning the intergarability of almost Kahler manifolds, it is
known the conjecture by S.I. Goldberg that a compact almost Kahler mani-
fold is Kdhler. In this paper we give a positive partial answer to the conjec-
ture and further introduce the related example constructed by P. Nurowski and
M. Przanowski.

1. Introduction

An almost Hermitian manifold M = (M, J,g) is called an almost Kahler
manifold if the Kahler form is closed (or equivalently, Sx,y,z9((VxJ)Y,Z) =
0 for X,Y,Z € X(M), where &x v,z denotes the cyclic sum with respect to
X,Y,Z). By the definition, a Kahler manifold (VJ = 0) is an almost Kahler
manifold. A non-Kahler, almost Kahler manifold is called a strictly almost
Kahler manifold. The first example of compact strictly almost Kahler manifold
was found by W.P. Thurston ([19]). It is well-known that an almost Kahler
manifold with integrable almost Kahler manifold, the following conjecture by
S.I. Goldberg is known ([5]).

Conjecture. The almost compler structure of a compact almost Kdahler
Einstein manifold is integrable.

The above conjecture is true in the case where the scalar curvature is non-
negative ([17]). However, the conjecture is still open in the case where the scalar
curvature is negative. For the other progresses, we refer to ([1), ([3]), ([4)),

(10D, ([13]), ([14]), ([15]) and so on. The first and the second authors have
proved the following ([15]).

Theorem A. A four-dimensilnal almost Kahler Einstein and x-Einstein
manifold is a Kdhler manifold.
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Theorem B. Let M = (M, J,g) be a four-dimensional compact almost
Kahler Einstein and weakly x-Einstein manifold with negarive scalar curvature.
Then, r < 7 < 17/3 on M and T = 7™ holds at some point of M, where T and
T* are the scalar curvature and the *-scalar curvature, respectively.

The main purpose of the present paper is to prove the following.

Main Theorem. Let M = (M, J,g) be a four-dimensional strictly almost
Kdhler Einstein and weakly *-Einstein manifold. Then, M is a Ricci-flat space of
pointwise constant holomorphic curvature 7 /8 and hence M is self-dual, where

T* is the *-scalar curvature of M.

Quite recently, the authors knew through private communications with Dr.
V. Apostolov that J. Armstrong has proved the above result by making use of
spinorial method in his doctor thesis (Oxford University). Our proof of the above
result is rather straight-forward and seems more understandable that the one by
J. Armstrong.

Combining the Main Theorem and the result of , we have immediately
the following improvement of Theorem B.

Corollary. Let M = (M, J,g) be a four-dimensional compact almost Kahler
Einstein and weakly *-Einstein manifold. Then, M is a Kahler manifold.

In the above corollary, we can not omit the assumption of compactness. In
fact, recently, P. Nurowski and M. Przanowski ([12]) constructed an example of
strictly almost Kahler Ricci-flat space of dimension four. We may easily check
that their example is also a weakly *-Einstein space which is not *-Einstein.
Therefore, we may also remark that the assumption of *-Einsteinness in Theorem
A can not be replaced by weaker assumption of weakly *-Einsteinness and Main
Theorem also supports their example. In the last section, we shall introduce
their example and discuss it.

Through this paper, we assume that all manifolds are connected and smooth

and further that all quantities on manifolds are smooth, unless otherwise speci-
fied.

2. Preliminaries

In this section, we prepare several formulas which we need in the proof of the
Main Theorem.

Let M = (M, J,g) be a four-dimensional almost Hermitian manifold with
almost Hermitian structure (J,g) and Q the Kahler form of M defined by
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QX,Y) = g(X,JY) for XY € X(M) (X(M) denotes the Lie algebra of all
smooth vector fields on M). We assume that M is oriented by the volume form
dM = Q?/2. We denote by V, R, p, and T the Riemannian connection, the
curvature tensor, the Ricci tensor and the scalar curvature of M, respectively.
The curvature tensor R is defined by

R(X,Y)Z= [VX,VY]Z—V[X’}/]Z (21)
for X,Y,Z € X(M). We denote by p* the Ricci *-tensor of M defined by

pr(z,y) = -;— trace of (z — R(z, Jy)Jz2) (2.2)

for z,y,z2 € T,M, p € M. Further, we denote by 7* the *-scalar curvature of M
which is the trace of the linear endomorphism Q* defined by ¢(Q*, z,y) = p*(z,y)
for z,y € T,M, p € M. By (2.2), we get immediately

p*(z,y) = p*(Jy, Ja) (2.3)

forz,y€e T,M,p € M. From (2.3), it follows immediately that p* is symmetric if
and only if p* is J-invariant. We may also note that if M is Kahler, p* = p holds
on M. Now, if p* = A*g(A* = 7*/4) holds on M, then M is called a weakly *-
Einstein manifold. Further, a weakly *-Einstein manifold with constant *-scalar
curvature is called a *-Einstein manifold. It is easily observed that the following
identity holds for any four-dimensional almost Hermitian manifold M = (M, J, g)

([7)):

2000 + o0z, )} - 3 (0 @)+ )} = T gey)  (2:9)

for z,y € T,M, p € M. We denote by N the Nijenhuis tensor of M defined by

T—7"

N(X,Y) = [JX,JY] - [X,Y] - J[JX,Y] - J[X,JY] (2.5)

for X,Y € X(M). The celebrated theorem by A. Newlander and L. Nirenberg
([11]) says that the almost complex structure J is integrable if and only if the
Nijenhuis tensor N vanishes identically on M. The curvature operator R is

the symmetric endomorphism of the vector bundle A2M of real 2-forms over M
defined by

9(R(:(2) Auw)),u2) Au(w)) = —g(R(z,¥)2,w) = —R(z,y,z,w)  (2.6)

for z,y,2z,w € T,M, p € M, where ¢ denotes the duality: TM — T*M defined
by means of the metric g. The following decomposition for the vector bundle
A?M is useful in our arguments:

NM=RQaAN'M& LM (2.7)
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where Ag'' M denotes the vector bundle of real primitive J-invariant 2-forms, LM
the vector bundle of real primitive J-skew-invariant 2-forms over M, respectively.
The bundle LM is endowed with the natural complex structure (also denoted by
J) which is defined by J®(X,Y) = —®(JX,Y) for any local section ® of LM
and X,Y € ¥(M). The bundle Ay'' M identifies itself with the bundle AZ M of
anti-self-dual 2-forms, while the sum R@® LM is the bundle A2 M and A2 M are
preserved by the curvature operator R ([8]). In this paper, for any orthonormal
basis (resp. any local orthonormal frame field) {e;} of any point p € M (resp.
on a neighborhood of p), we shall adopt the following notational convention:

Rijki = g(R(ei,ej)er,e1) = R(ei,ej,ex,€;),

Riju = 9(R(Jei, e5)ex, 1) = R(Jei €5, ex, 1), (2.8)

R{’il—cl_ = g(R(Je,-, Jej)Jek, Je;) = R(Je,-, Jej, Jek, Je;),
and so on, where the latin indices run over the range 1, 2, 3, 4. Then, we have
Jij = =Jji, Vidjk = =V;Jk;, V,’Jj; = —=ViJjk . (2.9)

In the sequel, we assume that M = (M, J, g) is a four-dimensional almost Kéahler
manifold. Then, it is known that M is a quasi-Kahler manifold, i.e.,

Vidjk = =ViJ5k (2.10)

for 1 < 4,j,k,1 < 4 ([20]). From (2.10), it follows immediately that M is a
semi-Kahler manifold, i.e.,

Y Vadai=0 (2.11)

holds on M ([20]). On one hand, it is also known that the Nijenhuis tensor N
of M is expressed by

for X,Y,Z € X(M). From (2.12), taking account of the Ricci identity, we have
2{R(w,z,Jy,z) + R(w, z,y,Jz) } (2.13)

= S{9IN(N(3,2),2),0) = g(IN (N (y,2), w), )}
— 9(J(VuN)(y,2),2) + 9(J (V= N)(y, 2), w)
for w,z,y,z € T,M, pe M ([6]). From (2.12) and (2.13), by direct calculation,

we have

P+ P — pis — pi3 = D (Vadiv) Vadjp (2.14)
a,b
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and further
1
IVJ|)? = ZHNII2 =2(r" —1). (2.15)

From (2.9), (2.10), (2.12), for any unitary basis {e;} = {e1,es = Jei,e3,e4 =
Jes} of T, M at any point p € M, we have

(V.J)e1,(V.J)es € span {es,es}, (V,J)es, (V.J)es € span{es, ez}, (2.16)
for any z € T, M, and
N(ey,e2) =0, N(es,ea)=0.
Now, from 2.7), (2.9) and (2.10), we have
VQ=a®®-Ja® JP, (2.17)

where {®, J®} is a local orthonormal frame field of LM, « is a local 1-form and
Joa is the 1-form defined by (Ja)(X) = —a(JX), for X € X(M). From (2.15)
and (2.17), we have easily

™ —T7

2

1 1
lell® = 51V QI* = ZIIVJ|I? = (2.18)

Let {e;} = {e1,e2 = Jei1,es,e4 = Jes} be a local unitary frame field and put
e = 1(e;) (1 <i<4). Then, {e} = {e!,e? = Je!,e3,e? = Je3} is the local
unitary frame field dual to {e;} and the Kahler form Q is expressed by

Q=—elAe?-e3Net.
Further, we may observe that

{®,J0} = {%(e1 Aed —e? Aet), —\/1—5(61 Aet +e2 A ea)}

is a local orthonormal frame field of LM. We have note that the expression
(2.17) for V Q is not unique (cf. [15], p. 108). We set

Ve.'ej = Zrijkek (1 < z)] < 4) : (2 19)
k

Then, we may check that I';jx = —Tyjkex (1 < 4,5,k < 4). By (2.19), we have
also ‘

Veed =) Tine*  (1<i,j<4). (2. 20)
k
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By (2.19) and (2.20), we have
1
[josa—Tj3 = —ﬁ aj,
1
Ljas + Tj1a = ~7 a;
for 1 < j < 4. Taking account of (2.19)~(2.21), we have
1
Vj@ = (Fjlz + Fj34)J¢ —_— §Otj Q,
1
Vi(J®) = —(Tji2 + [j34)® — 503 2
Further, we have

Vi(Ja);i = =V;a; + Z(Vjt]ti)at ;
t

for 1 <1, j < 4. From (2.17)~(2.23), by direct calculat’ion, we have

1
V?,- Q= —i(a,-aj + a;a;) Q+ {Vja,- —a;g (Fjlz + FJ34)}@ (2 24)

+ {Vja; + 0 (Tji2 + Tjaa) = Y (Vi) Ott} J®.

t
Since V% Qu = —V3; Ju, from (2.17), (2.18) and (2.24), we have
Rjir + Rjigi (2.25)
= {Via; — Vjoi + o7 (Tj12 + [jas) — aj (Tirz + Tisa) } Pui

T*

+ {Viaj — Vo7 — o (Tj12 + [jaa) + aj (Ti12 + Tiag) + —%—Tq’ij}(JQ)M-
By (2.6), we see that the left hand side of (2.25) is rewritten as

Rjr+ Ryt = —Rijui — Rijin = 9 (R(e* N Je' + Je¥ Nel), et Ae?).  (2.26)
Now, we set

Aij = g (&0, (Ve;N)(e1, €3)), (1<4,j<4). (2.27)

In the remainder of this section, we assume that M = (M,J,g) is a four-
dimensional almost Kahler Einstein manifold. First, we recall several formulas
established in [15]. Since R(AZM) C A1 M, we have

Ri212 = Raazs, Ri313 = Ras24, Ri414 = Ra33. (2.28)
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Further, we have the following:

Azq = —A13, Ap=-Az, Az =Aq, A=A, (2.29)
Riz2a — Riz13 = %(Am — Aa1), (2.30)
Ris2s + Riq1a = %(Am — As1) + T‘; ., (2.31)
—Ri1314 + Ri424 = —Ri314 — Ri323 = Rasz4 + R1a24 (2.32)
= Ras24 — Ri323 = %(Am —Aq),
(cf. [15], pp. 99-101). The equalityr (2.4) reduces to
Pij + P = %Jij - (2.33)
Since R(AZ M) C ALM, we may set
R(®) =ub+wJ®+AQ, R(JP)=uwd+vJ®+BQ. (2.34)

Then, by [(2.2), (2.6), (2.28) and [2.34), we have

1 1
A= ——(pty—pht), B=——=(pts—po),
2\/§(P14 Pa1) 2\/'2-(/713 P31)

u = —(R1313 — R1324), v = —(Ri414 + Ry423), w = —(Ri314+ Ry323).

(2.35)
From (2.25), (2.26) and [(2.34), we have
w= %{Vlaa — Vsa; + as (T'a12 + 'sas) — a4 (T112 + T134) }
w= —%{Vza‘t — Vaaz — ay (T412 + Tazs) + a3 (T212 + T234) }
(2. 36)

1
w= —E{—v1a3 —Vaas —a; (T412 + Tyza + ag (T2 + I‘1_34)} ,

1
w= —W{Vza-; + V3a; — a3 (T312 + Tasq) + a3 (T212 + T2sd) }

™ -7

1
u= "'_ﬁ{vlaai - Vsay + o7 T aj (P32 + T'azq) + a3 (F112 + F134)} ,

™ =T

1
u= *ﬁ{—vzas + Vi — Wi ~ a3 (T412 + Ta34) + a4 (T112 + F234’)} )
o | (2.37)
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1
v= ‘E{VICM — Vo + a3 (Ta12 + Tage) + 03 (T112 + T134) }

(2.38)

1
v= —\/—2-{V203 — Vsag — ay (Ta12 + Tsss) — 04 (T212 + T234) }

1,. .. 1
§(P13 - p31) = E{Vlaz — Vaay + a1 (T112 + T1s4) + @2 (T212 + Tas4) }
1 . 1
5(!’13 - p31) = ﬁ{vam — Visas — a3 (Ts12 + T'szq) + a4 (Ta12 + Tazd) },
(2.39)
1. . 1
5(/’14 - pa) = ""\-/—'2'{V10!1 + Va2 + o (T212 + T2ss) — a2 (T112 + T134) }

1. . 1
§(P14 —pa1) = -7-2-{V30!3 + Vias + as (Ta12 + Tazs) — a4 (T312 + Tssd) } .

(2. 40)
Now, we denote by £ = (§;) the smooth vector field on M defined by
&= Viphi. (2.41)
t
Then, taking account of and the equality &; ;xV;J;x =0, we have
1 L1
&i=3 > (ViJab) ppa — 3 Y RiaVidas - (2.42)
a,b a,b,t
From [(2.42), taking account of (2.3), (2.17), (2.30)~(2.32), we have
3 * *
1= '\/—“'2‘(011914 — aspys),
3 L] *
&= ﬁ(alpla + a2p14)
1 : ”_r (2-43)
€3=7—2'{—01(A14—A41)+02 (AIS—A31+ 2 )},

™~—T

§a= %{01 (A13—A31+ )+02(A14—A41)}.

3. Proof of the Main Theorem

Let M = (M, J, g) be a four-dimensional strictly almost Kahler Einstein and
weakly *-Einstein manifold. Then, Mo = {p€ M | 7* — 7 > 0 at p} is a non-
‘ , empty open submanifold of M. We denote by D the 2-dimensional J-invariant
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smooth distribution on M, spanned by {a*,Ja*} («(a*) = ) and by D+ the
orthogonal complement of D in TM. Let {e;} = {e1,e2 = Je1,e3,e4 = Jes} be
any local smooth unitary frame field on a neighborhood of any point of My such
that {e1,e2} and {e3, e4} are local frame field of D and D+, respectively. Then,
since ag = a4 = 0, taking account of (2.21) and [(2.33), we see that the equalities
(2.36)~(2.40) reduce respectively to

w= —"'{ —Ts1a1 — T1spap — Vg + a3 (T312 + Tazd) }
w= {1‘241 o1 + Taas0s + Vyas + a1 (Ta12 + Tasd) },
1 (3.1)
w= ——\/—={F131a1 + F13202 — V4az — a; (Ta1z + T4s4)},
w= \/—{ F241a1 - F242012 + V3a1 — a3 (T312 + T's34) }
1 ™—T
= —{F14101 + 14202 + V3as — + a3 (T'a12 + Fau)} '
1 - e
= 7——{1"231(11 + Tagzas 4+ Vaa; — | T2\/—T — Q2 (P412 + l"434)}
v= \/—{ lNao - F14202 - V4011 + a (F412 + F434)}
(3.3)
v= \/_{ ~Tys1a1 — Fasza; — Vsaz — a3 (Fa12 + F334)}
.1
0=pis= E{(r«n —T'341) a1 + (T4s2 — Taa2) @2},
(3.4)

.1
0=pls= 7—5{(F342 —T4s2) @1 — (T'341 — T4s1) a2} .

From (3.4), we see that the distribution D1 is integrable. By (3.1)5; 3, we get

(T131 + T241) @1 + (T132 + T242) a2 = 0. (3.5)
By (3.2)2 and (3.3);, we get
u+v—-1—{—(I‘ —Ta31)a; — (T I232) a —T‘_T} (3.6)
=7 141 — F2a1) 142~ Tas) @2 = 7= ¢ - :

Similarly, by (3.2); and (3.3);, we get also’

™ —

1 T
= —<¢ (141 =T I'i4o0—-T - . 3.7
u+v \/5{( 141 — I'231) a3 + (T142 — Ta32) a2 W) } (3.7)
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Thus, by (3.6) and [3.7), we have
(T141 — I'231) a1 + (T142 — T232) a2 = 0. (3.8)
On one hand, from (2.21), we have

Q2 ay

42 — T3 = W, Ia42 — Taay = -7

(3.9)
(03] ag
r Fraa=—, T r
132+ 1141 72 232+ 1241 = \/-2-
Thus, from (3.5) and [(3.8), taking account of (2.18) and (3.9), we have
(F131 = Fa3g) a1 + (T132 + T231) 22 =0
— (132 + I'zs1) a1 + (T131 — T232) @ -_T-T (3.10)
132 231) o1 131 232) g = ‘2\/,2 .
From (2.18) and (3.10), since (a3, a2) # (0,0), we have
Q2 o
I3y = Tgga=—-—=, T r 3.11
131 — I'232 73 132+ Tog1 = \/5 (3.11)

Since M is a weakly *-Einstein manifold, we may easily observe that the first
Chern form 4 of M takes of the following form:

8ry=Ttel ANel + 1B Net (3.12)

(cf. [18], p. 151). Now, we may choose a local smooth unitary frame field {e;}
on a neighborhood of any point of My with the property that D = span {ej,e2 =
Je1}, Dt = span {es, e4 = Jes} and further

«=lll,  Ja= ol
1
VQ= o:{e1®-——e1/\e3--62/\e4 —e?® —=(e! Ne* + €2 /\ea}
lledl \/5( ) \/_( )
hold (cf. [15], p. 108). Then, from (3.9) and (3.11), with respect to this unitary
frame field {e;}, we have

I142 = T131 =T232 = =Tag

[132 4+ 231 = ll/ll v T =T, (3.13)

I'141 4+ T242 = T231 ~Ti32.

Since the form v is closed, taking account of (2.20) and (3.13), by direct calcu-
lation, we have

T30 +T232 =0, Ti132-T2 =0, e =e=0. (3.14)
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Thus, from (3.13) and (3.14), we have
I'131 = T3 =T142 =T241 =0,

T =T =T = -T = .
132 231 141 242 2\/5

Taking account of (3.15), we may note that the distribution D is also integrable.
Since pf; = 0 (i # j) and e;7* = ea7* = 0, by (2.39) and (2.40), we have

2l'132 + T34 =0, 2212+ T234 = 0. (3.16)
From (3.2), (3.3) and (3.15), we have

- _ . __
ellall = V2u+ Tt = —v2v = T2 = lof| (2Ts12 + Tss) . (3.17)

42 42
Similarly, from (3.1); 2 and (3.15), we have
esllal| = =vV2w = —||a|| (2T412 + T44) . (3.18)

From (3.17) and (3.18), taking account of (2,18) and (2.43), 2, we have
est = —2v2||a|| (A14 — Aa1) = —=2(7* — 7)(2T412 + T434)

Do (3.19)
ea™ = 2V2| ||| (Am —An+ 7 T) = 2(r" — 7)(2T512 + I's34) -

4

Now, let K = {Ala — Az + (1" - ‘l')/4:}2 + (A14 - A41)2 = (1'* - r){(2I‘412 +
T434)2 + (2T'312 + I'3s4)?} be the smooth function on M which is introduced in
the previous paper ([15], p. 105). From (2.18) and (3.15), we have

Ri212 = e1T212 ~ €aT112 + T2, + 12,5 + T213T132 — T'114T242  (3.20)
™ -7

8

= el512 — eaT11a + I3, + T3, —
Thus, taking account of (3.16) and (3.20), we have

Ry23s = €1T234 — €2T134 + I'231T114 — T13200224 — T'121T184 + 2120234 (3.21)
™ =T

5~ 2 (e1T212 — eal112 + 21, + T%,)

T -7 ™ -7
=-"3 —2(312124' 3 )

i

3
= —-2R1212 - §(1"I - T) .
Thus, by (3.20) and (3.21), we have

T#

3 .
~7 = Ri234 + Ry212 = —Ry212 — g("‘ —-7),
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and hence
™ 3, . T =3r
Ry212 = T §(7‘ —-7)= T (3.22)
By [(3.22), we have also
™ ™ -=3r ™ 4+ 3r
Ry2ss = vy 5 -8 (3.23)
From (2.21) and (3.15), we have further
R3412 = e3T412 — e4'312 + T'431T323 + 4140342 (3.24)
— I'313T432 — I's41T'424 — 342312 + Tazalla12
= e3l412 — 4312 + 2H + I'334l312 — 434412,
where H = I'4,; + I'3,,. Similarly, we have
R3sss = eal43s — e4T334 + F431T314 + T432T324 (3.25)
— T'331T414 — T'332T 424 + T3g4 + 234
= 63F434 - e41‘334 —2H + F§34 + F234 .
We here recall the following formula
A" = 4K + l(‘r* - 1')(37‘* —7) @ 26)

(cf. [15], p. 106). Now, we shall calculate AT* bye ma.klng use of the formulas
(3.14), (3.15), (3.16) and (3.19), we get

A" = eg(est”) + eq(est") 2 Tiizest — Z I‘,,4e4r ' (3.27)

= —2(e3(7* — 7)) (2T 412 + 1"434) 2(r* - r)(263F412 + e3l434)

+ 2(eq(* — 7))(2T312 + I'334) + 2(7* — 7)(2e4T'312 + €4T'334)

— 2T434(7" — 7)(2T'412 + T'434) — 2T334(7" — 7)(2T312 + T'334)
= 4(7" — 7)(2T412 + T434)” + 4(r" — 7)(2T312 + T'334)?

—-2(r* - T){263F412 — 2e4T'315 + 3434 — €4T'334

+ T434(2T 412 + T4aq) + T334(2Ta12 + T334)}
From ((3.27), taking account of (3.22)~(3.25), we have

AT* = 4K — 2(r* = 7) (—f4- + Rigss — ZH) (3.28)

- =4K + Z—(T* —7) (™ +71)+4(7" —1)H.
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Thus, from [(3.26) and (3.28), we have

A(r" —7T)H = %(T* -n@Br*—7r)=—-7(r"-1),

and hence

.
= ——. 3.29
H=-7 (3.29)

Since H > 0, we see that 7 < 0. To prove Main Theorem, we assume that 7 < 0.
We also recall the following formula

llgrad (r* — 7)||* = 4(7* — 1)K (3.30)
(cf. [15], p. 106). From (2.21), (3.15), (3.16) and (3.18), we have

Ro313 = eal'313 + €331 + I'3140243 — 2121323 (3.31)
— 234413 + 323313 + I'324l 413
w
= eal'a13 + 5T 2121314 — =,

2
Ri314 = €1T'a14 — €3l'114 + 3130134 — 1120324 (3.32)
—I'134T414 + 3130314 + I'314T414
= e1'314 — 5I'1120'313 — % .
Thus, by [3.31), (3.32) and (2.35), we have
e1T314 + 20313 — 5T112'313 + 5212314 = 0. (3.33) |
Similarly, we have
Riz13 = e1Ta13 + *16 +H — “\/“- (2T'312 + 334) + 5T1120314, (3.34)
Ryaza = eaTa1s + ——— 16 L+ H- |2|\/“- (2T312 + T334) — 65T212T 313 . (3. 35)
Since Rj313 = Ra424, from (3.34) and (3.35), we have
e1l313 — 2314 + 50112314 + 5212313 = 0. (3.36)
Taking accouont of [(3.29), we may set
313 = Acosé, 314 = Asiné, (3.37)
for some local smooth function £. From and , we have respectively
A(er€) cosé — A(es€) siné = 5AT 15 cosé — 5ATzipsiné,  (3.38)

—A(e1€) sin& — A(ez€) cos€ = —5AT'1128in§ — 5Al212 cosé . (3-39)
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Thus, by (3.38) and [3.39), we have
e1§ =5T12, e2§ =5l212.
Since D is integrable, taking account of |3.40) m we have
[e1,€2]§ = T121 €16 — Tzn3 €26 = —5(T'2), + T'%,).
On one hand, by , we have also
[e1,€2]€ = e1(e2€) — ea(e1 &) = 5e1Ta12 — 5eal'ar .
Thus, by (3.20), (3.22), [3.41) and [(3.42), we have

™ -7 5
0=>5(eiT212 — eaT'112 + T3y, +T3,) = 5<R1212 +—3 > =37

This contradicts to the assumption 7 < 0. Therefore, we conclude 7 = 0 and
hence M is Ricci-flat. Since 7 = 0, (3.22) and reduce to

*

,
Ri212 = Ra434 = Ri234 = —5 - (3.43)

Further, from and (4.7)~(4.9) in [15], we have
Ta31 = I'szz = I'sa1 =T340 = T'431 = T4z = T4qy = T4g2 = 0. (3.44)

From (3.15), (3.17), (3.34) and [3.44), we have
.

T «a ™ u T U
Ri313 = — — llell (2T'312 + C334) = (5 + —) = —= (3.45)

16 22 16 16 2’
1 ™ u T
= 2= —— —_ =4 —. .
Ris14 = €414y + T4, = 52 eq||a|| + 6= 3 + 3 (3.46)
Thus, from (2.35), (3.17), (3.45) and [(3.46), we have
u
Ri324 = u+ Ria13 = 70 (3.47)
™ u T u T
R1423——U—R1414—U+T—(-2—+?)—§+—8—. (3.48)

Since ||a||> = 7*/2 and (3.14), we see ey||a|| = es|jal| = 0. Thus, from (3.15)
and (3.16), we have

Ri224(= —Riasa) = €1T924 + T'123T243 — T'141 7291 + T219T204 (3. 49)

1 llex|
+ 2r r =0
2\/— 1]|| 2\/—( 212 + I'234)

Rin3(= —R2434) = e1l'213 + 114234 — T'132T212 + T212T215 (3. 50)

= 2\/— e1llaf| — ”\/,1(21"212+1"234)—0



ALMOST KAHLER EINSTEIN AND WEAKLY *-EINSTEIN MANIFOLDS 89

Ris14(= -—32334) = —eyl114 + T112T242 — T1430213 — T121T114 (3.51)

2\/— ez||e|| — “\/Il (2T112 + T134) = 0
Ri223(= —R1434) = —esT103 4+ T'191T931 — T134T224 + T112T123  (3.52)

es|la|| — M (2T112+ T134) =0

2\/' 22
Further, from (3.31), (3.32) and [(3.44), we have
w
Rizza(= —Ria24) = —5 (3.53)
w
Riz14(= —Ra324) = —5 - (3.54)

On one hand, from (2.47)~(2.51), (2.53), (2.58) and (2.59) in [15], we have

Agg = —Aj3, Asgy=—Az1, Aszz=Aqn, A=A, (3.55)
A1 — Agy = Az — Agz = Ay + Aza = Ass + Aga = 0. (3.56)

Further, from (2.61) in and (2.35), we have
A13 - A31 =2u ’ A14 - A41 =2w. (3. 57)

Taking account of Proposition 2.3 in [2], we conclude that M is a space of
pointwise constant holomorphic sectional curvature 7*/8. This completes the
proof of Main Theorem.

4. Example of Ricci-flat strictry almost-Kahler manifold

In this section, we shall introduce the example of four-dimensional Ricci-flat
strictly almost Kahler manifold constructed by P. Nurowski and M. Przanowski
([12]) and discuss it. First, we write down their example. Let M be a four-
dimensional real half-space given by M = {(z1,z2,%3,24) € R* | 21 > 0,
(z2,z3,24) € R3}. We define a Riemannian metric g and almost complex struc-
ture J on M respectively by

(1:1 0 0 0 \
r3 T2T3
0 1+-—— -
4z, 4z, 2z,
9= (giJ) = 0 _(L’gl‘a o+ _l‘_%_ _2 ) (41)
4z, 4z, 2z,
0 %3 _ T 1
\ 2(81 2171 I
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0 0 -1 0
0 T3 o 1
J = (J;) = 21‘.1 21'.1 Iy , (42)
1 0 0 0
z9 2  z,z3 z3
—?— TR 42,'1 421 _2131

where g;; = g(8/0zi,0/0z;) and J(8/0z;) = 3; J;(0/0z;). Then, we see easily
that (J,g) is an almost Hermitian structuer on M and the Kahler form Q is
given by

Q = —z,dz, Adzs — ’”2—2dz2 Adzs + dzy Adzs . (4.3)

From (4.3), we see immediately that dQ = 0, and hence (M, J,g) is an almost
Kahler manifold. Now, we define vector fields e;, €2, e3,e4 on M respectively by

e, = __]._i g = 1 0 + Z9 0
\/Eal‘l ’ \/1‘_1(9173 2\/5:_1- 6:84 ’ (44)
eg = z_?_ eq = 1 6 _ T3 6
Oxy’ VZLO0z2  2,/zy Oy

Then, we see easily that {e;}i=1 2 3 4 is a unitary frame field on M with e, = Jey,
e4 = Jez. By straightforward calculation, we have

1
R(e1,ez)er = ——5 eq,
2z3
R(es, es)e 1 e
3,e4)e; = ——5 €2,
2z3
1
R(e1,e3)er = —es,
z
R(eq, eq)e 1
1,€4)€1 = ——3 €4
b 2z? b
R(ez, e3)e ! e
2,€3)e2 = —~—3e€3,
’ 2z3
1
R(€2,64)62 = —3¢€4,
z3

From (4.5) and [2.2), we see easily that

p=0 and

R(e1,ez)es = —
R(es,e4)ez = —
R(el,ea)éz =-
R(e;,e4)es = —
R(eg,e3)e; = —

R(ez,eq)e; = —

1

3 )
2z
1

21:;; €4,

1

3 ]
zy

1

%31;63,
1
2_Z'§e41
1
z—?ea.

(4.5)

(4.6)

and hence (M, J, g) is a strictly almost Kahler Ricc-flat weakly *-Einstein man-

ifold with x-scalar curvature 7* = 4/z3.
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