REALIZATION OF AUTOMORPHISMS σ OF ORDER 3 AND G^{σ} OF COMPACT EXCEPTIONAL LIE GROUPS G, II, $G = E_7$

By

TOSHIKAZU MIYASHITA AND ICHIRO YOKOTA

(Received December 24, 1998; Revised June 11, 1999)

Abstract. For the simply connected compact exceptional Lie group E_7 , we realize all of automorphisms σ of order 3 and determine the group structures the fixed subgroups $(E_7)^{\sigma}$ of E_7 .

Introduction

J.A. Wolf and A. Gray [3] classified automorphisms σ of order 3 and determined the fixed subgroups G^{σ} of connected compact simple Lie groups G of centerfree. In the previous paper [5], we found these automorphisms σ and realized G^{σ} for simply connected compact exceptional Lie groups G of type G_2, F_4 and E_6 . In this paper, we consider the case of type E_7 . Our result is the second column. The first column is the chart of involutive automorphisms and the fixed subgroups.

0. Preliminaries

Let $\mathfrak C$ be the division Cayley algebra and let $\mathfrak J=\{X\in M(3,\mathfrak C)\,|\, X^*=X\}$ be the exceptional Jordan algebra with the Jordan multiplication $X\circ Y$, the inner product (X,Y) and the Freudenthal multiplication $X\times Y$ defined by

$$X \circ Y = \frac{1}{2}(XY + YX), \quad (X,Y) = \operatorname{tr}(X \circ Y),$$
$$X \times Y = \frac{1}{2}(2X \circ Y - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + (\operatorname{tr}(X)\operatorname{tr}(Y) - (X,Y))E)$$

1991 Mathematics Subject Classification: 22E99 Key words and phrases: exceptional Lie groups

(E is the 3×3 unit matrix), respectively. Let \mathfrak{J}^C be the complexification of \mathfrak{J} and in \mathfrak{J}^C we define the Hermitian inner product $\langle X,Y\rangle$ by $\langle X,Y\rangle=(\tau X,Y)$. (The complex conjugation in $C=\mathbf{R}^C,\mathfrak{C}^C,\mathfrak{J}^C$ or \mathfrak{P}^C (see below) is always denoted by τ). The simply connected compact Lie group E_6 is defined by

$$E_6 = \{ \alpha \in \operatorname{Iso}_C(\mathfrak{J}^C) P, | \tau \alpha \tau(X \times Y) = \alpha X \times \alpha Y, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$$

and the Lie algebra e_6 of the group E_6 is given by

$$\mathfrak{e}_6 = \bigg\{ \phi \in \mathrm{Hom}_C(\mathfrak{J}^C,\mathfrak{J}^C) \ \bigg| \ \begin{array}{l} \tau \phi \tau(X \times Y) = \phi X \times Y + X \times \phi Y, \\ \langle \phi X, Y \rangle + \langle X, \phi Y \rangle = 0 \end{array} \bigg\}.$$

The C-vector space \mathfrak{P}^C is defined by

$$\mathfrak{P}^C = \mathfrak{J}^C \oplus \mathfrak{J}^C \oplus C \oplus C.$$

For $\phi \in \mathfrak{e}_6{}^C$, $A, B \in \mathfrak{J}^C$ and $\nu \in C$, we define a C-linear mapping $\Phi(\phi, A, B, \nu)$ of \mathfrak{P}^C by

$$\Phi(\phi, A, B, \nu) \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \phi X - \frac{1}{3}\nu X + 2B \times Y + \eta A \\ 2A \times X - {}^t\phi Y + \frac{1}{3}\nu Y + \xi B \\ (A, Y) + \nu \xi \\ (B, X) - \nu \eta \end{pmatrix},$$

where $\mathfrak{e}_6^{\ C}$ is the complexification of \mathfrak{e}_6 and ${}^t\phi$ is the transposed mapping of ϕ with respect to the inner product $(X,Y):({}^t\phi X,Y)=(X,\phi Y),X,Y\in\mathfrak{J}^C$. For $P=(X,Y,\xi,\eta),Q=(Z,W,\zeta,\omega)\in\mathfrak{P}^C$, we define a C-linear mapping $P\times Q$ of \mathfrak{P}^C by

$$P \times Q = \Phi(\phi, A, B, \nu), \quad \begin{cases} \phi = -\frac{1}{2}(X \vee W + Z \vee Y) \\ A = -\frac{1}{4}(2Y \times W - \xi Z - \zeta X) \\ B = \frac{1}{4}(2X \times Z - \eta W - \omega Y) \\ \nu = \frac{1}{8}((X, W) + (Z, Y) - 3(\xi \omega + \zeta \eta)), \end{cases}$$

where $X \vee W \in {\mathfrak{e}_6}^C$ is defined by

$$X \vee W = [\tilde{X}, \tilde{W}] + (X \circ W - \frac{1}{3}(X, W)E)^{\sim},$$

here $\tilde{X}: \mathfrak{J}^C \to \mathfrak{J}^C$ is defined by $\tilde{X}Z = X \circ Z$, $Z \in \mathfrak{J}^C$. Finally we define a Hermitian inner product $\langle P, Q \rangle$ in \mathfrak{P}^C by

$$\langle P,Q\rangle = \langle X,Z\rangle + \langle Y,W\rangle + (\tau\xi)\zeta + (\tau\eta)\omega,$$

where $P = (X, Y, \xi, \eta), Q = (Z, W, \zeta, \omega)$. Now the simply connected compact Lie group E_7 is defined by

$$E_7 = \{ \alpha \in \operatorname{Iso}_C(\mathfrak{P}^C) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$
$$= \{ \alpha \in \operatorname{Iso}_C(\mathfrak{P}^C) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \tau \lambda \alpha = \alpha \tau \lambda \},$$

where λ is the C-linear transformation of \mathfrak{P}^C defined by $\lambda(X,Y,\xi,\eta)=(Y,-X,\eta,-\xi)$. The Lie algebra \mathfrak{e}_7 of the group E_7 is given by

$$\mathbf{e}_7 = \{ \boldsymbol{\Phi}(\phi, A, -\tau A, \nu) \mid \phi \in \mathbf{e}_6, A \in \mathfrak{J}^C, \nu \in i\mathbf{R} \}.$$

The group E_7 contains E_6 as a subgroup by

$$E_6 = \{ \alpha \in E_7 \mid \alpha(0,0,1,0) = (0,0,1,0) \}.$$

1. Automorphism ι_3 of order 3 and subgroup $(U(1) \times E_6)/Z_3$ of E_7

Let $U(1) = \{\theta \in C \mid (\tau \theta)\theta = 1\}$ and we define an embedding $\phi : U(1) \to E_7$ by

$$\phi(\theta)(X, Y, \xi, \eta) = (\theta^{-1}X, \theta Y, \theta^3 \xi, \theta^{-3} \eta).$$

For $i \in U(1)$ and $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in U(1)$, let

$$\iota = \phi(i), \quad \iota_3 = \phi(\omega).$$

Then $\iota, \iota_3 \in E_7$ and $\iota^2 = -1, \iota_3^3 = 1$. Let $(E_7)^{\iota} = \{\alpha \in E_7 | \iota \alpha = \alpha \iota\}$.

Proposition 1.1. [7]. $(E_7)^{\iota} \cong (U(1) \times E_6)/\mathbb{Z}_3, \mathbb{Z}_3 = \{(1,1), (\omega, \phi(\omega^2)), (\omega^2, \phi(\omega))\}$. The isomorphism is induced by the homomorphism $\varphi : U(1) \times E_6 \to (E_7)^{\iota}, \varphi(\theta, \beta) = \phi(\theta)\beta$.

We shall determine the group structure of

$$(E_7)^{\iota_3} = \{\alpha \in E_7 \mid \iota_3 \alpha = \alpha \iota_3\}.$$

We consider C-eigenspaces $(\mathfrak{P}^C)_{\omega^k}$, k=0,1,2, of \mathfrak{P}^C with respect to ι_3 :

$$(\mathfrak{P}^{C})_{1} = \{ P \in \mathfrak{P}^{C} \mid \iota_{3}P = P \} = \{ (0, 0, \xi, \eta) \in \mathfrak{P}^{C} \mid \xi, \eta \in C \},$$

$$(\mathfrak{P}^{C})_{\omega} = \{ P \in \mathfrak{P}^{C} \mid \iota_{3}P = \omega P \} = \{ (0, Y, 0, 0) \in \mathfrak{P}^{C} \mid Y \in \mathfrak{J}^{C} \},$$

$$(\mathfrak{P}^{C})_{\omega^{2}} = \{ P \in \mathfrak{P}^{C} \mid \iota_{3}P = \omega^{2}P \} = \{ (X, 0, 0, 0) \in \mathfrak{P}^{C} \mid X \in \mathfrak{J}^{C} \}.$$

These spaces are invariant under the action of the group $(E_7)^{\iota_3}$.

Lemma 1.2. For $\alpha \in (E_7)^{\iota_3}$, there exists $\xi \in U(1)$ such that $\alpha(0,0,1,0) = (0,0,\xi,0)$.

Proof. Since $(0,0,1,0) \in (\mathfrak{P}^C)_1$, we have $\alpha(0,0,1,0) \in (\mathfrak{P}^C)_1$. Hence let $\alpha(0,0,1,0) = (0,0,\xi,\eta)$ and suppose that $\eta \neq 0$. $\alpha(0,0,1,0) \times \alpha(0,0,1,0) = \alpha((0,0,1,0) \times (0,0,1,0))\alpha^{-1} = 0$. On the other hand, $\alpha(0,0,1,0) \times \alpha(0,0,1,0) = (0,0,\xi,\eta) \times (0,0,\xi,\eta) = \Phi(0,0,0,-\frac{3}{4}\xi\eta)$. Hence $\xi\eta = 0$, so $\xi = 0$, that is, $\alpha(0,0,1,0) = (0,0,0,\eta)$. Since $(0,E_1,0,0) \in (\mathfrak{P}^C)_\omega$, we have $\alpha(0,E_1,0,0) \in (\mathfrak{P}^C)_\omega$ (E_1 is the usual notation in \mathfrak{F}^C (e.g.[6])). Hence let $\alpha(0,E_1,0,0) = (0,Y,0,0),Y \neq 0$. $\alpha(0,0,1,0) \times \alpha(0,E_1,0,0) = \alpha((0,0,1,0) \times (0,E_1,0,0))\alpha^{-1} = 0$. On the other hand, $\alpha(0,0,1,0) \times \alpha(0,E_1,0,0) = (0,0,0,\eta) \times (0,Y,0,0) = \Phi(0,0,-\frac{1}{4}\eta Y,0) \neq 0$. This is a contradiction. Therefore $\eta = 0$, that is, $\alpha(0,0,1,0) = (0,0,\xi,0)$. Finally, $|\xi| = 1$ follows from $|\xi|^2 = \langle (0,0,\xi,0), (0,0,\xi,0) \rangle = \langle \alpha(0,0,1,0), (0,0,1,0) \rangle = 1$.

From Lemma 1.2, we see that C-vector subspaces

$$\{ (X, 0, 0, 0) \in \mathfrak{P}^{C} \mid X \in \mathfrak{J}^{C} \}, \quad \{ (0, Y, 0, 0) \in \mathfrak{P}^{C} \mid Y \in \mathfrak{J}^{C} \}, \\ \{ (0, 0, \xi, 0) \in \mathfrak{P}^{C} \mid \xi \in C \}, \quad \{ (0, 0, 0, \eta) \in \mathfrak{P}^{C} \mid \eta \in C \}$$

of \mathfrak{P}^C are invariant under the action of the group $(E_7)^{\iota_3}$.

Theorem 1.3.
$$(E_7)^{\iota_3} \cong (U(1) \times E_6)/\mathbb{Z}_3$$
, $\mathbb{Z}_3 = \{(1,1), (\omega, \phi(\omega^2), (\omega^2, \phi(\omega))\}.$

Proof. From the fact above, $\alpha \in (E_7)^{\iota_3}$ commutes with ι , that is, $(E_7)^{\iota_3} \subset (E_7)^{\iota}$. Conversely, $(E_7)^{\iota} \subset (E_7)^{\iota_3}$ is obvious, because $(E_7)^{\iota} = \phi(U(1))E_6$ (Proposition 1.1). Hence $(E_7)^{\iota_3} = (E_7)^{\iota} \cong (U(1) \times E_6)/\mathbb{Z}_3$.

2. Automorphism λ_3 of order 3 and subgroup $S(U(1) \times U(7))/Z_2$ of E_7

Let $\{1, e_1, e_2, \dots, e_7\}$ be the canonical R-basis of $\mathfrak C$ and the field C_1 of complex numbers is embedded in $\mathfrak C$ as $C_1 = \{x + ye_1 \mid x, y \in R\}$. Now we define a C-linear isomorphism $\chi : \mathfrak P^C \to \mathfrak S(8, C_1)^C = \{Q \in M(8, C_1)^C \mid {}^tQ = -Q\}$ by

$$\chi(X,Y,\xi,\eta)=(k(gX-\frac{\xi}{2}E))J+e_1(k(g(\gamma Y)-\frac{\eta}{2}E))J.$$

(The definitions of k, g, γ and J are found in [7]). Now, we define a mapping $\varphi: SU(8) \to E_7$ by

$$\varphi(A)P = \chi^{-1}(A\chi(P)^t A), \quad P \in \mathfrak{P}^C.$$

$$\lambda \gamma = \varphi(A_{\epsilon}), \quad \lambda_3 = \varphi(A_{\omega_1}).$$

Then $\lambda \gamma, \lambda_3 \in E_7$ and $(\lambda \gamma)^2 = -1$, $\lambda_3^3 = 1$. Let $(E_7)^{\lambda \gamma} = \{\alpha \in E_7 \mid \lambda \gamma \alpha = \alpha \lambda \gamma\}$.

Proposition 2.1. [7]. $(E_7)^{\lambda\gamma} \cong SU(8)/\mathbb{Z}_2$, $\mathbb{Z}_2 = \{E, -E\}$. The isomorphism is induced by the homomorphism $\varphi : SU(8) \to (E_7)^{\lambda\gamma}$.

We shall determine the group structure of

$$(E_7)^{\lambda_3} = \{ \alpha \in E_7 \mid \lambda_3 \alpha = \alpha \lambda_3 \}.$$

The explicit form of λ_3 is given by

$$\lambda_{3} \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \gamma_{3}^{-1} \left(-\frac{1}{2}X + \frac{\sqrt{3}}{2}Y \right) + \frac{3}{8}(\operatorname{tr}(X) - \xi)E - \frac{\sqrt{3}}{8}(\operatorname{tr}(Y) - \eta)E \\ \gamma_{3}^{-1} \left(-\frac{1}{2}Y - \frac{\sqrt{3}}{2}X \right) + \frac{3}{8}(\operatorname{tr}(Y) - \eta)E + \frac{\sqrt{3}}{8}(\operatorname{tr}(X) - \xi)E \\ -\frac{1}{2}\xi - \frac{3}{8}(\operatorname{tr}(X) - \xi) + \frac{\sqrt{3}}{2}\eta + \frac{\sqrt{3}}{8}(\operatorname{tr}(Y) - \eta) \\ -\frac{1}{2}\eta - \frac{3}{8}(\operatorname{tr}(Y) - \eta) - \frac{\sqrt{3}}{2}\xi - \frac{\sqrt{3}}{8}(\operatorname{tr}(X) - \xi) \end{pmatrix},$$

where γ_3 of the right side is the C-linear transformation of \mathfrak{J}^C defined by

$$\gamma_3 X = \gamma_3 egin{pmatrix} \xi_1 & x_3 & \overline{x_2} \ \overline{x_3} & \xi_2 & x_1 \ x_2 & \overline{x_1} & \xi_3 \end{pmatrix} = egin{pmatrix} \xi_1 & \gamma_3(x_3) & \overline{\gamma_3(x_2)} \ \overline{\gamma_3(x_3)} & \underline{\xi_2} & \gamma_3(x_1) \ \gamma_3(x_2) & \overline{\gamma_3(x_1)} & \xi_3 \end{pmatrix},$$

moreover γ_3 of the right side is the *C*-linear transformation of $\mathfrak{C}^C = \mathbf{H}^C \oplus \mathbf{H}^C e_4$ defined by $\gamma_3(a+be_4) = a + (\omega_1 b)e_4$, $\omega_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_1$. $(\mathbf{H} = \{1, e_1, e_2, e_3\}_R \subset \mathfrak{C}$ is the field of quaternion numbers).

In the following Lemma, for $S \in M(3, \mathfrak{C})$ such that $\operatorname{tr}(S) = 0$ and $S^* = -S$, $\tilde{S} \in \mathfrak{e}_6$ is defined by $\tilde{S}X = \frac{1}{2}[S,X] = \frac{1}{2}(SX - XS)$, $X \in \mathfrak{J}^C$ and $(\mathfrak{d}_4)^{\gamma_3} = ((\mathfrak{e}_6)^{\gamma_3})_{E_1,E_2,E_3}$ is $\{\delta \in \mathfrak{e}_6 \mid \gamma_3\delta = \delta\gamma_3, \delta E_k = 0, k = 1,2,3\}$. $(E_k, k = 1,2,3$ are the usual notations in \mathfrak{J}^C (e.g. [6])).

Lemma 2.2. The Lie algebra $(\mathfrak{e}_7)^{\lambda_3}$ of the group $(E_7)^{\lambda_3}$ is given by

$$\begin{aligned} &(\mathfrak{e}_{7})^{\lambda_{3}} = \{ \varPhi \in \mathfrak{e}_{7} \mid \lambda_{3}\varPhi = \varPhi\lambda_{3} \} \\ &= \left\{ \begin{array}{ccccc} \varPhi(\phi, A, -\tau A, 0) \mid & & & \\ \phi = \delta + \begin{pmatrix} 0 & s_{3} & -\overline{s_{2}} \\ -\overline{s_{3}} & 0 & s_{1} \\ s_{2} & -\overline{s_{1}} & 0 \end{array} \right)^{\sim} + 2i \begin{pmatrix} 0 & (e_{1}b_{3})e_{4} & \overline{(e_{1}b_{2})e_{4}} \\ \overline{(e_{1}b_{2})e_{4}} & \overline{(e_{1}b_{1})e_{4}} & 0 \end{pmatrix}^{\sim}, \\ &= \begin{pmatrix} \mu_{1} & a_{3} + ib_{3}e_{4} & \mu_{2} & a_{1} + ib_{1}e_{4} \\ a_{2} + ib_{2}e_{4} & \overline{a_{1}} + i\overline{b_{1}e_{4}} & \mu_{3} \end{pmatrix}, \\ &\delta \in (\mathfrak{d}_{4})^{\gamma_{3}}, \quad s_{k}, a_{k}, b_{k} \in \mathbf{H}, \ \mu_{k} \in \mathbf{R} \end{aligned} \right.$$

In particular, the dimension of the Lie algebra $(\mathfrak{e}_7)^{\lambda_3}$ is 49.

Proof. We obtain this result from direct calculations. (Note that we have

$$((E_6)^{\gamma_3})_{E_1,E_2,E_3} = \{\alpha \in (E_6)^{\gamma_3} \mid \alpha E_k = E_k, \ k = 1,2,3\}$$

$$\cong (U(1) \times Sp(1) \times Sp(1) \times Sp(1))/\mathbf{Z}_2, \ \mathbf{Z}_2 = \{(1,1,1,1)), (-1,-1,-1,-1)\},$$

hence the dimension of $(\mathfrak{d}_4)^{\gamma_3} = ((\mathfrak{e}_6)^{\gamma_3})_{E_1, E_2, E_3}$ is 10).

Theorem 2.3.
$$(E_7)^{\lambda_3} \cong S(U(1) \times U(7))/\mathbb{Z}_2, \mathbb{Z}_2 = \{E, -E\}.$$

Proof. We define a homomorphism $\varphi: S(U(1) \times U(7)) \to (E_7)^{\lambda_3}$ by the restriction mapping of φ in Proposition 2.1. Obviously φ is well-defined. Since $(E_7)^{\lambda_3}$ is connected and $\dim((\mathfrak{e}_7)^{\lambda_3}) = 49$ (Lemma 2.2) = $\dim(\mathfrak{s}(\mathfrak{u}(1) \oplus \mathfrak{u}(7)))$, φ is onto. Ker $\varphi = \{E, -E\}$ is easily obtained from Proposition 2.1. Thus we have the required isomorphism.

3. Automorphism σ_3 of order 3 and subgroup $(SU(2) \times Spin(2) \times Spin(10))/Z_4$ of E_7

Let $\mathfrak{C} = H \oplus He_4$ and the field C_4 of complex numbers is embedded in \mathfrak{C} as $C_4 = \{x + ye_4 \mid x, y \in R\}$. Let $Spin(2) = \{a \in C_4 \mid \overline{a}a = 1\} (\cong U(1))$ and we define an embedding $D: Spin(2) \to E_7$ by

$$D_a(X, Y, \xi, \eta) = (D_a X, D_a Y, \xi, \eta),$$

where D_a of the right side is the C-linear transformation of \mathfrak{J}^C defined by

$$D_a X = D_a \begin{pmatrix} \xi_1 & x_3 & \overline{x_2} \\ \overline{x_3} & \xi_2 & x_1 \\ x_2 & \overline{x_1} & \xi_3 \end{pmatrix} = \begin{pmatrix} \xi_1 & x_3 \overline{a} & \overline{x_2} a \\ a \overline{x_3} & \xi_2 & a x_1 a \\ \overline{a} x_2 & \overline{a} x_1 \overline{a} & \xi_3 \end{pmatrix}.$$

For $-1 \in Spin(2)$ and $\omega_4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_4 \in Spin(2)$, let

$$\sigma = D_{-1}, \quad \sigma_3 = D_{\omega_4}.$$

Then $\sigma, \sigma_3 \in E_7$ and $\sigma^2 = 1$, $\sigma_3^3 = 1$. Let $SU(2) = \{A \in M(2, C) \mid (\tau^t A)A = E, \det A = 1\}$. We define an embedding $\phi : SU(2) \to E_7$ by

$$\phi(A) \left(\begin{pmatrix} \xi_{1} & x_{3} & \overline{x_{2}} \\ \overline{x_{3}} & \xi_{2} & x_{1} \\ x_{2} & \overline{x_{1}} & \xi_{3} \end{pmatrix}, \begin{pmatrix} \eta_{1} & y_{3} & \overline{y_{2}} \\ \overline{y_{3}} & \eta_{2} & y_{1} \\ y_{2} & \overline{y_{1}} & \eta_{3} \end{pmatrix} \xi, \eta \right)$$

$$= \left(\begin{pmatrix} \xi_{1}' & x_{3}' & \overline{x_{2}'} \\ \overline{x_{3}'} & \xi_{2}' & x_{1}' \\ x_{2}' & \overline{x_{1}'} & \xi_{3}' \end{pmatrix}, \begin{pmatrix} \eta_{1}' & y_{3}' & \overline{y_{2}'} \\ \overline{y_{3}'} & \eta_{2}' & y_{1}' \\ y_{2}' & \overline{y_{1}'} & \eta_{3}' \end{pmatrix} \xi', \eta' \right),$$

$$\begin{pmatrix} {\xi_1}' \\ {\eta'} \end{pmatrix} = A \begin{pmatrix} {\xi_1} \\ {\eta} \end{pmatrix}, \begin{pmatrix} {\xi'} \\ {\eta_1}' \end{pmatrix} = A \begin{pmatrix} {\xi} \\ {\eta_1} \end{pmatrix}, \begin{pmatrix} {\eta_2}' \\ {\xi_3}' \end{pmatrix} = A \begin{pmatrix} {\eta_2} \\ {\xi_3} \end{pmatrix}, \begin{pmatrix} {\eta_3}' \\ {\xi_2}' \end{pmatrix} = A \begin{pmatrix} {\eta_3} \\ {\xi_2} \end{pmatrix},$$

$$\begin{pmatrix} {x_1}' \\ {y_1}' \end{pmatrix} = (\tau A) \begin{pmatrix} {x_1} \\ {y_1} \end{pmatrix}, \begin{pmatrix} {x_2}' \\ {y_2}' \end{pmatrix} = \begin{pmatrix} {x_2} \\ {y_2} \end{pmatrix}, \begin{pmatrix} {x_3}' \\ {y_3}' \end{pmatrix} = \begin{pmatrix} {x_3} \\ {y_3} \end{pmatrix}.$$

The group Spin(12) and Spin(10) are defined by

$$Spin(12) = \{ \alpha \in E_7 \mid \kappa \alpha = \alpha \kappa, \ \mu \alpha = \alpha \mu \},$$

where $\kappa = \Phi(-2E_1 \vee E_1, 0, 0, -1), \ \mu = \Phi(0, E_1, E_1, 0)$ and

$$Spin(10) = \{ \alpha \in Spin(12) \mid \alpha(F_1(s), 0, 0, 0) = (F_1(s), 0, 0, 0), s \in \mathbf{C}_4 \}$$

$$= \left\{ \alpha \in Spin(12) \middle| \begin{array}{l} \alpha(F_1(1), 0, 0, 0) = (F_1(1), 0, 0, 0), \\ \alpha(F_1(e_4), 0, 0, 0) = (F_1(e_4), 0, 0, 0) \end{array} \right\}$$

 $(F_k(x), k = 1, 2, 3 \text{ are the usual notations in } \mathfrak{J}^C$ (e.g. [6]) and C_4^{\perp} is the orthogonal complement of C_4 in \mathfrak{C} with respect to the inner product $(x, y) = \frac{1}{2}(x\overline{y} + y\overline{x})$ which is the covering group $SO(10) = SO(V^{10})$, where

$$\begin{split} V^{10} &= \left\{ P \in \mathfrak{P}^C \left| \begin{array}{cc} \kappa P = P, \ \mu \tau \lambda P = P, \\ P \times (F_1(1), 0, 0, 0) = 0, \ P \times (F_1(e_4), 0, 0, 0) = 0 \end{array} \right. \right\} \\ &= \left\{ \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & t \\ 0 & \overline{t} & -\tau \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, \tau \eta \right) \mid t \in C_4^{\perp}, \, \xi, \eta \in C \right\}. \end{split}$$

This group Spin(10) is isomorphic to the usual spinor group $Spin_1(10)$ [7]:

$$Spin_1(10) = \left\{ \alpha \in Spin(12) \middle| \begin{array}{l} \alpha(0, E_1, 0, 1) = (0, E_1, 0, 1), \\ \alpha(0, -E_1, 0, 1) = (0, -E_1, 0, 1) \end{array} \right\}.$$

In fact, for $\rho = \delta(\frac{\pi}{4}e_4)\gamma(\frac{\pi}{4}) \in Spin(12) \subset E_7$, where, for $a \in \mathfrak{C}$,

$$\delta(a) = \exp \Phi(0, iF_1(a), iF_1(a), 0), \quad \gamma(a) = \exp \Phi(0, F_1(a), -F_1(a), 0)$$

[2], we have $Spin(10) = \rho^{-1}Spin_1(10)\rho$.

Let
$$(E_7)^{\sigma} = \{ \alpha \in E_7 \mid \sigma \alpha = \alpha \sigma \}.$$

Proposition 3.1. [7]. $(E_7)^{\sigma} \cong (SU(2) \times Spin(12))/\mathbb{Z}_2$, $\mathbb{Z}_2 = \{(E,1), (-E,-\sigma)\}$. The isomorphism is induced by the homomorphism $\varphi : SU(2) \times Spin(12) \to (E_7)^{\sigma}$, $\varphi(A,\beta) = \varphi(A)\beta$.

We shall determine the group structure of

$$(E_7)^{\sigma_3} = \{ \alpha \in E_7 \mid \sigma_3 \alpha = \alpha \sigma_3 \}.$$

We consider two C-vector subspaces $(\mathfrak{P}^C)_{\sigma_3}$ and $((\mathfrak{P}^C)_{\sigma_3})^{\perp}$ of \mathfrak{P}^C :

$$\begin{aligned} (\mathfrak{P}^{C})_{\sigma_{3}} &= \{ P \in \mathfrak{P}^{C} \mid \sigma_{3}P = P \} \\ &= \left\{ \begin{pmatrix} \xi_{1} & 0 & 0 \\ 0 & \xi_{2} & s \\ 0 & \overline{s} & \xi_{3} \end{pmatrix}, \begin{pmatrix} \eta_{1} & 0 & 0 \\ 0 & \eta_{2} & t \\ 0 & \overline{t} & \eta_{3} \end{pmatrix}, \xi, \eta \right) \middle| \begin{array}{c} \xi_{k}, \eta_{k}, \xi, \eta \in C, \\ s, t \in (C_{4}^{\perp})^{C} \end{array} \right\} \end{aligned}$$

 $(({\bf C_4}^{\perp})^C$ is the complexification of ${\bf C_4}^{\perp})$

$$((\mathfrak{P}^{C})_{\sigma_{3}})^{\perp} = \{ P \in \mathfrak{P}^{C} \mid \langle P, P' \rangle = 0 \text{ for any } P' \in (\mathfrak{P}^{C})_{\sigma_{3}} \}$$

$$= \left\{ \left(\begin{pmatrix} 0 & x_{3} & \overline{x_{2}} \\ \overline{x_{3}} & 0 & m \\ x_{2} & \overline{m} & 0 \end{pmatrix}, \begin{pmatrix} 0 & y_{3} & \overline{y_{2}} \\ \overline{y_{3}} & 0 & n \\ y_{2} & \overline{n} & 0 \end{pmatrix}, 0, 0 \right) \mid x_{k}, y_{k} \in \mathfrak{C}^{C}, m, n \in C_{4}^{C} \right\}$$

Then $\mathfrak{P}^C = (\mathfrak{P}^C)_{\sigma_3} \oplus ((\mathfrak{P}^C)_{\sigma_3})^{\perp}$ and $(\mathfrak{P}^C)_{\sigma_3}$, $((\mathfrak{P}^C)_{\sigma_3})^{\perp}$ are invariant under the action of the group $(E_7)^{\sigma_3}$.

We define a C-vector subspace $(\mathfrak{P}^C)_0$ of \mathfrak{P}^C :

$$(\mathfrak{P}^C)_0 = \{(F_1(m), F_1(n), 0, 0) \mid m, n \in C_4^C\}.$$

Lemma 3.2. $(\mathfrak{P}^C)_0$ is invariant under the action of the group $(E_7)^{\sigma_3}$.

Proof. The Lie algebra $(e_7)^{\sigma_3}$ of $(E_7)^{\sigma_3}$ is

$$(\boldsymbol{e}_{7})^{\sigma_{3}} = \{ \boldsymbol{\Phi} \in \boldsymbol{e}_{7} \mid \sigma_{3} \boldsymbol{\Phi} = \boldsymbol{\Phi} \sigma_{3} \}$$

$$= \{ \boldsymbol{\Phi}(\phi, A, -\tau A, \nu) \in \boldsymbol{e}_{7} \mid \phi \in (\boldsymbol{e}_{6})^{\sigma_{3}}, A \in (\mathfrak{J}^{C})_{\sigma_{3}}, \nu \in i\mathbf{R} \}$$

 $((\mathfrak{e}_6)^{\sigma_3} = \{\phi \in \mathfrak{e}_6 \mid \sigma_3 \phi = \phi \sigma_3\} \text{ and } (\mathfrak{J}^C)_{\sigma_3} = \{A \in \mathfrak{J}^C \mid \sigma_3 A = A\}).$ Now, for $\Phi(\phi, A, -\tau A, \nu) \in (\mathfrak{e}_7)^{\sigma_3}$ and $(F_1(m), F_1(n), 0, 0) \in (\mathfrak{P}^C)_0$, we have $\Phi(\phi, A, -\tau A, \nu)(F_1(m), F_1(n), 0, 0) = (F_1(m'), F_1(n'), 0, 0) \in (\mathfrak{P}^C)_0$ by direct calculations. Hence, for $\alpha \in (E_7)^{\sigma_3}$, $\alpha(F_1(m), F_1(n), 0, 0)$ has also the form of $(F_1(m''), F_1(n''), 0, 0)$, because $(E_7)^{\sigma_3}$ is connected.

From Lemma 3.2, we see that two C-vector subspaces

$$\{(F_2(x_2) + F_3(x_3), F_2(y_2) + F_3(y_3), 0, 0) \mid x_k, y_k \in \mathfrak{C}^C\}, \quad (\mathfrak{P}^C)_0$$

of $((\mathfrak{P}^C)_{\sigma_3})^{\perp}$ are invariant under the action of the group $(E_7)^{\sigma_3}$.

Lemma 3.3. $D_a, a \in Spin(2)$ and $\delta \in Spin(10)$ commute with each other.

Proof. Since δD_a and $\tau \lambda$ commute, to show that $D_a \delta = \delta D_a$, it suffices to prove

$$D_a \delta P = \delta D_a P$$
, $P = (X, 0, 0, 0), (0, 0, 1, 0)$.

Now, $\delta D_a(E_2,0,0,0) = \delta(E_2,0,0,0) = (\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta)(\xi, \eta \in C, t \in C_4^{\perp})$. On the other hand, $D_a\delta(E_2,0,0,0) = D_a(\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta) = (\xi E_2 - \tau \xi E_3 + F_1(ata), \eta E_1, 0, \tau \eta) = (\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta)$. Hence we have $\delta D_a(E_2,0,0,0) = D_a\delta(E_2,0,0,0)$. Similarly $\delta D_a(E_3,0,0,0) = D_a\delta(E_3,0,0,0)$. Next,

$$\delta D_a(iE_1, 0, -i, 0) = \delta(iE_1, 0, -i, 0) = \delta \tau \lambda(0, -iE_1, 0, i)
= \tau \lambda \delta(0, -iE_1, 0, i) = \tau \lambda(\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta)$$

 $(\xi, \eta \in C, t \in C_4^{\perp})$. On the other hand,

$$\begin{split} D_a \delta(iE_1, 0, -i, 0) &= D_a \delta \tau \lambda(0, -iE_1, 0, i) = \tau \lambda D_a \delta(0, -iE_1, 0, i) \\ &= \tau \lambda D_a (\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta) \\ &= \tau \lambda(\xi E_2 - \tau \xi E_3 + F_1(ata), \eta E_1, 0, \tau \eta) \\ &= \tau \lambda(\xi E_2 - \tau \xi E_3 + F_1(t), \eta E_1, 0, \tau \eta). \end{split}$$

Hence $\delta D_a(iE_1, 0, -i, 0) = D_a\delta(iE_1, 0, -i, 0)$, that is, $\delta D_a(E_1, 0, -1, 0) = D_a\delta(E_1, 0, -1, 0)$. Similarly $\delta D_a(E_1, 0, 1, 0) = D_a\delta(E_1, 0, 1, 0)$. Thus we have

$$\delta D_a(E_1, 0, 0, 0) = D_a \delta(E_1, 0, 0, 0)$$
 and $\delta D_a(0, 0, 1, 0) = D_a \delta(0, 0, 1, 0)$.

For $z \in \mathfrak{C}^C$, we have

$$\begin{split} \delta D_{a}(F_{1}(z),0,0,0) &= \delta(F_{1}(aza),0,0,0) \\ &= \delta(F_{1}(a^{2}s+t),0,0,0) \quad (z=s+t \in \boldsymbol{C_{4}}^{C} \oplus (\boldsymbol{C_{4}}^{\perp})^{C} = \boldsymbol{C}^{C}) \\ &= (F_{1}(a^{2}s),0,0,0) + \delta(F_{1}(t),0,0,0) \\ &= (F_{1}(a^{2}s),0,0,0) + \delta(F_{1}(t_{1}+it_{2}),0,0,0) \quad (t_{k} \in \boldsymbol{C_{4}}^{\perp}) \\ &= (F_{1}(a^{2}s),0,0,0) + \delta(F_{1}(t_{1}),0,0,0) + i\delta(F_{1}(t_{2}),0,0,0) \\ &= (F_{1}(a^{2}s),0,0,0) + (\xi_{2}E_{2} + \xi_{3}E_{3} + F_{1}(t'),\eta_{1}E_{1},0,\eta) \end{split}$$

 $(\xi_2, \xi_3, \eta_1, \eta \in C, t' \in (C_4^{\perp})^C)$. On the other hand

$$D_{a}\delta(F_{1}(z),0,0,0) = D_{a}\delta(F_{1}(s+t),0,0,0)$$

$$= D_{a}((F_{1}(s),0,0,0)) + \delta(F_{1}(t),0,0,0))$$

$$= (F_{1}(a^{2}s),0,0,0) + D_{a}(\xi_{2}E_{2} + \xi_{3}E_{3} + F_{1}(t'),\eta_{1}E_{1},0,\eta)$$

$$= (F_{1}(a^{2}s),0,0,0) + (\xi_{2}E_{2} + \xi_{3}E_{3} + F_{1}(t'),\eta_{1}E_{1},0,\eta).$$

On the other hand,

$$D_a\delta(F_2(z),0,0,0) = D_a(F_2(x_2) + F_3(x_3), F_2(y_2) + F_3(y_3), 0, 0)$$

= $(F_2(\overline{a}x_2) + F_3(x_3\overline{a}), F_2(\overline{a}y_2) + F_3(y_3\overline{a}), 0, 0).$

Hence we have $\delta D_a(F_k(z), 0, 0, 0) = D_a\delta(F_k(z), 0, 0, 0)$, k = 1, 2. Similarly $\delta D_a(F_3(z), 0, 0, 0) = D_a\delta(F_3(z), 0, 0, 0)$. Thus we have $\delta D_a P = D_a\delta P$ for any $P \in \mathfrak{P}^C$, that is, $\delta D_a = D_a\delta$.

Lemma 3.4. For $\beta \in (Spin(12))^{\sigma_3} = \{\alpha \in Spin(12) \mid \sigma_3\alpha = \alpha\sigma_3\}$, there exists $s \in C_4$, |s| = 1 such that

$$\beta(F_1(1), 0, 0, 0) = (F_1(s), 0, 0, 0), \quad \beta(F_1(e_4), 0, 0, 0) = (F_1(e_4s), 0, 0, 0).$$

Proof. Consider the 2 dimensional R-vector space

$$V^{2} = \{ P \in \mathfrak{P}^{C} \mid \kappa P = P, \, \mu \tau \lambda P = P, \, \langle P, P' \rangle = 0 \text{ for any } P' \in (\mathfrak{P}^{C})_{\sigma_{3}} \}$$
$$= \{ (F_{1}(s), 0, 0, 0) \in \mathfrak{P}^{C} \mid s \in C_{4} \}.$$

Since $\beta \in (Spin(12))^{\sigma_3}$ acts on V^2 , there exists $s \in C_4$ such that $\beta(F_1(1), 0, 0, 0) = (F_1(s), 0, 0, 0)$. Then for $\omega_4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_4$, we have

$$\beta(F_1(\omega_4), 0, 0, 0) = \beta(F_1(\omega_4^2 1 \omega_4^2), 0, 0, 0) = \beta \sigma_3 \sigma_3(F_1(1), 0, 0, 0)$$

$$= \sigma_3 \sigma_3 \beta(F_1(1), 0, 0, 0) = \sigma_3 \sigma_3(F_1(s), 0, 0, 0)$$

$$= (F_1(\omega_4 s), 0, 0, 0) \cdots (1).$$

Similarly $\beta(F_1(\overline{\omega_4}), 0, 0, 0) = (F_1(\overline{\omega_4}s), 0, 0, 0) \cdots (2)$. Subtract (1)-(2), then we have $\beta(F_1(e_4), 0, 0, 0) = (F_1(e_4s), 0, 0, 0)$. The fact that |s| = 1 follows from $\langle \beta P, \beta P \rangle = \langle P, P \rangle$, $P = (F_1(1), 0, 0, 0) \in \mathfrak{P}^C$.

Lemma 3.5. $\phi(SU(2))$, Spin(2) and Spin(10) are contained in $(E_7)^{\sigma_3}$.

Proof. By direct calculations $\phi(SU(2))$ is contained in $(E_7)^{\sigma_3}$, and since $\sigma_3 = D_{\omega_4} \in Spin(2)$, Spin(2) is contained in $(E_7)^{\sigma_3}$. Next, $\delta \in Spin(10)$ satisfied $\sigma_3 \delta = \delta \sigma_3$ (Lemma 3.3). Hence Spin(10) is contained in $(E_7)^{\sigma_3}$.

Theorem 3.6. $(E_7)^{\sigma_3} \cong (SU(2) \times Spin(2) \times Spin(10)) / \mathbb{Z}_4$, $\mathbb{Z}_4 = \{(E, 1, 1), (E, -1, \sigma), (-E, e_4, \phi(-E)D_{-e_4}), (-E, -e_4, \phi(-E)D_{e_4})\}$.

Proof. We define a mapping $\varphi: SU(2) \times Spin(2) \times Spin(10) \to (E_7)^{\sigma_3}$ by $\varphi(A, a, \delta) = \varphi(A)D_a\delta.$

 φ is well-defined from Lemma 3.5. From Proposition 3.1, $\phi(A)$, $A \in SU(2)$ and $\delta \in Spin(10) \subset Spin(12)$ commute with each other, and D_a , $a \in Spin(2)$ and $\delta \in Spin(10)$ also commute with each other from Lemma 3.3. Moreover $\phi(A)\delta = \delta\phi(A)$ by direct calculations. Hence φ is a homomorphism. We shall show that φ is onto. Since $(\mathfrak{P}^C)_{\sigma_3}$, $(\mathfrak{P}^C)_0$ and $\{(F_2(x_2) + F_3(x_3), F_2(y_2) + F_3(y_3), 0, 0 \mid x_k, y_k \in \mathfrak{C}^C\}$ are invariant under the action of the group $(E_7)^{\sigma_3}$, we have $(E_7)^{\sigma_3} \subset (E_7)^{\sigma}$. Hence, for $\alpha \in (E_7)^{\sigma_3}$, there exist $A \in SU(2)$ and $\beta \in Spin(12)$ such that $\alpha = \phi(A)\beta$ (Proposition 3.1). From $\sigma_3\alpha = \alpha\sigma_3$, we have $\beta \in (Spin(12))^{\sigma_3}$. Hence from Lemma 3.4, there exists $s \in C_4$, |s| = 1 such that $\beta(F_1(1), 0, 0, 0) = (F_1(s), 0, 0, 0)$ and $\beta(F_1(e_4), 0, 0, 0) = (F_1(e_4s), 0, 0, 0)$. Choose $a \in C_4$ such that $a^2 = s$ and let $\delta = D_a^{-1}\beta$, then $\delta(F_1(1), 0, 0, 0) = (F_1(1), 0, 0, 0)$ and $\delta(F_1(e_4), 0, 0, 0) = (F_1(e_4), 0, 0, 0)$, that is, $\delta \in Spin(10)$. Hence we have a representation $\alpha = \phi(A)D_a\delta$, $A \in SU(2)$, $a \in Spin(2)$, $\delta \in Spin(10)$. Therefore φ is onto. Ker $\varphi = \mathbf{Z}_4$ is easily obtained. Thus we have the required isomorphism.

4. Automorphism σ_3 of order 3 and subgroup $(U(1) \times Spin(12))/Z_2$ of E_7

Let $U(1) = \{\theta \in C \mid (\tau \theta)\theta = 1\}$ and we define an embedding $\phi : U(1) \to E_7$ by

$$\begin{split} \phi(\theta) \left(\begin{pmatrix} \xi_1 & x_3 & \overline{x_2} \\ \overline{x_3} & \xi_2 & x_1 \\ x_2 & \overline{x_1} & \xi_3 \end{pmatrix}, \begin{pmatrix} \eta_1 & y_3 & \overline{y_2} \\ \overline{y_3} & \eta_2 & y_1 \\ y_2 & \overline{y_1} & \eta_3 \end{pmatrix}, \xi, \eta \right) \\ &= \left(\begin{pmatrix} \theta \xi_1 & x_3 & \overline{x_2} \\ \overline{x_3} & \theta^{-1} \xi_2 & \theta^{-1} x_1 \\ x_2 & \theta^{-1} \overline{x_1} & \theta^{-1} \xi_3 \end{pmatrix}, \begin{pmatrix} \theta^{-1} \eta_1 & y_3 & \overline{y_2} \\ \overline{y_3} & \theta \eta_2 & \theta y_1 \\ y_2 & \theta \overline{y_1} & \theta \eta_3 \end{pmatrix}, \theta \xi, \theta^{-1} \eta \right). \end{split}$$

 ϕ is well-defined, that is, $\phi(\theta) \in E_7$. In fact, since U(1) is contained in SU(2) as $\left\{ \begin{pmatrix} \theta & 0 \\ 0 & \theta^{-1} \end{pmatrix} \mid \theta \in C, (\tau\theta)\theta = 1 \right\}$, this ϕ is the restriction mapping of ϕ :

$$SU(2) \to E_7$$
 of Section 3. For $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in U(1)$, let $\sigma_3' = \phi(\omega)$.

Then $\sigma_3' \in E_7$ and $(\sigma_3')^3 = 1$.

We shall determine the group structure of

$$(E_7)^{\sigma_3'} = \{\alpha \in E_7 \mid \sigma_3'\alpha = \alpha\sigma_3'\}.$$

Lemma 4.1. $\phi(U(1))$ and Spin(12) are contained in $(E_7)^{\sigma_3}$.

Proof. Since $\sigma_3' = \phi(\omega)$, it is clear that $\phi(U(1))$ is contained in $(E_7)^{\sigma_3}$. Next, from Proposition 3.1, $\phi(A)$, $A \in SU(2)$ and $\beta \in Spin(12)$ commute with each other. Hence $\phi(\theta)\beta = \beta\phi(\theta)$, $\theta \in U(1) \subset SU(2)$. Therefore $\sigma_3'\beta = \beta\sigma_3'$, that is, $Spin(12) \subset (E_7)^{\sigma_3'}$.

We consider two C-vector subspaces $(\mathfrak{P}^C)_{\sigma_3}$ and $((\mathfrak{P}^C)_{\sigma_3})^{\perp}$ of \mathfrak{P}^C :

$$\begin{split} (\mathfrak{P}^C)_{\sigma_{3}'} &= \{ P \in \mathfrak{P}^C \mid \sigma_{3}' P = P \} \\ &= \left\{ \begin{pmatrix} 0 & x_3 & \overline{x_2} \\ \overline{x_3} & 0 & 0 \\ x_2 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & y_3 & \overline{y_2} \\ \overline{y_3} & 0 & 0 \\ y_2 & 0 & 0 \end{pmatrix}, 0, 0 \right) \mid x_k, y_k \in \mathfrak{C}^C \right\}, \end{aligned}$$

$$\begin{split} ((\mathfrak{P}^{C})_{\sigma_{3'}})^{\perp} &= \{ P \in \mathfrak{P}^{C} \mid \langle P, P' \rangle = 0 \text{ for any } P' \in (\mathfrak{P}^{C})_{\sigma_{3'}} \\ &= \left\{ \left(\begin{pmatrix} \xi_{1} & 0 & 0 \\ 0 & \xi_{2} & x_{1} \\ 0 & \overline{x_{1}} & \xi_{3} \end{pmatrix}, \begin{pmatrix} \eta_{1} & 0 & 0 \\ 0 & \eta_{2} & y_{1} \\ 0 & \overline{y_{1}} & \eta_{3} \end{pmatrix}, \xi, \eta \right) \middle| \begin{array}{c} \xi_{k}, \eta_{k}, \xi, \eta \in C, \\ x_{1}, y_{1} \in \mathfrak{C}^{C} \end{array} \right\}. \end{split}$$

Then $\mathfrak{P}^C = (\mathfrak{P}^C)_{\sigma_{3'}} \oplus ((\mathfrak{P}^C)_{\sigma_{3'}})^{\perp}$ and $(\mathfrak{P}^C)_{\sigma_{3'}}$, $((\mathfrak{P}^C)_{\sigma_{3'}})^{\perp}$ are invariant under the action of the group $(E_7)^{\sigma_{3'}}$.

Theorem 4.2. $(E_7)^{\sigma_3} \cong (U(1) \times Spin(12))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,1), (-1,-\sigma)\}.$

Proof. We define a mapping $\varphi: U(1) \times Spin(12) \to (E_7)^{\sigma_3}$ by

$$\varphi(\theta,\beta) = \phi(\theta)\beta.$$

 φ is well-defined from Lemma 4.1. Since $\phi(\theta)$, $\theta \in U(1)$ and $\beta \in Spin(12)$ commute (Lemma 4.1), φ is a homomorphism. We shall show that φ is onto. Since $(\mathfrak{P}^C)_{\sigma_{\mathfrak{I}'}}$ and $((\mathfrak{P}^C)_{\sigma_{\mathfrak{I}'}})^{\perp}$ are invariant under the action of the group $(E_7)^{\sigma_{\mathfrak{I}'}}$, $\alpha \in (E_7)^{\sigma_{\mathfrak{I}'}}$ commutes with σ , that is, $(E_7)^{\sigma_{\mathfrak{I}'}} \subset (E_7)^{\sigma}$. Hence, for $\alpha \in (E_7)^{\sigma_{\mathfrak{I}'}}$, there exists $A \in SU(2)$ and $\beta \in Spin(12)$ such that $\alpha = \phi(A)\beta$ (Proposition

- 3.1). From $\sigma_3'\alpha = \alpha\sigma_3'$, that is, $\sigma_3'\phi(A) = \phi(A)\sigma_3'$, we have $A = \begin{pmatrix} \theta & 0 \\ 0 & \theta^{-1} \end{pmatrix}$, $\theta \in U(1)$. Therefore φ is onto. Ker $\varphi = \mathbf{Z}_2$ is easily obtained. Thus we have the required isomorphism.
 - 5. Automorphism w of order 3 and subgroup $(SU(3) \times SU(6))/\mathbb{Z}_3$ of \mathbb{Z}_7

A. Borel and J. de Siebenthal [1] classified the maximal subgroups of maximal rank of compact simple Lie groups G and showed that the group E_7 has a maximal subgroup of rank 7 which is the fixed subgroup of an automorphism of E_7 of order 3 and whose type is $A_2 \oplus A_5$. In the previous paper [4], we realized this group. The result is as follows. We define a C-linear transformation w of \mathfrak{P}^C by

$$w(X, Y, \xi, \eta) = (wX, wY, \xi, \eta),$$

here w of the right side in the C-linear transformation of \mathfrak{J}^C defined by

$$wX=wegin{pmatrix} \xi_1&x_3&\overline{x_2}\ \overline{x_3}&\xi_2&x_1\ x_2&\overline{x_1}&\xi_3 \end{pmatrix}=egin{pmatrix} \xi_1&w(x_3)&\overline{w(x_2)}\ \overline{w(x_3)}&\xi_2&w(x_1)\ w(x_2)&\overline{w(x_1)}&\xi_3 \end{pmatrix},$$

moreover w of the right side is the C-linear transformation of $\mathfrak{C}^C = C_4{}^C \oplus (C_4{}^3)^C$ [5] defined by $w(a+m) = a + \omega_4 m(\omega_4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_4)$. Then $w \in E_7$ and $w^3 = 1$.

Let
$$(E_7)^w = \{ \alpha \in E_7 \mid w\alpha = \alpha w \}.$$

Theorem 5.1. [4]. $(E_7)^w \cong (SU(3) \times SU(6))/\mathbb{Z}_3$, $\mathbb{Z}_3 = \{(E, E), (\omega_4 E, \omega_4 E), (\omega_4^2 E, \omega_4^2 E)\}$.

References

- [1] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, comment. *Math. Helv.*, 23 (1949), 200-221.
- [2] T. Miyasaka, O. Yasukura and I. Yokota, Diagonalization of an element P of \mathfrak{P}^C by the compact Lie group E_7 , Tsukuba J. Math., 22 (1998), 687-703.
- [3] J.A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, J. Diff. Geom., 2 (1968), 77-114.
- [4] I. Yokota, T. Ishihara and O. Yasukura, Subgroup $((SU(3) \times SU(6))/\mathbb{Z}_3) \cdot \mathbb{Z}_2$ of the simply connected compact Lie group E_7 , J. Math. Kyoto Univ., 23 (1983), 715-735.
- [5] I. Yokota, Realization of automorphisms σ of order 3 and G^{σ} of compact exceptional Lie groups I, $G = G_2, F_4, E_6, J.$ Fac. Sci. Shinshu Univ., 20 (1985), 131-144.
- [6] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G = G_2, F_4$ and E_6 , Tsukuba J. Math., 14 (1990), 185–223.

[7] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G = E_7$, Tsukuba J. Math., 14 (1990), 379-404.

Ueda High School Ohte, Ueda, 386-8715, JAPAN

339-5, Okada-Matsuoka Matsumoto, 390-0312, JAPAN