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Summafy. In many problems, we often need the almost sure behavior of the
empirical distribution function. In this note, we consider some asymptotic be-

haviors of the empirical distribution function generated by a strictly stationary
absolutely regular sequence of uniform (0,1) random variables.

1. Main results

Let {£;; —00 < i < 0o} be a strictly stationary absolutely regular sequence of
uniform (0, 1) random variables, i.e., {{;} satisfies the condition

,B(n):E{ sup |P(B]M‘_)_°o)—P(B)|}—>O (n = o)
BeMg

where M$, denotes the o-algebra generated by &, . .., & and each &; is distributed
uniformly on (0,1). As usual, we define the empirical distribution function by

Fu(z) = %ZI({; <3z).
Jj=1

In the following, [z] denotes the integer r such that r <z < r + 1.
Firstly, we prove a theorem which corresponds to a result of [3] in the inde-
pendent case.

Theorem 1. Suppose there exist an integer-valued function m = m, =
m(n) of n and a sequence {a,} of positive numbers such that m, and a, are
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monotone nondecreasing, msy, /m, is bounded and

00 o0

my, = o(n) (n > o0), znﬁ(mn) < oo, and Z
n=1 n=1
Then
P ( sup n(2) Zanzo) =0
o<r<1 I
and

P ( sup 1= Fulz) > an i.o.) =0. (3)
o<z<1 1—=x :

- The following theorem corresponds to a results of [1j in the independent case.

Theorem 2. If there are an integer-valued function m = m, = m(n) of n
and a sequence {b,} of positive numbers such that

o0 3 o0 o0
m

E n—;‘ < 00, E nB(myp) < oo and E Mpbin/m,] < 00, (4)

n=1 n=1 n=1

then

I — Fn(x) a.s.
ny\/bn/m » 0. 5
n/mal o2 z(l—z) (5)

The following theorem is an extension of a result in [7].

Theorem 3. Let {£;.,} be the ordered statistics of €4, ...,&,. Suppose there
exist a constant p(€ (0,1)) suth that '

'3
> B (n) < oo. (6)
n=1

Let {\.} be a sequence of real numbers satisfying

An > nY  with some v > 2—(—1§i—p) for large n. (7
Then,
P su ——l—:-t—’>/\ -0 (n — o) (8)
0<t$€np—1:n 1- Fn(t) " .
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2. Proofs
The following is a special case of Lemma in [5].

Lemma A. Let {{;} be a strictly stationary absolutely regular sequence of
random variables with mizing coefficient B(n). Let g(z1,...,zx) be a bounded
Borel function such that |g(z1,...,zx)] < M and let 1 < 7 < -0 < .
Let F) and F® be distribution functions of random vectors (&, ,. . &) and
(ij41)---,&5,), respectively. Then

IEg(ﬁix’giz""’Eik)

—/'“/9($1,...,2j,$j+1,...,.’Dk)dF(l)(Z]_,...,zj)dF(2)(xj+1,...,xk)|
< 2MpB(i541 — 3j) .

Proof of Theorem 1. It is enough only to show (2). We use the method of
proof in . p. 421. Let p; = [v7] (v > 1) be fixed. Then, by the third condition
in (1) it is easily shown that :

322 < o (9)

i=1 Qp.

Let i be fixed and for each j(j = 1,... ,myp;) let k; ; be the largest integer such
that j + k; jm,, < p;. For the moment to simplify notations we write my, = m;
and p; = n;. Define

E,
A;:{w: max sup (=) 2—}
ni<n<n;qy o<zr<l1 x 2

and note that

PO { e, L > o))

n

(0.7 {1, 222 %)) <o

i=ln=n 4,

Thus, by the Borel-Cantelli lemma, to prove (2) it suffices to show that

iP(A,’) < 00. (10)
i=1 .
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Because nF,, is monotone and %mi+1(ki+1,j + 1) < nj41, we have

P(A)

Fo.(z) _ a,
max sup (2) > —
ni<n<nit10<z<l & 2

":+1Fn.+1 (z) an.') W= "-
> i— ) = - < 1
P( 2 ni— P 021;211‘2 I <z)>n—

.+1 kig1,;

z+1,J +1 1 1
sup 13 <z)>—
0<z<l E N1 t+1,j+1 ; z ( JHrmis ) n’+1 2

am

P

IA

7 X 1 e 1, n an,
<P (mi+1 ; 021;121 ——_ki+1,j F1 ; T (§J+rm.+1 < 13) > — et 2 )
o 1 ki+1’j1 n; an,
= ; F 021;21 ki1, +1 ,Z::o ;I(§j+rmi+1 <=2 nit1 4
Mg ‘

S Z KJ ’ (SaY) .
j=1

Now, noting ki1 ; < kit1,, and applying Lemma A to each K; ( =1,...,
m;41), we have

k|+1 3 1

____1 n; an
K;<P su 21X, <z)> D00 | oo, o
T kiy1,;+1 o<z§1 S ( ) 2 nit1 4 ) i+1,18(miy1)
=P | sup kitas(2) > 200 ) 4 9kier 18(migs)
0<z<1 z n,'+1 4

where Fy(-) denotes the empirical distribution function defined by i.i.d. uniform
(0,1) random variables {X;,0 < i < £}. Since (n;4+1/n;) < v for all 7, by the
Daniels theorem ([4], p. 345) we have

4n; 4v
4 2kig118(miy) <

10n; ng

K; <

i1, 1,3(mz+1)

and consequently

mi41 .
P(A,’) < Z {4—U + 2k,+1 1,3(771,4.1)} < ilv—;'n,—*i -+ 2n,-ﬂ(m,-+1) (11)

j=1 ng n;

Now, follows from (9) and (11). O
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Proof of Theorem 2. As in the proof of Theorem 1l for each j(j =
let kj = kj» be the largest integer such that j + k;m < n.
We note that
> e)

p(supﬂg@
0zl

z(l-=z)
=P | sup ————
(0<a:l<)1 ny/z(1

%5 +1\/—§{x I(&pmi < )}

)
)
>§)

m
2
sup
0<z<17n i=1

m
< P su
- Z (0<x31

= Z K; (say).

Jj=1

(ks + 1)\/35(1—_ Z{w I 4mi < 7))

1 k;
(kj + 1)\/z(1—z) g{”” — I(¢j+mi < z)}

Now, we estimate K;(j = 1,...,m). By applying Lemma A we have

K;<P (0<x<1 P 1)\/‘”(1_—932;{2: —I(X;<z)} > 5) + 2k;B(m)(13)
z-—_ij+1(z) € _
=7 (P Vel-o | 5) +2ksm)

where FJ() denotes the empirical distribution function defined by i.i.d. uniform
(0,1) random variables {X;,0 < i < j}.
We consider

Fi(z)— =
Ui= sup ———— (14)
oce<t VT
and prove that
ZEP ( bi,Uk; > e) < oo for every ¢(> 0). (15)

n=1j=1



50 K. YOSHIHARA

We use the Csaki method in _. Let k = k; or k; + 1 and define the following
event:

€ .
CkI{UiSm, 1i=1,2,...,k—=1; U >

Then, to prove (15) it suffices to show that

w )

f: %P(ij) < oo for every €(> 0). (16)

n=1j=1

Let

By ;= {az(a:j_l <z <zx;):kFi(z) > kz+ e (k—=1)F_1(z) < kz+ E-\—/——E}

Vo’ Vi

where z; is the solution of the equation

ez
kx4 —=3
Vi
that is,
-2
z; = 4 — (17)
akj + (1+\/1+%—bh>
Then
{ 0<:c< ) Fr(z) > = +k://—_ Fr_ 1(m)<z+ }
{ 0<z< );kﬁk( ) > kz +f; (k —1)Fy_ 1(x)<ka: \/;/r:}
%
Hence
&3] (%]
P(Ck) £ ) _ P(Bk,;) ZP(Bk,J > P(Bk;)
ji=1 J=Lx+1
where
€2
L [64kbk]
Obviously

Byj={3a(ejs1 <o <2;): (k= DFi(2) =j— 1 Xx <2} .
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Thus
k—1 -1 J [k i ] (kxj)j
It can be seen from that
252;
J < 62 ’

and hence

and that for j < L,

Therefore

Ln %, L (1)"'1 4b
2 <

ZP(Bk’j)ST?—_ =
J=1 Jj=1
For j > L) we use the estimation
; . 1(j — kz;)?
P(By;) < (f) i1 - 2;)*7 < Mexp {—5(i—Jr”’—)—} :
It is easy to see that for n large enough
. _ . 2
l(L__I.iﬂ > 3logk s
2

which implies that for j > L,

(%]
M M
P(Bjx) < 23 D> P(Bij) < R
J=Li+1

This, together with (19), gives

4 M

Hence, we obtain from (4) that for every ¢(> 0)

Y Y PGy <Y {émnbkm + %ﬁ} < 0.
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Now, let

(%]
€ k : . M
PV < lHA-t) T < S
(">k\/_bk)—. (a)’( <
where

t-—i+ € L _° €2 +4j
7Tk 2k kBi \ K20 K

It follows from that

EZP(ij kak > 6) <oo.
n=1j=1

From (12), (13), [(15), [24) and the obvious inequality
|z — Fn(z)] |z — F ()]

<2 sup —21

o<o<} V(1 —2) o<z<i Ve

we obtain that

lim n+/bx sup I‘”—_F“(—”)lzo a.s.

n—o0 o<z<i x(]__z)

The same reasoning yields

lim n+/bx sup |—a:—:ﬁ(i)le a.s. (26)

n—o0 %S-"v’<1 x(l—m)

Hence, (5) is obtained from and 26). O

To prove we need the following lemma which is a special case of
Theorem 5 in [2].

Lemma B. Let {n;} be an absolutely regular sequence of real-valued random
variables with mizing coefficients B(n). Suppose that En; = 0 and |n;| < M, <
0o. Then, for every e(> 4mM,)

P (im >e) §4exp{ €2 }+4nﬂ(m)

= _64;%D(n,m) + %emMo m
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where

G+m)an 2
D(n,m)= sup E| > m

0<jsSn—1 i=j41

Proof of Theorem 3. It suffices to prove (8) assuming A, = n”, where
v € (3p/{2(2+p)},1/2). For each positive integer n, let m = m,, = [\, log=2 n].
Then, we see that

2 24p

2 2(nY - -
n"A(m) <2 (n log _?) L = n?(n" log™?2 n)_l(l_;tﬂ (27)
m nYlog™“n
1 9 Q!Iiet
]
§n2(0g3n> =n-llog ¢ n—0 (n = 00),
n 30+,

since by (6) 8(m) = o(m_%i). Set i, = [An/4]+ 2 and ¢, = (inAn)/n.
Firstly, we note that for any i{(1<i<n-—1)

1-1 l_gn—i-—lzn (i)_l
o S = o 1- 6 —i—1n
Encic1n<t<én_in 1 — Fn(t) 1— Fp(€n—i:n) n ( n—i—1mn)

and so
{w : sup 1-t > A }
) sn—i—1:n<tS£n—i:n 1 - Fn (t) "

AR _ iAn
- {w . (;) (1 _£n—i—1:n) > ’\n} = {w . gn—-i—lzn <1l- T} .

Further, since

Jj=1
for all k(1 < k < n),

in—1

U {w:€n—i:n=£k}={wzn_inszl(gj <€k)sn_2}'
Jj=1

=1
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Hence, we have

<P (igl{fn-i:n<1—%})
<P (O{§k<1—/\f, n—in—lﬁzn:-’(fj<€k)ﬁn—2})
k=1 j=1
Sgp (€k<1_:\;:l,n_'in—pk—15 Z 1(§j<€k)Sn—2)

li—=kl>m

where p, = card {j : |j — k| < m}. Applying Lemma A

L.H.S. of (28) (29)
- An . =
SZP (Xk<1—‘n—,n—'ln_Pk—1S Z I({,‘(X)JSH-?)
k=1 li—k|>m
+ 2npB(m).

where {§;} is a copy of {;} and {Xi} is a sequence of i.i.d. uniform (0,1) random
variables, independent of {{;}. Put

| Yo Ig<e) (1<k<m),
Jj=2m+1 _
Snk(z)=< Z I(Ej<z) (m+1<k<n-m),

li=kI>m
n—-2m-—1

Y. I(¢i<z) (n-m+1<k<n),
\  j=1

We note that for each fixed & a family of random variables {f_lv(k—m),---,
€(k+m+1)an} satisfies the absolute regularity condition with mixing coefficients
Be(j) < B(j) and that ES, x(2) = (n — 2m — 1)z. Further, since

[T <z2)-2|<1 (i=1,...,n),

it is easily shown that for arbitrary numbers 2z (€ (0,1)), £ (€ {2m + 1,...,n})
and k (€ {1,...,n})

Var Sg x(z) < M1||I(€1 <z)-— z“%&

< My(6—2m){E|I (& < z) — 2|} 7% < My£{2:(1—2)} 77 .
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where M; is some positive constant and so

(G+m)Aan 2 .
( Z I < z)) < Mim{2z(1-2)} ¥ . (30)

D(n,m)(z) = sup E
i=j+1

0<j<n-1

Put
€z)=(n-2m—-1)1-2)—i,, (z2€(0,1)).

Then
€(z) > max{-;—(n -2m-1)(1- z),4m} for all z(€ (0,1 —A,n~1)). (31)
Hence, using Lemmma B (with M, = 1) and (30) we have

P(Sak(2) 2n—in—pp—1)
<P (Sn,k(z) - ESn,k(z) 2n—i,—2m—1- ESﬂ,k(z))

< P(|Snk(2) = ESni(2)] > (n— 2m — 1)(1 — 2) — iy,)

€2(2) 4(n — 2m)B(m)
< dexp {_64ﬁD(n,m)(z) + %e(z)m} m
< dexpd - €*(2) 4 4nB(m)
- 64Min{z(1 - z)}?-%i + 8e(z)m m

Further, by (7) and (31) we see that for some 7(> 2) and all n sufficiently large

€2(2)

inf
0<z<1=-Ann=! 64 Myn{z(1 — z)};% + Se(z)m

2
> inf  min 2 <l
0<z<1=Ann=t 128M1n{z(1'- 2)}3# Fm
A

' ln-2m-1)(1-2))° 1
> inf  mndGR=2m-D0-2)7 Y
0<z<1l=Ann=! 128Min{z(1-2)} 7%  $m
and so
sup P (Spn(2) > n—in—px—1) g4n-’+4"i£m). (32)

0<2<1=-A,n"1t
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Hence, from [27), (29) and (32) we obtain
L.H.S. of (28)
<nP (X1 <1l-— :\’ni’ Snyk(Xl) - (n —2m — ].)X1

4n?B(m)

2(n—2m—1)(1—X1)—in)+ ~

(1-22)-
gn/ P(Snk—(n—2m—-1)X,

> (n—2m—1)(1 - X1) —in | X1 = z)dz + o(1)
<4n "t 4+ 0(1) 50 asn — oco.

It remains to show that

P sup
0<t_<_fn—in:n

Since ncy, — in + 1 < in(An — 1), by Lemma B we have

T—I%JEI >A,,) 0. (34)

P ({n-i,.+1:n <1l- Cn) (35)
=P (il(§j< 1—cn)2n—in+1)
j=1

=P (zn:(I(ﬁj<1—-cn)—(1—cn))2ncn—in+1) -0,

Jj=1

(cf. the proof of (32)), and so from we have that as n — oo

in—1<i<n \ n

.\ —1
L.H.S. Of <P ( max (i) ' (1 - fn—i:n > An)

. An
S P (inzr;%?(n(l - &n—i:n) > (zn - 1)7)

<P ( max (1—&n_in) > Cn)

in—1<i<n
< P (1 - 6n—z’,.+1:n > cn) —0.

Therefore, the desired conclusion follows. [
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