YOKOHAMA MATHEMATICAL
JOURNAL VoL. 47, 1999

REALIZATION OF AUTOMORPHISMS ¢ OF ORDER 3
AND G° OF COMPACT EXCEPTIONAL
LIE GROUPS G, I1, G = E,

By
TOSHIKAZU MIYASHITA AND ICHIRO YOKOTA

(Received December 24, 1998; Revised June 11, 1999)

Abstract. For the simply connected compact exceptional Lie group E7, we
realize all of automorphisms o of order 3 and determine the group structures the
fixed subgroups (E7)° of E;.

Introduction

J.A. Wolf and A. Gray classified automorphisms o of order 3 and de-
termined the fixed subgroups G° of connected compact simple Lie groups G of
centerfree. In the previous paper [5], we found these automorphisms o and real-
ized G for simply connected compact exceptional Lie groups G of type G, F4
and FEg. In this paper, we consider the case of type E;. Our result is the second
column. The first column is the chart of involutive automorphisms and the fixed
subgroups.

L (U(l) X Es)/Zs L3 (U(l) X Es)/Zs
Ay SU(8)/Z, Az S(U() xU(T)/2Z,
o (SU(2) x Spin(12))/2, oz (SU(2) x Spin(2) x Spin(10))/Z,

o3’ (U(1) x Spin(12))/Z,
w (SU(3) x SU(6))/Z3

0. Preliminaries

Let € be the division Cayley algebra and let J = {X € M (3,€) | X* = X} be
the exceptional Jordan algebra with the Jordan multiplication X oY, the inner
product (X,Y’) and the Freudenthal multiplication X x Y defined by

XoY=LHXY+YX), (X,Y)=tr(XoY),
XxY=12XoY —tr(X)Y — tr(Y)X + (tr(X)tr(Y) — (X,Y))E)
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(E is the 3 x 3 unit matrix), respectively. Let 3 be the complexification of J and
in J¢ we define the Hermitian inner product (X,Y) by (X,Y) = (7X,Y). (The
complex conjugation in C = RC,¢% 3 or ‘,BC (see below) is always denoted by
7). The simply connected compact Lie group Es is defined by

Es = {a €Isoc(J°)P, | rar(X xY) = aX x aY,(aX,aY) = (X,Y)}
and the Lie algebra es of the group FEj is given by

25={¢€Homc(36,30) Tr(X X Y)=¢X xY + X x ¢Y, }

(6X,Y) +(X,4Y) =0
The C-vector space P is defined by
p°=3°03°@CoC.

For ¢ € ¢C,A,B € 3¢ and v € C, we define a C-linear mapping $(¢, A, B,v)
of PC by '

X ¢X —vX +2BxY +1nA
Y| _ [24x X —t¢Y + 30Y +¢B

¢(¢yA)B)V) E - (A,Y) +V€ ?
n (B,X)—Vﬂ

where ¢€ is the complexification of ¢ and *¢ is the transposed mapping of ¢
with respect to the inner product (X,Y) : (*¢X,Y) = (X,4Y),X,Y € J°. For
P=(X,Y,£1),Q =(Z,W,(,w) € BC, we define a C-linear mapping P x Q of
B by -

¢=—-3(XVW+2ZVY)

A=-1Qy xW-¢€Z -(¢X

P xQ=®(¢,A,B,v), 14( XW -8z -CX)

B=3(2X xZ—-nW —uwY)
v=5((X,W)+(Z,Y) - 3(¢w +(n)),

where X VW € ¢6€ is defined by
XVW=[R,W]+(X oW - (X, W)E)",

here X : 3¢ o> 3¢ is defined by XZ=Xo0Z,2 € 3¢. Finally we define a
Hermitian inner product (P, Q) in P by

(P,Q) = (X,2Z) + (Y, W)+ (r€)¢ + (Tn)w,
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where P = (X,Y,€,71),Q = (Z,W,{,w). Now the simply connected compact Lie
group E7 is defined by

E7 = {a € Isoc(PBC) |a(P x Q)a"! = aP x aQ,{(aP,aQ) = (P,Q)}
= {a € Isoc(P°) |a(P x Q)a~! = aP x aQ,rAa = arA},

where ) is the C-linear transformation of P€ defined by AX,Y, &) = (Y,-X,
n,—&). The Lie algebra e7 of the group E7 is given by

e7 = {®(¢,A, —TA,v) |6 € ¢5,A € I, v € iR}.
The group E7 contains Es as a subgroup by

Es = {a € E7|a(0,0,1,0) = (0,0,1,0)}.

1. Automorphism 3 of order 3 and subgroup (U(1) x E¢)/Z3 of E~

Let U(1) = {6 € C|(r6)8 = 1} and we define an embedding ¢ : U(1) —» E7
by

$(6)(X,Y,€,n) = (671 X,0Y,6%,63%p).
ForieU(l) and w=—1 + @ie U(1), let
t=¢(i), 3= ¢w).
Then ¢,t3 € E7 and 12 = —1,:3% = 1. Let (E7)* = {a € E7|ta = at}.

Proposition 1.1. [7]. (E7)* = (U(1) x E¢)/Z3,2Z3 = {(1,1), (w, ¢(w?)),
(w?,6(w))}. The isomorphism is induced by the homomorphism ¢ : U(1) x Es —
(E7)", (0, 8) = ¢(0)8.

We shall determine the group structure of
(E7)*® = {a € E7| i3 = aus}.
We consider C-eigenspaces (ipc)wk k=0,1,2, of P with respect to ¢3 :

(PB)1 = {P e B |wsP = P} = {(0,0,¢,7) € BC |€,m € C},
(B)w = {P € B |1sP = wP} = {(0,Y,0,0) € P° |Y € 3},
(PC)ws = {P € B [13P = w?P} = {(X,0,0,0) € B°| X € I°}.

These spaces are invariant under the action of the group (E7)*s.

Lemma 1.2. For o € (E7)"*, there erists £ € U(1) such that a(0,0,1,0) =
(0,0,¢,0).
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Proof. Since (0,0,1,0) € ()1, we have «(0,0,1,0) € (B°);. Hence let
«(0,0,1,0) = (0,0,&,n) and suppose that n # 0. «(0,0,1,0) x «(0,0,1,0) =
«((0,0,1,0) x (0,0,1,0))a~! = 0. On the other hand, «(0,0, 1,0) x (0,0, 1,0) =
(0,0,€,n) x (0,0,€,7) = #(0,0,0,—3¢n). Hence &n = 0, so € = 0, that is,
«(0,0,1,0) = (0,0,0,7). Since (0, E;,0,0) € (P°)., we have (0, E1,0,0) €
(BC). (E: is the usual notation in J° (e.g.[6])). Hence let (0, E,0,0) =
(0,Y,0,0),Y #0. «(0,0,1,0) x (0, E1,0,0) = «((0,0,1,0) x (0, E1,0,0))a"! =
0. On the other hand, «(0,0,1,0) x (0, E;,0,0) = (0,0,0,7) x (0,Y,0,0) =
(0,0, —%nY, 0) # 0. This is a contradiction. Therefore 7 = 0, that is, «(0,0,1,0)
= (0,0,&,0). Finally, |¢] = 1 follows from |£|?> = ((0,0,£,0), (0,0,€, 0)) = («(0,0,
1,0),«(0,0,1,0)) = ((0,0,1,0),(0,0,1,0)) = 1.

From Lemma 1.2, we see that C-vector subspaces

{(X,0,0,0) € PC | X € 3°}, {(0,Y,0,0) € P°|Y € I°},
{(0,0,¢,0) e p° € e€C},  {(0,0,0,9) € B |n € C}

of PC are invariant under the action of the group (E7)*s.
Theorem 1.3. (E7)** = (U(1)xEs)/Z3, Z3 = {(1,1), (w, ¢(w?), (w?, ¢(w)}.

Proof. From the fact above, a € (E7)** commutes with ¢, that is, (E7)** C
(E7)‘. Conversely, (E;)* C (E7)‘® is obvious, because (E7)* = ¢(U(1))Es
(Proposition 1.1)). Hence (E7)** = (E7)* = (U(1) x Es)/Z3.

2. Automorphism )\; of order 3 and subgroup S(U(1) x U(7))/Z,
of E7

Let {1,€e1,€e2, - ,e7} be the canonical R-basis of € and the field C; of com-
plex numbers is embedded in € as C; = {z + ye1 |z,y € R}. Now we define a
C-linear isomorphism x : € — &(8,C1)€ = {Q € M(8,C1)° |'Q = —Q} by

X(X,Y,6,7) = (X — SE)J +er(k(g(rY) — 2E))J.

(The definitions of k, g, ¥ and J are found in [7]). Now, we define a mapping
¢ :SU(8) = E7 by

p(A)P = x"*(Ax(P)'4), P ePC.

For A, = diag (¢, ¢€,¢,¢,¢,6,€,¢€) € SU(8), e = —71-2- + 71561 and A,, = diag (w1’,

w1, w1, w, w1, w,w;,w1) € SU(8), w1 = —% + 3?61, let

Ay = p(Ae), Az = p(Au,).



REALIZATION OF AUTOMORPHISMS OF ORDER 3

35

Then Ay, A3 € E7 and (A\v)? =
alvy}.

Proposition 2.1. [7]. (E7)* = SU(8)/Z2, Z, = {E,—E}. The isomor-
phism is induced by the homomorphism ¢ : SU(8) = (E7)™.

—1, A3 = 1. Let (E7)» = {a € E7 | A\ya =

We shall determine the group structure of
(E'7))‘S = {a € E; I Aza = a/\3}.

The explicit form of A3 is given by

X 15~ (=3 X + 3Y) + 3(tr(X) — ) - E(tr(Y) — n)E

a | Y| 2 |71 3 =20 + §(e(v) - ) + () - O
3 —1e - 3(tr(X) - &) + L+ L(tr(Y) — 1) ’
7 —in—3(tr(Y) — ) — B2 - L(tr(X) — )

where 73 of the right side is the C-linear transformation of J€ defined by

& z3 T & vs(ws) vs(z2)
X =73 Tz & x| =|ys(zs) & ya(zi) |,
T, Ty &3 v3(z2) 73(z1) &3

moreover v3 of the right side is the C-linear transformation of € = H @ HCe,
defined by y3(a+bes) = a+ (wib)eq, wy = —%+ 3@61. (H={1,e1,e5,e3}r CC
is the field of quaternion numbers).

In the following Lemma, for S € M(3,€) such that tr(S) = 0 and S* = -5,
S € e is defined by SX = 1[5, X] = L(SX — XS), X € 3° and (04)" =
((e6)"*)E,,E,,E, is {0 € ¢ | 736 = 673, 0Ex =0, k = 1,2,3}. (Ek,k = 1,2,3 are
the usual notations in J¢ (e.g. [6])).

Lemma 2.2. The Lie algebra (e7)** of the group (E;)*s is given by
(e7)** = {® € e7 | A3® = B3}

[ &(4,A,-7A,0) | )
0 83 —'8—2 ~ 0 (61b3)64 (61b2)64
¢=0+ (—5 0 s ) +2i | (e1bs)es 0 (e1b1)eq
- < §2 —81 0 (61b2)€4 m 0
M1 a3z + ibzes az + ibrey
A= (m H2 a; + z'5164) y
as + ibzes aj +ibrey 2%}
{ d € (34)73, sk,ax,br € H, pr € R
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In particular, the dimension of the Lie algebra (e7)*® is 49.

Proof. We obtain this result from direct calculations. (Note that we have

((EG)‘H)El,EzyEa = {a € (Es)%‘ l aky = Ek’ k= 1’213}
= (U(l) X Sp(l) X Sp(l) X Sp(l))/Zg, Zy = {(1v 1,1, 1))’ (—1’-1’ _1>_1)}:

hence the dimension of (94)" = ((¢6)"*)E,,E, E, is 10).
Theorem 2.3. (E;)** = S(UQ)xU(7))/2,, Z, ={E,—E}.

Proof. We define a homomorphism ¢ : S(U(1) x U(7)) = (E7)** by the
restriction mapping of ¢ in [Proposition 2.1. Obviously ¢ is well-defined. Since
(E)*s is connected and dim((e7)**) = 49 (Lemma 2.2) = dim(s(u(1) ® u(7))),
¢ is onto. Kerp = {E,—F} is easily obtained from Proposition 2.1. Thus we
have the required isomorphism.

3. Automorphism o3 of order 3 and subgroup (SU(2) x Spin(2) x
Spin(10))/Z4 of E-

Let € = H ® He,4 and the field C4 of complex numbers is embedded in € as
C,={z+yes | z,y € R}. Let Spin(2) = {a € C4 | da = 1}(= U(1)) and we
define an embedding D : Spin(2) — E by

Dd(XaYaE’n) = (DaX,DaY,f,ﬂ),
where D, of the right side is the C-linear transformation of 3€ defined by
&L z3 T2 &1 z3a  Taa
DaX =D, T3 & 1| =(aZT5 & aze).
z; T1 & @z, azia &3
For —1 € Spin(2) and wy = —1 + 5@64 € Spin(2), let
0‘=D_1, 0'3=Dw4.

Then 0,03 € Er and 62 =1, 033 = 1. Let SU(2) = {A € M(2,C) | (*A)A =
E,det A = 1}. We define an embedding ¢ : SU(2) = E7 by

&1 z3 T2 m ¥Ys V2
¢(A)( Zz & ), ¥ m wn 5,17)
z2 Tp &3 Y2 U1 "3

é’_ s’ zo! 17_1_' ys'  y2!
= ( 1'3' {_2, .’61’ ) y3, Qi yll £I’ 77/)’
) z' &' v w’ ns
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7)=4(6) G =) (8)=4(2) (&) -+ @)
=A =A =A , =A s
('7/ n/)’ \m’ m/)  \&' &) \&' §2
z,’ z1\ [z (-"32) (:va’) (933)
=(TA — , = .
(3/1') (r4) (311) ’ (y2'> y2/ " \ys' Y3
The group Spin(12) and Spin(10) are defined by
Spin(12) = {a € E; | ka = ak, pa = ap},

where kK = &(-2E, V E;,0,0,—1), u = (0, E1, E1,0) and

Spin(10) = {« € Spin(12) | a(F1(s),0,0,0) = (Fi(s),0,0,0), s € C4}

~ . a(F1(1),0,0,0) = (Fi(1),0,0,0),
= {O‘ € Spin(12) a(Fi(es),0,0,0) = (;’1(64),0,0,0) }

(Fk(z), k = 1,2,3 are the usual notations in J° (e.g. [6]) and C4* is the
orthogonal complement of C, in € with respect to the inner product (z,y) =
3(z¥ + yZ)) which is the covering group SO(10) = SO(V1°), where

VIO___{PEmC

KP = P, utAP = P, }
P x (Fy1(1),0,0,0) =0, P x (Fi(eq),0,0,0) =0

00 0\ (n 00
={( 06 t ], (000 ,o,m)|tec4*,§,nec}.
07 —r¢/ \o 0 0

This group Spin(10) is isomorphic to the usual spinor group Spin;(10) [7] :

Spini (10) = {a € Spin(12)

Q(O, Ela 0) 1) = (OthO) 1),
a(0,—E3,0,1) = (0, —E;,0,1) [

In fact, for p = 6(5es)v(%) € Spin(12) C E7, where, for a € €,
é(a) = exp #(0,iF,(a),iFi(a),0), ~(a) = exp &(0, Fy(a),—F;(a),0)
[2], we have Spin(10) = p~1Spin,(10)p.
Let (E7)° = {a € E7 | 0ca = ac}.

Proposition 3.1. [7]. (E;)° = (SU(2) x Spin(12))/Z,, Z, = {(E,1),
(—E,—0)}. The isomorphism is induced by the homomorphism ¢ : SU(2) x
Spin(12) — (E7)?, ¢(4,8) = ¢(A)B.

We shall determine the group structure of

(E7)°® = {a € E7| 032 = aos3)}.
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We consider two C-vector subspaces (B€),, and ((B)o, )+ of B :

(BC)oy = {P € BC | 03P = P}

1 0 O m 0 O
={((0 62 S),(O N2 t),ﬁ,ﬂ)
0 5 & 0 t 73

((€C41)€ is the complexification of Cct)

((B)os)* = {P € B° | (P, P') = 0 for any P’ € (P°)o,}

0 z3 73 0 ys V2
:{( Zzs 0 m],lys 0 n ,0,0)ka,yketc,m,nec,;(:}

zo m 0 y2 © 0

fk,ﬂkyﬁ,ﬂ € C:
s,t e (C4L)C

Then P = ()0, ® (B)os)* and (B)os, ((B)o,)* are invariant under
the action of the group (E7)7°.

We define a C-vector subspace (P)o of P :
(‘BC)O = {(F1(m),F1(ﬂ),0,0) I m,n e C4C}-

Lemma 3.2. (PC) is invariant under the action of the group (E7)%°.

Proof. The Lie algebra (e7)?* of (E7)7* is

(27)03 = {¢ € ey | o3P = Qa’a}
= {9(4,A,—7A,v) € er| $ € (¢66)7, A€ (3)os, v € iR}
((e6)? = {¢ € s | 03¢ = ¢o3} and (J%)s, = {4 € I° | 034 = A}). Now,
for (¢, A,—7A,v) € (e7)?® and (Fi(m), F1(n),0,0) € (PB)o, we have &(4,
A, —1A,v)(Fi(m), Fi(n),0,0) = (Fi(m’), Fi(n),0,0) € (P)o by direct cal-
“culations. Hence, for a € (E7)?, a(Fi(m),Fi(n),0,0) has also the form of
(F1(m"), F1(n""),0,0), because (E7)?® is connected.

From Lemma 3.2, we see that two C-vector subspaces
{(Pa(z2) + Fs(zs), Fa(y2) + F3(ys),0,0) | zx, 56 €€}, (B )o
~ of ((P€)o,)* are invariant under the action of the group (E7)°°.

Lemma 3.3. D,,a € Spin(2) and § € Spin(10) commute with each other.

Proof. Since §D, and T7A commute, to show that D6 = d D,, it suffices to
prove

D.P =6D,P, P=(X,0,0,0),(0,0,1,0).
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Now, §D,(E2,0,0,0) = §(E»,0,0,0) = (EE, — 7€Es + Fi(t),nE1,0,m0)(€,n €
C,t € C4t). On the other hand, D,8(E>,0,0,0) = D,(£Ey — T€E3+ Fy(t), nEx,
0,7n) = (§E3 — T€E3 + Fi(ata),nE1,0,7n) = (EE; — TEEs + Fi(t),nE1, 0, n).
Hence we have §D4(F>,0,0,0) = D,8(E2,0,0,0). Similaly §D,(E3,0,0,0) =
Da6(Es,0,0,0). Next,

JDa(iEl, 0, —1, 0) = J(iEl,O, —1, 0) = JTA(O, —iFEy,0, Z)
= T/\J(O, —iE,, O,i) = T)\(ﬁEz —T1€E3 + Fl(t),T)El, 0, T‘n)

(6,m € C,t € C4t). On the other hand,

Dod(iE1,0,—i,0) = DadrA(0, —iEy,0,) = TADG6(0, —iEy, 0, 4)
= 7AD,(EE2 — T€E3 + Fi(t),nE1,0,71)
= TA(EE; — T€E3 + Fy(ata),nE,,0,7n)
= TAEE, — T€E3 + Fy(t),nEy,0,7n).

Hence 6D, (iE;,0,—i,0) = D,d(iE;,0,—i,0), that is, §Da(Ey1,0,—1,0) = Dad
(E1,0,-1,0). Similarly §D,(E,,0,1,0) = D,6(E1,0,1,0). Thus we have

6D, (E1,0,0,0) = D,6(E;,0,0,0) and 48D,(0,0,1,0) = Dad(0,0,1,0).
For z € €€, we have

0D4(F1(2),0,0,0) = 6(Fi1(aza),0,0,0)
=6(Fi1(a?s41),0,0,0) (z=s+t€ Cs€ @ (Cst)C =)
= (F1(a®s),0,0,0) + 8(F(¢),0,0,0)
= (F1(as),0,0,0) + 8(Fy (¢, + it3),0,0,0) (tx € Cst)
= (F1(a’s),0,0,0) + §(Fy(t1),0,0,0) + i6(Fy(t2),0,0,0)
= (F1(a%s),0,0,0) + (£2E5 + €3E3 + Fi(t'),m E1,0,n)

(é2,€3,m,n € C,t' € (C4*)€). On the other hand

Dyd(F1(2),0,0,0) = D,6(F1(s+1),0,0,0)
= D4((F1(s),0,0,0)) + 6(F1(1),0,0,0))
= (F1(a%s),0,0,0) + Dy (€2E> + &3 Es + Fi(t'), m Ey,0,7)
= (A (azs), 0,0,0) + (&2E2 + £3Es + Fi(t'),m E1,0,n).
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§D4(F3(2),0,0,0) = §(F2(az),0,0,0)
= §(((F1(1),0,0,0) x (F2(),0,0,0))(0,4F1(a), 0,0))
=5§((F1(1),0,0,0) x (Fa(z),0,0,0))6715(0,4Fy, (a),0,0)
= (8(F1(1),0,0,0) x §(Fz(2),0,0,0))(0,4F,(a),0,0)
= ((F1(1),0,0,0) x (Fy(z2) + Fs(z3), Fa(ya) + F3(ys),0,0))(0, 4Fy(a),0,0)
=&(—5(F1(1) V Fa(y2) + F1(1) V Fs(ys)), 0,

7 (F3(%2) + F2(%3)), 0)(0,4F1(a),0,0)
= (Fy(az2) + Fs(x3a), F2(ay2) + F3(ysa),0,0) (zk,ye € €°).

On the other hand,

D46(F2(2),0,0,0) = Dy(Fo(z2) + Fa(xs), Fa(y2) + F3(ys),0,0)
= (Fg(a:rg) +-F3(£35), Fz(ayz) + F3(y3?i), 0, 0)

Hence we have §D4(Fk(2),0,0,0) = Dgd(Fk(2),0,0,0), & = 1,2. Similarly
6D4(Fs(2),0,0,0) = Da6(F3(2),0,0,0). Thus we have D, P = Dy P for any
P € B°, that is, 6D, = D,4.

Lemma 3.4. For B € (Spin(12))?* = {a € Spin(12) | osa = aos}, there
exists s € Cy4, |s| = 1 such that

B(Fy(1),0,0,0) = (F1(s),0,0,0), B(Fi(es),0,0,0) = (Fi(ess),0,0,0).
Proof. Consider the 2 dimensional R-vector space

V2={Pe P |kP =P, urAP = P, (P,P') = 0 for any P' € (P)o,}
= {(Fi(s),0,0,0) € PC | s € C4}.

Since 8 € (Spin(12))?® acts on V2, there exists s € C4 such that 3(F1(1),0,0,0)
= (Fy(s),0,0,0). Then for ws = -3 + 3Ce4 we have

ﬂ(Fl(Uh}),0,0,0) = ﬂ(Fl(w421w4 )’0703 O) = ﬂ0'30'3(F1(1),0,0, 0)
= 0’30’3,3(F1(1),0,0,0) = 030'3(F1(s),0,0,0)
= (F]_(Ld48), 0:0’0) e (1)

2), then we

Similarly B(F;(@3),0,0,0) = (F1(wzs),0,0,0)---(2). Subtract (1)~
1 follows from

have B(F)(es),0,0,0) = (Fl(e4s) 0, ) The fact that |s| =

Lemma 3.5. ¢(SU(2)), Spin(2) and Spin(10) are contained in (E7)°*
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Proof. By direct calculations ¢(SU(2)) is contained in (E7)?2, and since
o3 = D,, € Spin(2), Spin(2) is contained in (E7)?*. Next, § € Spin(10)
satisfied 030 = do3 (Lemma 3.3). Hence Spin(10) is contained in (E7)%s.

Theorem 3.6. (E7)?® = (SU(2)xSpin(2)x Spin(10))/Z4, Z4 = {(E, 1,1),
(E,—1,0),(—E,e4, ¢(—E)D-,),(—E, —ea, ¢(—E)D.,)}

Proof. We define a mapping ¢ : SU(2) x Spin(2) x Spin(10) = (E7)%® by
(A, a,8) = ¢(A)D,é.

¢ is well-defined from [Lemma 3.5. From [Proposition 3.1, ¢(A4), A € SU(2)
and § € Spin(10) C Spin(12) commute with each other, and D,,a € Spin(2)
and § € Spin(10) also commute with each other from Lemma 3.3. Moreover
¢(A)d = d¢(A) by direct calculations. Hence ¢ is a homomorphism. We shall
show that ¢ is onto. Since (PB°),,, (BC)o and {(Fz(z2) + Fs(zs), Fa(ye) +
F3(ys3),0,0 | zx,yx € Q:C} are invariant under the action of the group (E7)?s,
we have (E7)?® C (E7)?. Hence, for o € (E7)%°, there exist A € SU(2) and
B € Spin(12) such that o = ¢(A)B (Proposition 3.1). From s3a = acs, we have
B € (Spin(12))?*. Hence from Lemma 3.4, there exists s € Cy, |s| = 1 such
that B(F1(1),0,0,0) = (Fi(s),0,0,0) and B(Fi(es),0,0,0) = (Fy(ess),0,0,0).
Choose a € C4 such that a2 = s and let § = D,~ !, then §(F1(1),0,0,0) =
(F1(1),0,0,0) and §(Fi(es),0,0,0) = (Fi(es),0,0,0), that is, § € Spin(10).
Hence we have a representation a = ¢(A)Dsd, A € SU(2), a € Spin(2), § €
Spin(10). Therefore ¢ is onto. Ker ¢ = Z, is easily obtained. Thus we have the
required isomorphism.

4. Automorphism o3’ of order 3 and subgroup (U(1) x Spin(12))/Z,
of E7

Let U(1) = {# € C'| (6)0 = 1} and we define an embedding ¢ : U(1) = E7

&1 73 T3 m ys V2
¢(0)( ﬁ 62 I ) y_3 N2 U 16’77)
2 Ty & Y2 U1 M
08 =3 z 'm ys T
=(|= o0& o), | B om 6w |.6607'n).

zy 07lzp 0716, y2 Oyr Ons
¢ is well-defined, that is, ¢(8) € E7. In fact, since U(1) is contained in SU(2)
as {(g 0(_)1) | 0 € C, (16)0 = 1}, this ¢ is the restriction mapping of ¢ :

by
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SU(2) — E7 of Section 3. For w = —1 4+ ¥3i € U(1), let
o3’ = ¢(w).
Then o3’ € E7 and (03')® = 1.
We shall determine the group structure of
(E7)°* = {a € E7 | 05'a = aos'}.

Lemma 4.1. ¢(U(1)) and Spin(12) are contained in (E7)°% .

Proof. Since o3’ = ¢(w), it is clear that ¢(U(1)) is contained in (E7)°> .
Next, from [Proposition 3.1, ¢(A), A € SU(2) and B € Spin(12) commute with
each other. Hence ¢(0)8 = B¢(8), 8 € U(1) C SU(2). Therefore o3'3 = Bog/,
that is, Spin(12) C (E7)?s'.

We consider two C-vector subspaces ()., and ((P€)o,/)t of PBC :

(B)oy = {P € B° | 05'P = P}

0 z3 7= 0 ys %2
:{( T3 0 0 y | U3 0 0 ,0,0)I.’Bk,ykeo:c},
0 0 0 0

2 Y2
((‘pC)as,)J_ ={Pe€ SBC | (P, P') = 0 for any P’ € (mc)%l
& 0 0 m 0 0\
:{((0 &2 -’c1),(0 72 y1) ’5»77) &k, e, €,m € C, }
0 =1 & 0 71 us

Z1, 0N € ¢C
Then P€ = (P)os ® ((B)oy )t and (B)oy, ((PB€)o4)* are invariant under
the action of the group (E’7)"3,.

Theorem 4.2. (E;)?% = (U(1) x Spin(12))/ 22, Z, = {(1,1),(-1,—0)}.
Proof. We define a mapping ¢ : U(1) x Spin(12) — (E7)?* by

0(6,8) = ¢(6)8.

¢ is well-defined from Lemma 4.1. Since ¢(8), 6 € U(1l) and B € Spin(12)
commute (Lemma 4.1)), ¢ is a homomorphism. We shall show that ¢ is onto.
Since (PBC),,+ and ((PC)o,:)* are invariant under the action of the group (E7)*’,
a € (E7)?%' commutes with o, that is, (E7)?' C (E7)°. Hence, for a € (E7)°%,
there exists A € SU(2) and B8 € Spin(12) such that a = ¢(A)B (Proposition
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0
3.1). From o3'a = aog’, that is, o3'¢(A) = ¢(A)os’, we have A = (0 091>,

6 € U(1). Therefore ¢ is onto. Ker ¢ = Z, is easily obtained. Thus we have the
required isomorphism.

5. Automorphism w of order 3 and subgroup (SU(3) x SU(6))/Z;
of E7

A. Borel and J. de Siebenthal [T] classified the maximal subgroups of maximal
rank of compact simple Lie groups G and showed that the group E7 has a
maximal subgroup of rank 7 which is the fixed subgroup of an automorphism of
E7 of order 3 and whose type is A; @ As. In the previous paper , we realized
this group. The result is as follows. We define a C-linear transformation w of
P by

w(X,Y,£,n) = (wX,wY,£,n),
here w of the right side in the C-linear transformation of J¢ defined by

& z3 T3 & w(zs) w(za)
wX=w|T3 & x| =|w(zs) &2 w(z1) |,
zy Ty &3 w(zz) w(ry) &3

moreover w of the right side is the C-linear transformation of €€ = C4C®(C43)C
[6] defined by w(a+m) = a+wym(ws = -1+ 5964). Then w € E7 and w3 = 1.

Let (E7)Y = {a € E;7 | wa = aw}.

Theorem 5.1. [4]. (E7)* = (SU(3) x SU(6))/Z3, Z3 = {(E,E),(w4E,
waF), (wa?E,w4?E)}.
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