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Abstract. We consider the regularity estimate for the solution of nonlinear

Schrédinger equation with power nonlinearity, where the initial data belongs to
H?. Since e'*2 has the smoothing effect, the solution that we consider belongs

to HS locally time in space.

1. Introduction

In this paper, we estimate regularity of local solutions to nonlinear Schrodin-
ger equations with H2-initial data.
We consider the following equation;

i0iu = —Au + F(u), (1)

where u is a complex-valued function of (¢,z) € Ry x R, 8, = 8/8t, A is the
Laplacian on R”, and F(u) = F o u is a local nonlinear operator given by a
complex-valued function F on C.

Here we consider the following assumptions on the nonlinear term F;

Assumption F1. F € C'(C;C), with F(0) = 0.

Assumption F2. |DF(()| = max{|d;F|,|0zF|} < M|(|P~1, for [(| > 1,1 <
p < 0o, where §; = %(65 —i0p),0F = %(65 +10,), (¢ =& +1in).

The Cauchy problems of Eqn.(1) with above assumptions were studied by
many authors. In Ginibre and Velo [2], Kato [4], [5], they discussed about local
wellposedness in the case that the initial data belongs to H!, and in Ginibre and

Velo m, Kato [4], , about the existence of global solution. Sjdlin’s result
that we noted below was based on the existence of local solutions discussed in
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Kato . In Kato , he discussed about local wellposedness in the case that
the initial data belongs to H?2, and in Kato , , Tsutsumi , about the
existence of global solution. We try to estimate regularity of local solutions to
Eqn.(1) with u(0) = uo € H?, which were obtained by Kato [5]. Here let the
nonlinear term F be satisfied with the following (F1’) instead of (F1), (F2) and
the following (F3) for some p, which is two times continuously differentiable.

Assumption F1°’. F € C?(C;C), with F(0) = 0.

Assumption F3. [D?F(¢)|] < M|¢|™2x{P=2.0} for |¢| > 1,1 < p < oo,
where |D?*F(¢)| = max{|0;0; F|,|0;0; F|, |90z F|}.

In Sj6lin , he obtained the following inequality; For some C > 0, depend-
ing on ¢ € C§° (R"+1),

[ [ 18t2)0 - a)es sPdsde < YA, V5 € 27, @)
m n

This inequality manifests that the free Schrodinger propagator €4 has the
smoothing effect which can improve the differentiability property locally in time
and space.

Later the similar property for e~ where H = —A + V is a self-adjoint
operator and V = V(z) or V(t,z) are various scalar potentials, was studied
by many authors (Ben-Artzi [1], Ruiz and Vega @], etc.). In particular, Kato
and Yajima [7] obtained the inequality replacing ¢ in (2) by (1 + |z|?)~%"¢,
e > 0, and Yajima [15] obtained the similar estimate for the propagators of
Schrodinger equations with time dependent magnetic and scalar potentials which
may increase at infinity |z| = co.

In Sjogren and Sjélin [10], they obtained the extension of (2) in the following
form; They defined

A = {p € C®(R") | There exists € > 0 such that
6% ¢(2)] < Ca(1 + 2])7H/27%, Va},
where a = (a3, ag, .., ay) is multi-index, §; = 8/8z;, and 8* = (97*, 852, .., 03")
and introduced mixed Sobolev spaces H™* = H"*(R x R*) = (G, @ G,) *

L?(R"+1), where G, and G, are Bessel kernels in R and R", respectively. If
r >0, p > 0, then, for each ¢ € A, ¥ € C§°(R),

lee™ Fullgre < Cppllull gmrto-gom-1» 3)

for some Cy,y > 0. Here H = —P + V, where P is a elliptic operators with
constant coefficient which degree ism > 2 and V = V() is a real-valued function
in C* with D*V bounded for every a.
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In Sjolin [12], he adapted these estimates for Eqn.(1) with H!-initial

data. The conclusion is as follows;

Theorem A. (Sjolin [13]) Assume (F1) and (F2) with1 < p < oo ifn =
1,2 withl <p< (n+2)/(n—2) ifn > 3. Andlet up € H(R"), ¢ € A,
and u denote the local solution of the Eqn.(1) on I = [0,T] with u(0) = uo. If
1< n <6, then pu € L2(I;H%). Ifn > 7 with p < (n — 2)/(n — 4), then
wu € L2(I; H?).

Remark 1.1. This result was improved in Nakamura , that is, for any
space-dimension 7 it holds that pu € L2(I; H3).

In this paper we shall adapt these estimates for Eqn.(1) with H2-initial values.
Then we need (F3) to estimate the second derivative of F. Sjolin obtained
the following theorem;

Theorem B. (Sj6lin [12]) Let 1 < n < 7. Assume (F1’) and (F2-3) with
l<p<ooifn=12 wthl<p< (n+2)/(n—-2)ifn>3 Andlet
up € H%(R™), ¢ € A. Then the solution u € C(I; H?) of the Egn.(1) on
I = [0,T] with u(0) = uo satisfies pu € L2(I; H3) if T > 0 is sufficiently small.

In Kato , he proved that assume (F1) and if n > 4, (F2) with 1 < p <
n/(n — 4), then there exists a unique solution v € C(I; H?) of Eqn.(1) with
u(0) = uo € H2. Moreover ,u € X = ([ L?*) N C(I;L?), where ) is the
intersection in (g, s) satisfying 1/¢ + 2/ns = 1/2 and 1/2-1/n < 1/¢ < 1/2.
Here we will apply Sjolin’s estimates to the above solution, that is, we will extend
B for the wider range of p.

It is sufficient to consider the only case that p > 2, which implies |D?F({)| <
M|¢[P=2, for |¢| > 1. Actually, if 1 < p < 2, then the nonlinear term F satisfy s
(F2-3) for any p; > 2.

We obtain the following [Theorem. We denote 8 = (81,02,..,0,), 8% =
(3j8k)§‘,k=1. We often use 9, 82 instead of 8;, 9;0x for any j, k = 1,2,.,n,
respectively.

Theorem. Letl < n < 7. Assume (F1’) and if n > 4, (F2-3) with
l1<p<n/(n—4). And let uy € H?. Then the unique solution u € C(I; H?) of
the Egn.(1) with u(0) = uq satisfies the following properties;

(i) u,0u,8%u € X.

(ii) pu € L2(I; H3) for each ¢ € A.

Remark 1.2. We consider in 1 < n < 7 since the maximum of space-
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dimension n satisfied with 2 < n/(n—4) isn =7.

Remark 1.3. Applying this theorem to Theorem 1 in Yajima [15], we can
obtain the regularity estimate of solutions to nonlinear Shrodinger equations
with magnetic fields in the case that the initial data belongs to H?2.

Set I =[0,T7], for 0 < T < oo. For f € C?(C;C), that is, f so that Df and
D?f, as defined in (F2-3), exist, we introduce the real linear map f’ as follows;

f'(Qw) = (0 flw+ (0 f)@, (¢ ,wecC.
Define the real bilinear form H; by
H; () (z,w) = (80, f)zw + (0 0¢ f) (20 + Zw) + (870¢f) 2w, ¢, z,w € C.

We abbreviate LP(R") and H*(R"™) to L? and H*, respectively. We denote
usual LP-norm by || ||,. For I = [0,T], put L?" = L"(I; L), where 1 < p <
00,1 < r < 00, with its norm denoted by

171k = ([ 170l
We denote various constants by C, M, etc. They may differ from line to line.

We now outline the content of this paper. In Section 2, we introduce some
geometric notations which were first used in Kato [5], [6], conveniently to esti-
mate the linear and the nonlinear terms in some function spaces. Here, applying
formulation of Sobolev’s embedding theorem by these notations, we can easily
specify the function spaces which give the regularity of the linear and the non-
linear operators in the proof of the regularity estimates. In Section 3, we prove
the regularity of the first and the second derivative in space variable of solutions
to Eqn.(1) and, in Section 4, we estimate the regularity of solutions multiplying
weighted function by applying the method of the geometrical notations.

Acknowledgments The author is grateful to the refree for his valuable
comments. The author is grateful to Professor Yoshio Tsutsumi for informing
me of the paper [12], to Professor Koichiro Naito for his helpful discussion, and to
Professor Tadayoshi Adachi, Professor Kazuhiro Kurata and Professor Takayoshi
Ogawa for their helpful conversations. Finally the author is grateful to Professor
Shu Nakamura and Kenji Yajima for their constant encouragement.

2. Geometric notations and preliminary

To simplify the argument, we use Kato’s square notations, introduced in ,

[6].
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In a square O = (0,1) x [0, 1], consider a point P = (1/p,1/r), 1 < p < o0,
1 <r < oo, and denote LP" by L(P), and || |- by | :Pllor ] :L(P)|.
Of course, L(P) depends on the time interval I, but for simplicity we will omit
it. And 1/p, 1/r is denoted by z(P), y(P), respectively.

We regard P € O as 2-vector. For the function space L(P), the following

properties(i-v) hold(Kato [5], [6]);
(i) If P+ P’ = (1,1),P, P’ € O, then L(P)* = L(P').
(ii) (Holder’s inequality) If P,Q, P + Q € O, then
Ifg:P+QU<ISf:Plxlg:Ql (4)

(iii) If P, kP € O(k > 0), then |f* : kP| = |If : P|*.

(iv) If P,Q € O, then L(P) N L(Q) C L(R) C L(P) + L(Q), for each R on
the segment PQ. In fact, the left inclusion relation holds since L(P)-norm has
the convex property, i.e.

17 : AP+ (1= NQU < If : PIPIS : QI (0 < A< 1), (5)
The right inclusion relation holds by duality.
(v) When [ is finite, ie. T < 0o, let P = (1/p,1/r) €0, Q = (1/p,1/s) €O

and r > s, that is, £(P) = z(Q) and y(P) < y(Q), then L(P) C L(Q) with
If: QI <T°|f : P|, for f € L(P), where § = 1/5 —1/r > 0.

And we often use the following lemma in the proof of [Theoreml

Lemma 2.1. (Sobolev’s embedding theorem) Let P = (1/p,1/r) €0, Q =
(1/9,1/r) €0, and k e NU{0}. If1/p > 1/q > max{1/p — k/n,0}, then

If:Ql<C ) Jo*f: P|l, 3C>o. (6)
lal<k
We introduce some special points in 0.
B =(1/2,0),C =(1/2-1/n,1/2), if ,n # 1,C = (0,1/4), if n = 1,
B'=(1/2,1),C' = (1/2+1/n,1/2), if n # 1,C’' = (1,3/4), if n = 1.

And we denote the semi-open segment BC, which is close at B and open at
C, by l. And similarly, B'C’ by ', that is,

l={(z,y)lc+2y/n=1/2,1/2-1/n< 2 < 1/2}.
'={(z,y)|lz+2y/n=1/2+2/n,1/2< 2 < 1/2+ 1/n}.
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Note that if P = (1/p,1/r) €, the dual point P’ = (1/p’,1/7') is on the dual
segment I’

Next, we define the following linear operators.
(T)(t) = U(t)¢ = €24, tel, (7)
t
©nw= [ ve-nfean  ter ®

Using the above notations, we can express Strichartz estimates as follows.

Lemma 2.2. (Kato [5]) For any point P onl, T is a bounded operator from
L? to L(P). The bound is independent of T', and is uniform for P on any compact
subset of . Here L(B) may be replaced by L(B) = C(I;L?).

Lemma 2.3. (Kato [5]) For any point P onl and any point Q onl', G is
a bounded operator from L(Q) to L(P). The bound is independent of T, and
is uniform for any compact subsets of ' and . Here L(B) may be replaced by
L(B).

For the differential of the nonlinear term F', the follbwing key lemma holds.

Lemma 2.4. Assume (F1) and (F2) with 1 < p < o0o. And assume u €
L(P), 8;u € L(Q), 3;0;u € L(R), j,k=1,2,,,n,P,Q,Re 0. If(p—1)P+Q €
O, then we have

0;(F(u)) = F'(u)(9ju) € L((p - 1)P + Q). (9)

And in the case of 2 < p < 0o, assume in addition (F3). If (p— 1)P + R,(p —
2)P + 2Q € O, then we have

Bjak(F(u)) = F’(u)(ajaku) + Hp(u)(aju, 8ku) (10)
€L((p—1)P+R)+ L((p—2)P +2Q),
for j,k=1,2,..,n.

Remark 2.5. F’'(u) and HFp(u) are the first and the second Gateaux deriva-
tive, respectively.

Proof. The proof of (9) is in Lemma4.5 in Kato [5]. We shall prove [10).
Since we assume (F2-3) with p > 2, we have

WH r(u) (854, 0ku) : (p— 2)P + 2Ql < ClllulP~2(8;u)(0xu) : (p— 2)P +2Ql
< Cllu: PIP210;u : QUlIdku : Q.
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Thus Hp(u)(0;u, Oxu) € L((p—2)P+2Q). And we have F’(u)(9;0ku) € L((p—
1)P + R) by the similar argument of (9). It remains to prove the equality.

It is obvious that C§° (I xR™) is dense in L(S), for any S € O. (see
in Kato [5]) If y(P),y(Q),y(R) # 0, then by using Friedrichs mollifiers on I and
on R", we can construct a sequence {u,} € C§°(I x R") such that u, — u,
as n — 0o, in L(P). For uy, it is easily to show that d;u, — 8;u, as n — oo,
in L(Q), and that 9;0ku, — 8;0ku, as n — oo, in L(R), for j,k = 1,2...n,
respectively. And we have

0;0k(F(un)) = F’(un)(ajakun) + Hp(un)(aju,,, Oty ). (11)
Since F € C? we have

F’(u,,)(ajaku,,) — F’(u)(ajak'u), asn — oo, in L((P— l)P + R),
Hp(un)(0;up, 0k un) — Hp(u)(8;u,8ku), as n = oo, in L((p — 2) P + 2Q).

Thus, taking the limit of [11), we can obtain when y(P),y(Q),y(R) # 0.

If y(P) = 0, then there exists a subsequence v, of u, such that v, (t) — u(t),
asn — oo, in LP, for a.e. t € I, and |lvn(t)|l, < C, for all n and t, where
P = (1/p,1/r). Using this subsequence, we repeat the above argument. When
¥(Q) = 0 or y(R) = 0, using similar subsequences, we can obtain [10). We
completed the proof of Lemma.

3. Proof of the part (i) of Theorem

We divide the proof of into two parts. In this section, we shall prove
the part (i) of [Theoreml the regularity of the derivatives of a local solution to
Eqn.(1).

Proof of the part (i) of Theoreml We start to prove in the case of 4 <

n < 7. First we introduce the following points and consider each corresponding
space with an interval I = [0, 7], which will be specified later.

X = L(B) N L(P), norm : Jullx = max{Ju : BI, Ju : P},
X =L(B)nL(P) C X,
X' =L(B')+ L(P'), where P+ P’ = (1,1)and P’ € I,
norm : |fllx: = inf{llfy : B'U+f2: P’} | f = fr + f},
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Y = {u,0u,€ X}, norm : Jlully = max{flulx, |0ulx,},

In Kato [4], [5], the solution to Eqn.(1) was constructed as a unique fixed
point of the integral equation, which is equivalent to Eqn.(1),

u = ®(u) =Tug — iGF(u), (12)

in Z = {u|lu € X,8;u € X, Au € L(B)} with norm |ullz = max{Jlulx, |0:ulx,
|Aul)2,00}- To obtain the desirable estimate, formally we differentiate Eqn.[12)
in space variables. Since I' and G commute with d, we obtain the following
equalities;

dju = Tdjuo —i1GO;(F(u)), j =1,2,.,n, : (13)

0;0ku =T'0;0kuo — iGO;0k(F(u)), j,k=1,2,..,n. (14)

If 3(F(u)),8%(F(u)) € X' for each u € Z, then Eqn.[13) and hold and we
can conclude (i) of So, it is sufficient to prove 8(F (u)), 8%(F(u)) € X’
for each u € Z.

To use the notations introduced in Section 2, we choose two points in [J.

1 1 1 n 1
Po—(§;,0); Pl—(Z+Z;’§(1—;))
=(p—-1)Py+ P.

By Sobolev’s embedding theorem, the following inclusion relation hold.
Z C L™(I; H?) C L(Py).

Since z(P;) = z(P’) and y(P’) > y(P1), there exists a constant 6; = y(P’) —
y(Py) > 0, then L(P,) C L(P'), with ||f : P'|| < T%||f : P1|}, for f € L(Py).
Then we obtain the following lemma.

Lemma 3.1. Let F be satisfied with the assumptions of Theorem. If u € Z,
then F(u) € X' and F'(u) € L(X;X').

Proof. We follow the argument in the proof of Lemma 6.3 in Kato [5].
We begin by writing F' in the form

F=F +F, F,F,eCYCC), Fi(0)=F,(0)=0,
|IF1(¢)] < Mil¢l,  |FL(Q)] < M,

IO < MK, 1K (O] < Mp¢P.
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This may be achieved by multiplying F' with smooth cut-off function.
We start to estimate Fj(u). Since z(B) = z(B’) and y(B’) — y(B) = 1, we
have

1F1(u) : Bl < TWFy(u) : B} < MiTu : B < MiTljulx < MiTjullz,

for any u € Z. Here we use property(v). For the nonlinear term F,(u), we have,
for u € Z,

IFs(u) : Pl < T Fp(u) : Pl < MT" o < (p— 1) Po + P|
< MT*Ju: BoP~"Ju: Pl < MpT* Jully  fullx < M,T* ulfy,

where we use the properties(ii), (iii),(v). Thus we have F(u) € X'.
It is obvious that F’(u) is a real linear map. And we have, similarly as above,

IFi(w)v : Bl < TIFi(v)v : Bl < MiTllv : Bl < MiTollx, u € Z, v € X,

15, (w)v : P/l < T | Fy(w)v : Pyl < MpT* [P~ v : (p— 1) Py + P
< MT" Ju: PP~ v : PI < M,T* Jul  Wollx, u € Z, v € X.
Here we use the properties(ii),(iii),(v). Thus we can prove Lemma 3.1.
Lemma 3.2. Suppose 4 < n < 7. Let F be satisfied with the assumptions of

Theorem. If u € Z, then Hp(u) is a real continuous bilinear form fromY xY
to X'.

Proof. By definition, it is clear that Hp(u) is real bilinear on Y x Y. We
will show that Hr(u) : Y x Y — X’. By definition of Hr and (F3), the following
inequality holds;

|Hp (u) (v, w)| < Mv||lw| + M|ulP~?|v||w] (15)
= A + A,
Hence it suffices to estimate A; and A,.

First we estimate A;. Since 4 < n < 7, we can introduce the following points
in (.

1 n1 1 1 1 n,1 1 S—
Pz—(z,g(z-;)), Ps=(3+~,5(3-)) € BP,
1 1 1
Py=(5,n(3- 7))

=2P,.
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In particular, P, = B when n = 4. Then, by Sobolev’s embedding theorem, we
have, for some C,C’ > 0,

fv: Pl <C D 0% : Pl < C'folly, v €Y, (16)

lal<1

since P3 € BP, that is, L(P3) D X. And z(P;) = z(B’) and y(B’) > y(Ps) since
4 < n < 7. Thus there exists a constant 8, = y(B’) — y(Ps) > 0, which satisfies
IA; : B < T* A : Pafl < MT*Jjv]jw] : 2P|
= MT%|lv: Pyljjw : P2
< C'MT* vliyllwlly, v,w €Y.
It follows that A; € L(B’) C X’ in the case of 4 <n < 7.
Next we estimate A,. First we consider the case of n = 4,5 with 2 < p <

3n/(3n —8). Since 1/2 > 1/8+3/8p > 1/2—1/n, Sobolev’s embedding theorem
implies that

1vllsp/(p+3),00 < CllvllL=(r;m1) < Clivlly, v €Y,

for some C > 0. Now we set the points in O,

1 3 3 1
P5=(-8-+§;,0), Ps = (Z—Z;,O)

= (p— 2)Po + 2P5.
Then ||v|lsp/(p+3),00 = IV : Psll, and z(P’) = x(Ps). Hence there exists a constant
05 = y(P’) — y(Ps) > 0, which satisfies
A2 : Pl < T%||As : Pell < MT% [[uff=?|v]lw| : (p - 2)Po + 2P5]|
< MT**fu: PP~ ?*[lv : Psllllw : Psll
< C'MT® |uly *folyllwly, v € Z, v,w €Y,
for some C’ > 0.

When n = 4,5 with 3n/(3n —8) < p < n/(n—4) or n = 6,7, we introduce
the following points in 0.




NONLINEAR SCHRODINGER EQUATIONS

3 1 3 1 1

PQZ(Z—E’H(Q_—@—;))

= (p—2)Po + 2P

Note that we can define L(Ps) when n = 6,7, since 3n/(3n — 8) < 2. Then, by
Sobolev’s embedding theorem, we have, for some C > 0,

lv: PAA<C D 10%: Pl < C'loly, v €Y,

laj<1

since Ps € BP, that is L(Pg) D X. And z(P’) = z(Ps) and y(P') > y(Ps) under
the above condition. Thus there exists a constant 84 = y(P’) — y(Py) > 0, which
satisfies

42 : P'| < T* )| A2 : Poll < MT**|||uf~?[ol|w| : (p — 2) Po + 2P/
< MT*||lu: PollP~*v : Prlllw : Prl
< C'MTuly *Ioly lwly, w€ Z, v,w €Y,

for some C’ > 0. It follows that A, € L(P') C X' in the case of n = 4,5 with
3n/(3n —8) < p or n = 6,7. Thus we can prove [Lemma 3.2.

(Back to the proof of in the case of 4 < n < 7.) Applying Lemmal
2.4 to Eqn(13) and [14)], we have

dju = I'djup — iGF'(u)(9u), j = 1,2,..,n, (17)
8;0ku = T8;0kuo — iG(F' (u)(9;0ku) + Hr (u)(8;u, Oxu)), (18)
5 k=12,.,n.

By Lemma 3.1-2, we obtain that u € Y i.e. Ou € X and 8%u € X.

(Proof of in the case of 1 < n < 3.) We prove to use the
following lemmas instead of and 3.2.

Lemma 3.3. Let F be satisfied with the assumptions of Theorem. If u €
L>®(I;H?), then F(u) € L?! and F’'(u) is a real continuous linear map from
L% .to L%,

Proof. It is a well-known result that F(u) € L% for u € L*®(I; H?) C L**.
(see, for example, in T.Kato [5].) It is obvious that F'(u) is a linear
map by definition. And (F1’) implies that there exists a M > 0 such that
|DF(u)| < M for u € L®(I; H?). We have

IF'(w)vll2, < THF (u)vllz,00 < MT||v]]2,00,
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from which we obtain Lemma 3.3.

Lemma 3.4. Suppose 1 < n < 3. Let F be satisfied with the assumptions of
Theorem. If u € L*°(I; H?), then Hp(u) is a real continuous bilinear form from
L®(I; H') x L®(I; H') to L?! = L(B').

Proof. As[Lemma3.2, it is clear that Hp(u) is real bilinear on L* (I; H!) x
L (I; H') by definition. Since 1 < n < 3, L*®(I; H?) C L= (I xR™) by Sovolev’s
embedding theorem. Hence there exists a M > 0 such that |D?F(u)| < M for
u € L*®(I; H?) as above. Then, by the definition of Hr and (F3), we have the
following inequality.

[Hp(u)(v,w)| < Mv||lwl|, u,v € L=(I; Hl)-
We estimate |v||w|. By Sobolev’s embedding theorem, we have the following
inequality;
lvlls,c0 < ClvllLoez;m1),
for some C > 0. Then we have

lvllwlllz, < Tllo]|w]ll2,00
= T|ll4,00 l|wll4,00
S C2T|Iv“Loo(I;H1)“w“Lce(I;Hl), v,w € LOO(I,HI)

We obtained that Hp(u)(v,w) € L?! = L(B') for u € L*®(I; H?), v,w €
L*>®(I; H') in the case of 1 < n < 3.

(Back to the proof of in the case of 1 < n < 3.) As in the case of
4<n <7, we have and [14). By Lemma 3.3-4, we conclude du, 8%u € X.
This completes the proof of the part(i) of [Theoreml|

4. Proof of the part (ii) of Theorem

In this section, for ¢ € A and the solution u of Eqn.(1) we will investigate
the regularity of pu.

Proof of the part (ii) of Let ¢ € A. Then pu = pl'ug —
ipGF (u). Since ||gaI‘u0||L2(I_H§) < ||uo|lg2 by (3) with H = —A,r =10, p=5/2,
it suffices to estimate || GF (u)||

L3LHYY t

It is obvious that if f € L(I;L?), then Gf = I‘/ U(—7)f(r)dr, since
0
U(t) is unitary on L2. (see, for example, Ginible and Velo [2]) Then, using the
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following lemma, we have

t
leGF (u)llLa(r;mer2) = [|T /o U(=7)F (u)(7)dr||L2(z;m502)

< leTT*F (u)|| L2 m502)
< Cp,1||IT* F(u)|| a2
< Co||F (u)llLa (1;m3),

T
where I'* f = / U(-7)f(r)dr, for any f € L?*!, and I'* : L% — L? is bounded
0

linear. Note that U(t) is unitary on L? and that 8 commutes with I'*. Thus we
can obtain the conclusion of

It remains to prove the following lemma.

Lemma 4.1. Let F be satisfied with the assumptions of Theorem. If u is
solutions of Eqn.(1) as in Theorem, F(u) € L*(I; H?).

Proof of Lemma 4.1. In the case of 1 < n < 3, we have already proved
this lemma in the previous section, and we obtained that F;(u), Fj(u)v,A; €
L(B') = LY(I;L?), for u € Z, v € Y, in the previous section. It suffices to
prove Fy(u), Fy(u)v,As € L(B’) = L'(I;L?), for u € Z, v € Y in the case of
4<n < 7. Here A; and Aj; is defined in [(15).

In the case of 4 < n < 7, we concluded that u € W = {0u,0%u € X} U Z.
Thus we may use Jullw = max{||u]z, |0ullx, 10%ulx} instead of |Juz.

And we introduce the following points in 0.

1 1

Py = (5, 5(:1- - ;))

By Sobolev’s embedding theorem, we have, for some C,C’ > 0,

Ju: Pl <C D 10%u: Py
|a|<1
<C' Y J0%u: Bl < C'llullw, u € W, (19)
|al<2

By 1/4p > 1/4 — 1/n, the first inequality holds. The second inequality holds by

(16).
A

Next, to estimate Fy,(u), F’(u)v, we set the following point in OJ;
ln—-4 1 n
2278 P72 8p
=(p—1)Ps+ P 0.

Py = (
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By z(B’) = z(P11) and y(B’) > y(P11), there exists a constant 05 = y(B’) —
y(P11) > 0, which satisfies
N, (u) : Bl < T*IFy(u) : Pl < MT* Ju? s (p — 1) Py + Pl
< MpT% fu: PolP~*u : P||
< C'MT% Jlullyy llullx < C'MpT Jullly, u e W,

IE (u)o : B') < T |F)(u)o : Pual < MyT** =0 : (p— 1)Pro + Pl
< MyT* [ PoolP~ v : PI
< C'M T Jullfyy  Iolly, we Wv €,
for some C’ > 0. We obtain F,(u), Fy(u)v € L(B') = LY(I;L?), for u € W,

veY.
To estimate A, we introduce the following points in O.

P2 = (3 4p’2(8_§_5))’
1 1 1 n3 1 1 N
(et —F =, o(em——= P
Pis (8+4p+n’2(8 4p n))EB’
1l n—-4 n n
P14=(§, 8 P+'8-—5

= (p—2)P18+P12 GD
By Sobolev’s embedding theorem, we have, for some C' > 0,

lv: Pl <C Y 16%v: Pisl < C'llvlly, v €,
Je|<1

since P;3 € BP, that is, L(P13) D X. And z(B') = z(P14) and y(B’) > y(Pi4)
under the above condition. Thus there exists a constant 8¢ = y(B’)—y(Pi4) > 0,
which satisfies

Az : B') < T%|A; : Puall < MT|||ulP~2|v||w| : (p — 2)P1o + 2P12ll
< MT%|u : Po*~2flv : Ppollfjw : Prall
< C'MT% ||l 2 vlly lwly, v € W, v,w €Y,

for some C' > 0. Hence we have A, € L(B') = LY(I; L?),forue W,v,w €Y.
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