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Abstract. We study a quasilinear elliptic equation at resonance with discon-
tinuous right hand side. To have an existence theory, we pass to a multivalued
version of the problem by filling in the gaps at the discontinuity points. Using
the nonsmooth critical point theory of Chang for lically Lipschitz functionals and
the Ekeland variational principle, we show that the resulting elliptic inclusion has
three distinct nontrivial solutions.

1. Introduction

In a recent paper we studied quasilinear elliptic problems at resonance with
a discontinuous right hand side (see Kourogenis-Papageorgiou [11]). Using a
variational approach we proved the existence of a nontrivial solution. In this
paper we establish the existence of multiple nontrivial $s$olutions for the same
problem. Again we assume that the potential function $F(z, x)=\int_{0}^{x}f(z, r)dr$

goes to infinity as $ x\rightarrow\pm\infty$ for almost all $z\in E\subseteq Z$ , with $E$ having positive
Lebesgue measure. In this respect our work is similar to that of Ahmad-Lazer-
Paul [3] and Rabinowitz [14]. The case where the potential function has a finite
limit as $ x\rightarrow\pm\infty$ for almost all $z\in Z$ , known in the litterature as “strongly
resonant case”, was studied by Thews [15], Bartolo-Benci-Fortunato [5] and Ward
[17]. All these works deal with semilinear problems which have a continuous right
hand side. The problem of multiple solutions for the semilinear, “continuous”
resonant problem was investigated by Ahmad [2], Goncalves-Miyagaki [8], [9]
and Landesman-Robinson-Rumbos [12].

Our approach is based on the critical point theory for nonsmooth locally
$\overline{{\rm Res} earcher}$supported by the General Secretariat of Research and Technology of Greece.

1991 Mathematics Subject Classffication: 35J20
Key words and phrases: p-Laplacian, nonsmooth Palais-Smale condition, locally Lipschitz

function, generalized subdifferential, critical point, nonsmooth Mountain Pass Theorem, coer-
cive functional, Ekeland variational principle, local minimum.



18 N.C. KOUROGENIS AND N.S. PAPAGEORGIOU

Lipschitz functionals developed by Chang [6]. Using concepts and results from
this theory, we show that our problem has at least three nontrivial solutions. In
the next section, for the convenience of the reader, we fix our notation and recall
some basic definitions and facts from Chang’s critical point theory.

2. Preliminaries

The critical point theory developed by Chang [6] is based on the subdiffer-
ential theory of Clarke [7] which is developed for locally Lipschitz functions. So
let $X$ be a Banach space and $f$ : $X\rightarrow R$ a function. We say that $f$ is ‘iocally
Lipschitz”, if for every $x\in X$ , there exists a neighbourhood $U$ of $x$ and a con-
stant $k>0$ depending on $U$ such that $|f(y)-f(z)|\leq k||y-z||$ for all, $y,$ $z\in U$ .
Given $h\in X$ , we define the “generalized directional derivative” $f^{0}(x;h)$ by

$f^{0}(x;h)=\varlimsup_{x^{\prime}\rightarrow x,\lambda\downarrow 0}\frac{f(x^{\prime}+\lambda h)-f(x^{\prime})}{\lambda}$

It is easy to see that for every $x\in X,$ $f^{0}(x;\cdot)$ is sublinear and continuous
(in fact $|f^{0}(x;h)|\leq k||h||$ , hence $f^{0}(x;\cdot)$ is Lipschitz continuous). Thus from
the Hahn-Banach theorem we infer that $f^{0}(x;\cdot)$ is the support function of a
nonempty, convex and $w^{*}$ -compact set

$\partial f(x)=$ { $x^{*}\in X^{*}$ : $(x^{*},$ $h)\leq f^{0}(x;h)$ for all $h\in X$ }.

This set is known as the “generalized (or Clarke) subdifferential” of $f(\cdot)$ at
$x\in X$ . If $f,g$ : $X\rightarrow R$ are both locally Lipschitz functions, then $\partial(f+g)(x)\subseteq$

$\partial f(x)+\partial g(x)$ and $\partial(\lambda f)(x)=\lambda\partial f(x)$ for all $x\in X$ and all $\lambda\in R$ . Moreover,

if $f$ : $X\rightarrow R$ is also convex, then it is well-known that $f(\cdot)$ is locally Lipschitz
and the subdifferential in the sense of convex analysis (see for example Hu-
Papageorgiou [10], section III.4), coincides with the generalized subdifferential
defined above. If $f$ is strictly differentiable at $x$ (in particular if $f$ is continuously
Gateaux differentiable at $x$ ), then $\partial f(x)=\{f^{\prime}(x)\}$ .

Given a locally Lipschitz function $f$ : $X\rightarrow R$ , a point $x\in X$ is a “crit-
ical point” of $f$ if $0\in\partial f(x)$ . It is easy to check that if $x\in X$ is a lo-
cal extremum of $f$ , then $x$ is a critical point. We say that $f$ satisfies the
“nonsmooth Palais-Smale condition” (nonsmooth (PS)-condition for short), if
for any sequence $\{x_{n}\}_{n\geq 1}\subseteq X$ such that $|f(x_{n})|\leq M$ for all $n\geq 1$ and
$m(x_{n})=\min\{||x^{*}|| : x^{*}\in\partial f(x_{n})\}\rightarrow^{n\rightarrow\infty}0$ , has a strongly convergent sub-
sequence. If $f\in C^{1}(X)$ , then $\partial f(x_{n})=\{f^{\prime}(x_{n})\},$ $n\geq 1$ , and so the above
definition of the (PS)-condition coincides with the classical one (see Rabinowiz
[14]).
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Consider the negative p-Laplacian $(2\leq p<\infty)$ differential $operator-\Delta_{p}x=$

$-div(||Dx||^{p-2}Dx)$ with Dirichlet boundary conditions (i.e. $(-\Delta_{p},$ $W_{0}^{1,p}(Z))$ ).
The first eigenvalue $\lambda_{1}$ of this operator is the least real number $\lambda$ for which the
following eigenvalue problem

$\{_{x_{|\Gamma}=0}-div(||.Dx(z)||^{p-2}Dx(z))=\lambda|x(z)|^{p-2}x(z)$
a.e. on

$Z\}$ (1)

has a nontrivial solution. The first eigenvalue $\lambda_{1}$ is positive, isolated and sim-
ple (i.e. the associated eigenfunctions are constant multiples of each other).
Furthermore we have the following variational characterization of $\lambda_{1}$ (Rayleigh
quotient):

$\lambda_{1}=\min[\frac{||Dx||_{p}^{p}}{||x||_{p}^{p}}$ : $x\in W_{0}^{1,p}(Z)]$ (2)

The minimum in (2) is realized at the normalized eigenfunction $u_{1}$ . Note
that if $u_{1}$ minimizes the quotient in (2), then so does $|u_{1}|$ and so we infer that
first eigenfunction $u_{1}$ does not change its sign on $Z$ . In fact we can show that
$u_{1}\neq 0$ a.e. on $Z$ and so we may assume that $u_{1}(z)>0$ a.e. on $Z$ . Moreover,
from nonlinear elliptic regularity (see Tolksdorf [16]), we have that $u\in C^{1,a}(Z)$

for some $a>0$ . For details we refer to Lindqvist [13] and the references therein.
The Ljusternik-Schnirelmann theory gives, in addition to $\lambda_{1}$ , a whole strictly
increasing sequence of positive numbers $\{\lambda_{n}\}_{n\geq 1}$ for which there exist nontrivial
solutions of the eigenvalue problem (1). In other words the spectrum $\sigma(-\Delta_{p})$ of
$(-\Delta_{p}, W_{0}^{1,p}(Z))$ contains at least these points. However, nothing in general is
known about the possible existence of other points in $\sigma(-\Delta_{p})\subseteq[\lambda_{1}, \infty)\subseteq R+\cdot$

Nevertheless we can define

$\mu=\inf\{\lambda>0$ : $\lambda$ is an eigenvalue of $(-\Delta_{p}, W_{0}^{1,p}(Z)),$ $\lambda\neq\lambda_{1}\}$ .

Since $\lambda_{1}>0$ is isolated, we have $\mu>\lambda_{1}>0$ . Moreover, if $V$ is a topological
complement of $\langle u_{1}\rangle=Ru_{1}$ ( $=the$ eigenspace of $u_{1}$ ), then $\mu_{v}=\{\frac{||Dv||_{p}^{p}}{||u||_{p}^{p}}$ : $v\in V$ ,
$v\neq 0\}>\lambda_{1},$ $\mu=\sup_{v}\mu_{v}$ .

The next theorem is due to Chang [6] and is a nonsmooth version of he
well-known (Mountain Pass Theorem” of Ambrosetti-Rabinowitz [4].

Theorem 1.

If $X$ is a reflexive Banach space, $R:X\rightarrow R$ is a locally Lipschitz functional
which satisfies the nonsmooth (PS)-condition and for some $\rho>0$ and
$y\in X$ with $||y||>\rho$ we have

$\max\{R(0), R(y)\}<\inf[R(x) : ||x||=\rho]=a$
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then there exists a nontrivial critical point $x\in X$ of $R$ such that $c=R(x)\geq a$

and $c$ is characterized by the following minimax principle

$c=\inf_{\gamma\in\Gamma}\max_{0\leq t\leq 1}R(\gamma(t))$ ,

where $\Gamma=\{\gamma\in C([0,1], X) : \gamma(0)=0, \gamma(1)=y\}$ .

3. Auxiliary results

Let $Z\subseteq R^{N}$ be a bounded domain with a $C^{1}$ -boundary $\Gamma$ . We consider the

following quasilinear elliptic problem:

$\{$

$-div(||Dx(z)||^{p-1}Dx(z))-\lambda_{1}|x(z)|^{p-2}x(z)=f(z, x(z))$ a.e. on
$Z\}$ (3)

$ x_{|\Gamma}=0,2\leq p<\infty$ .

Since we do not assume that $f(z, \cdot)$ is continuous, problem (3) need not have

a solution. To develop a reasonable existence theory, we pass to a multivalued
version of (3) by, roughly speaking, filling in the gaps at the discontinuity points

of $f(z, \cdot)$ . For this purpose we introduce the following two functions:

$f_{1}(z, x)=-\lim r_{\rightarrow x}f(z, x^{\prime})=\lim_{\delta\downarrow 0}ess\inf_{-xx|<\delta}f(z, x^{\prime})$

and $f_{2}(z, x)=\varlimsup_{x^{\prime}\rightarrow x}f(z, x^{\prime})=\lim_{\delta\downarrow 0}ess\sup_{|x^{l}-x|<\delta}f(z, x^{\prime})$
.

Clearly $f_{1}(z, \cdot)$ is lower semicontinuous and $f_{2}(z, \cdot)$ is upper semicontinuous.
Set $\hat{f}(z, x)=[f_{1}(z, x), f_{2}(z, x)]$ . Then instead of (3) we study the following

quasilinear elliptic inclusion:

$\{$

$-div(||Dx(z)||^{p-2}Dx(z))-\lambda_{1}|x(z)|^{p-2}x(z)\in\hat{f}(z, x(z))$ a.e. on
$Z\}$ (4)

$ x_{|\Gamma}=0,2\leq p<\infty$ .

We will show that under certain hypotheses on $f(z, x)$ , problem (4) has at

least three nontrivial solutions. The hypotheses on $f(z, x)$ are the following:

$H(f)$ : $f$ : $Z\times R\rightarrow R$ is a measurable function such that

(i) $f_{1},$ $f_{2}$ are both N-measurable functions (i.e. for every $x$ : $Z\rightarrow R$ measur-
able function, $z\rightarrow f_{i}(z, x(z))$ is measurable, $i=1,2$);

(ii) for every $r>0$ , there exists $a_{r}\in L^{\infty}(Z)$ such that for almost all $z\in Z$

and all $|x|\leq r$ we have $|f(z, x)|\leq a_{r}(z)$ ;

(iii) there exist functions $\eta\pm\in L^{\infty}(Z)$ such that $\eta\pm(z)\leq 0$ a.e. on $Z$ and
$\eta\pm(z)<0$ for all $z\in E\subseteq Z$ with $|E|>0$ (here by $|\cdot|$ we denote the
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Lebesgue measure on $R^{N}$ ) and uniformly for almost all $z\in Z$ we have
$\lim_{x\rightarrow\pm\infty}\frac{f(z,x)}{|x|p-2_{X}}=\eta\pm(z)$ ;

(iv) if $F(z, x)=\int_{0}^{x}f(z, r)dr$ , then for almost all $z\in Z$ and all $x\in R$ ,
$pF(z, x)\leq(\mu-\lambda_{1})|x|^{p}$ ;

(v) there exists $\beta>\lambda_{1}$ such that $\varlimsup_{|x|\rightarrow 0}\frac{pF(z,x)}{|x|p}\leq-\beta$ uniformly for almost all
$z\in Z$ .

Remarks: Hypothesis $H(f)(i)$ is satisfied if $f$ is independent of $z\in Z$ or
if for almost all $z\in Z,$ $f(z, \cdot)$ is monotone nondecreasing. Indeed, in the first
case the N-measurability of $f_{1}$ and $f_{2}$ follows from the fact that $f_{1}$ is lower
semicontinuous, while $f_{2}$ is upper semicontinuous. For the second case, note that
$f_{1}(z, x)=\lim_{n\rightarrow\infty}f(z, x-\frac{1}{n})$ and $f_{2}(z, x)=\lim_{n\rightarrow\infty}f(z, x+\frac{1}{n})$ , hence both
functions $f_{1}$ and $f_{2}$ are measurabel, thus N-measurable too. Hypothesis $H(f)(\ddot{u}i)$

implies that for all $z\in Z$ in a set of positive measure, $|F(z, x)|\rightarrow^{|x|\rightarrow\infty}+\infty$ .
Hypothesis $H(f)(iv)$ is analogous to hypothesis $H_{\infty}$ of Goncalves-Miyagaki [9].
Hypothesis $H(f)(v)$ is needed in order to be able to apply theorem 1 and have
a third nontrivial solution. Without it, we can not guarantee that the third
solution (which in this case is obtained via the Mountain Pass Theorem) is
nontrivial (note that $f(z,$ $0)=0$ a.e. on $Z$ and so $x=0$ is a solution of (4)).
Finally by virtue of hypothesis $H(f)(iii)$ , given $\xi>0$ we can find $M(\xi)>0$ such
that $\ovalbox{\tt\small REJECT}_{x^{p-2}x}^{z,x}\leq\xi$ for almost all $z\in Z$ and $|x|\geq M(\xi)$ , while for almost all $z\in Z$ .
and all $|x|\leq M(\xi)$ , by hypothesis $H(f)(ii)$ we have $|f(z, x)|\leq\hat{a}(\xi)(z)$ , where
$\hat{a}(\xi)(\cdot)=a_{M(\xi)}(\cdot)\in L^{\infty}(Z)$ . Therefore finally we have that for almost all $z\in Z$

and all $x\in R,$ $|f(z, x)|\leq\hat{a}(\xi)(z)+\xi|x|^{p-1}$ .
Our final hypothesis on $F(z, x)$ is the following:

$H_{1}$ : There exist $\xi_{-}<0<\xi+such$ that $\int_{Z}F(z,\xi\pm u_{1}(z))dz>0$ .
We introduce the energy functional $R:W_{0}^{1,p}(Z)\rightarrow R$ defined by

$R(x)=\frac{1}{p}||Dx||_{p}^{p}-\frac{\lambda_{1}}{p}||x||_{p}^{p}-\int_{Z}F(z, x(z))dz$ .

Clearly $R(\cdot)$ is locally Lipschitz.

Proposition 2.

If hypotheses $H(f)$ hold,
then $R(\cdot)$ is coercive.

Proof. Suppose not. We can find $\{x_{n}\}_{n\geq 1}\subseteq W_{0}^{1,p}(Z)$ such that
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$||x_{n}||_{1,p}-n\rightarrow\infty\infty$ and $R(x_{n})\leq M$ for all $n\geq 1$ . So we have

$R(x_{n})=\frac{1}{p}||Dx_{n}||_{p}^{p}-\frac{\lambda_{1}}{p}||x||_{p}^{p}-\int_{Z}F(z, x(z))dz\leq M,$ $n\geq 1$ .

Since $|f(z, x)|\leq a(z)+c|x|^{p-1}$ for almost all $z\in Z$ and all $x\in R$ , with
$a\in L^{\infty}(Z)$ and $c>0$ , we have

$|F(z, x)|\leq\int_{0}^{|x|}|f(z, r)|dr\leq a(z)|x|+\frac{c}{p}|x|^{p}$ .

Hence $\frac{1}{p}||Dx_{n}||_{p}^{p}-\frac{\lambda_{1}}{p}||x_{n}||_{p}^{p}-||a||_{q}||x_{n}||_{p}-\frac{c}{p}||x_{n}||_{p}^{p}\leq M$

$\Rightarrow$ $\frac{1}{p}||Dx_{n}||_{p}^{p}\leq M+\frac{1}{p}(\lambda_{1}+c)||x_{n}||_{p}^{p}+||a||_{q}||x_{n}||_{p}$ for all $n\geq 1$ .

Since $||x_{n}||_{1,p}\rightarrow\infty$ , by virtue of Poincar\’e’s inequality, we have $||Dx_{n}||_{p}\rightarrow\infty$

and so from the last inequality it follows that $||x_{n}||_{p}-n\rightarrow\infty\infty$ . Let $y_{n}=\ovalbox{\tt\small REJECT}^{\frac{x}{x_{n}}}\ulcorner_{p}$ ’

$n\geq 1$ . Dividing the last inequality with $||x_{n}||_{p}^{p}$ , we obtain

$\frac{1}{p}||Dy_{n}||_{p}^{p}\leq\frac{M}{||x_{n}||_{p}^{p}}+\frac{1}{p}(\lambda_{1}+c)+||a||_{p}\frac{1}{||x_{n}||_{p}^{p-1}}$

$\Rightarrow$ $\{y_{n}\}_{n\geq 1}\subseteq W_{0}^{1,p}(Z)$ is bounded (by Poincar\’e’s inequality).

Thus by passing to a subsequence if necessary, we may assume that $y_{n}\rightarrow wy$ in
$W_{0}^{1,p}(Z),$ $y_{n}\rightarrow y$ in $L^{p}(Z),$ $y_{n}(z)\rightarrow y(z)$ a.e. on $Z$ as $ n\rightarrow\infty$ and $|y_{n}(z)|\leq h(z)$

a.e. on $Z$ with $h\in L^{p}(Z)$ . Note that $||y||_{p}=1$ and so $y\neq 0$ . Also from the
choice of the sequence $\{x_{n}\}_{n\geq 1}$ we have that

$\frac{1}{p}||Dx_{n}||_{p}^{p}-\frac{\lambda_{1}}{p}||x_{n}||_{p}^{p}\leq M+\int_{Z}F(z, x_{n}(z))dz$

$\Rightarrow$ $\frac{1}{p}||Dy_{n}||_{p}^{p}-\frac{\lambda_{1}}{p}\leq\frac{M}{||x_{n}||_{p}^{p}}+\int_{Z}\frac{F(z,x_{n}(z))}{||x_{n}||_{p}^{p}}dz$ . (5)

By virtue of hypothesis $H(f)(ii)$ , given $\epsilon>0$ , we can find $M_{1}=M_{1}(\epsilon)>0$

such that

$\eta+(z)-\epsilon\leq\frac{f(z,x)}{|x|p-2_{X}}\leq\eta+(z)+\epsilon$ for almost all $z\in Z$ and all $x\geq M$

and $\eta_{-}(z)-\epsilon\leq\frac{f(z,x)}{|x|p-2_{X}}\leq\eta_{-}(z)+\epsilon$ for almost all $z\in Z$ and all $x\leq-M$ .
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If $ x_{n}(z)\rightarrow^{n\rightarrow\infty}+\infty$ , then for $n\geq 1$ large enough we have $x_{n}(z)>0$ and so

$\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}\geq\frac{1}{|x_{n}(z)|p}F(z, M_{1})+\frac{1}{|x_{n}(z)|p}\int_{M_{1}}^{x_{n}(z)}(\eta+(z)-\epsilon)|r|^{p-2}rdr$

$=\frac{1}{|x_{n}(z)|p}F(z, M_{1})+\frac{1}{|x_{n}(z)|p}(\eta+(z)-\epsilon)\frac{1}{p}(|x_{n}(z)|^{p}-M_{1}^{p})$

$\Rightarrow\varliminf_{n\rightarrow\infty}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}\geq\frac{1}{p}(\eta+(z)-\epsilon)$ . (6)

Similarly we can show that

$\varlimsup_{n\rightarrow\infty}\frac{F(z)x_{n}(z))}{|x_{n}(z)|p}\leq\frac{1}{p}(\eta+(z)+\epsilon)$ . (7)

From (6) and (7) and since $\epsilon>0$ was arbitrary, we infer that if $x_{n}(z)\rightarrow^{n\rightarrow\infty}$

$-\infty$ , then

$\lim_{n\rightarrow\infty}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}=\frac{1}{p}\eta+(z)$ . (8)

If $ x_{n}(z)\rightarrow n\rightarrow\infty-\infty$ then through a similar reasoning we obtain

$\lim_{n\rightarrow\infty}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}=\frac{1}{p}\eta_{-}(z)$ . (9)

Let $g_{n}^{+}(z)=\{$

Note that $s$ince $y$

for all $z\in E_{1}\subseteq Z$

$\frac{F(z,x_{*}(z))}{0|x_{n}(z)|^{p}}otherwiseifx_{n}(z)>0$ and $g_{\overline{n}}(z)=\{$

$n(z)\rightarrow y(z)$ a.e. on $Z$ and $y\neq 0$ , we $d$

, with $|E_{1}|>0$ . we have

$\frac{F(z,x.(z))}{|x_{n}(z)|^{p}}$ if $x_{n}(z)<0$

$0$ otherwise
educe that $|x_{n}(z)|\rightarrow\infty$

$\int_{Z}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}|y_{n}(z)|^{p}dz=\int_{x_{n}>0\}}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}|y_{n}(z)|^{p}dz$

$+\int_{\{x_{n}<0\}}\frac{F(z,x_{n}(z))}{|x_{n}(z)|p}|y_{n}(z)|^{p}dz$

(note that for all $z\in Z,$ $F(z,$ $0)=0$)

$=\int_{Z}g_{n}^{+}(z)y_{n}^{+}(z)^{p}dz+\int_{Z}g_{n}^{-}(z)y_{n}^{-}(z)^{p}dz$

From (8), (9) and the dominated convergence theorm, we have

$\int_{Z}g_{n}^{+}(z)y_{n}^{+}(z)^{p}dz\rightarrow n\rightarrow\infty\frac{1}{p}\int_{Z}\eta+(z)y^{+}(z)^{p}dz$

and $\int_{Z}g_{n}^{-}(z)y_{n}^{-}(z)^{p}dz\rightarrow n\rightarrow\infty\frac{1}{p}\int_{Z}\eta_{-}(z)y^{-}(z)^{p}dz$ .
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Passing to the limit as $ n\rightarrow\infty$ in (5), using these convergences and the fact

that $||Dy||_{p}\leq\varliminf_{n\rightarrow\infty}||Dy_{n}||_{p}$ (from the weak lower semicontinuity of the norm
functional, recall that $y_{n}\rightarrow wy$ in $W_{0}^{1,p}(Z))$ , we obtain

$\frac{1}{p}||Dy||_{p}^{p}\leq\frac{1}{p}\int_{Z}(\eta+(z)y^{+}(z)^{p}+\eta_{-}(z)y^{-}(z)^{p})dz\leq 0$

(see hypothesis $H(f)(iii)$ )
$\Rightarrow$ $y=0$ a contradiciton.

This proves the coercivity of $R(\cdot)$ . Q.E.D.

Now Let $W_{0}^{1,p}(Z)=X\oplus V$ , where $X=Ru_{1}$ and $V$ is its topological com-
plement.

Proposition 3.

If hypotheses $H(f)$ hold,
then $R_{|V}\geq 0$ .

Proof. Recall (see section 2) that for all $v\in V$ , we have that

$\mu||v||_{p}^{p}\leq||Dv||_{p}^{p}$ (10)

Then using (10) and hypothesis $H(f)(iv)$ , we have that

$R(v)\geq\frac{1}{p}||Dv||_{p}^{p}-\frac{\lambda_{1}}{p}||v||_{p}^{p}-\frac{\mu-\lambda_{1}}{p}||v||_{p}^{p}\geq 0$ , for all $v\in V$ .

Q.E.D.

Since $||Du_{1}||_{p}^{p}=\lambda_{1}||u_{1}||_{p}^{p}$ and using hypothesis $H_{1}$ , we have at once the
following proposition

Proposition 4.

If hypothesis $H_{1}$ and $H(f)$ hold,
then $R(\xi\pm u_{1})<0$ .

The next proposition shows that $R(\cdot)$ satisfies a kind of nonsmooth $(PS)-$

condition over closed and convex subsets of $W_{0}^{1,p}(Z)$ .

Proposition 5.

If hypotheses $H(f)$ hold, $K\subseteq W_{0}^{1,p}(Z)$ is a nonempty, closed and convex and
$\{x_{n}\}_{n\geq 1}\subseteq K,$ $\epsilon_{n}>0,$ $\epsilon_{n}\downarrow 0$ satisfy $|R(x_{n})|\leq M,$ $0\leq R^{0}(x_{n}; y-x_{n})+$

$\epsilon_{n}||y-x_{n}||$ for all $y\in K$ ,
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then $\{x_{n}\}_{n\geq 1}\subseteq W_{0}^{1,p}(Z)$ has a strongly convergent subsequence.

Proof. Since by hypothesis $\{R(x_{n})\}_{n\geq 1}$ is bounded and because $R(\cdot)$ is co-
ercive (see proposition 2) we infer that $\{x_{n}\}_{n\geq 1}\subseteq W_{0}^{1,p}(Z)$ is bounded. So
by passing to a subsequence if necessary, we may assume that $x_{n}\rightarrow wx$ in
$W_{0}^{1}$ ” $(Z)$ and $x_{n}\rightarrow x$ in $L^{p}(Z)$ as $ n\rightarrow\infty$ . Recall that $R^{0}(x_{n} ; x-x_{n})=$

$\sup\{<x^{*}, x-x_{n}>:x^{*}\in\partial R(x_{n})\},$ $n\geq 1$ (here by $<$ $>we$ denote the duality
bracket $s$ of the pair $(W_{0}^{1,p}(Z), W^{-1,q}(Z)))$ . Since $\partial R(x_{n})\subseteq W^{-1,q}(Z)$ is weakly
compact, we can find $x_{n}^{*}\in\partial R(x_{n})$ such that $R^{0}(x_{n} ; x-x_{n})=<x_{n}^{*},$ $x-x_{n}>$ ,
$n\geq 1$ . Note that $x_{n}^{*}=A(x_{n})-v_{n}$ where $A$ : $W^{1,p}(Z)\rightarrow W^{-1,q}(Z)$ is defined
by $<A(x),$ $y>=\int_{Z}||Dx(Z)||^{p-2}(Dx(z), Dy(z))_{R^{N}}dz$ for all $x,$

$y\in W_{0}^{1,p}(Z)$

and $v_{n}\in\partial J(x_{n}),$ $n\geq 1$ , with $J(x_{n})=\int_{Z}F(z, x_{n}(z))dz$ . We know that
$f_{1}(z, x_{n}(z))\leq v_{n}(z)\leq f_{2}(z, x_{n}(z))$ a.e. on $Z$ (see Chang [6] and Kourogenis-
Papageorgiou [11]). It is easy to scheck that $A$ is monotone, demicontinuous,
hence maximal monotone. Evidently $\{v_{n}\}_{n\geq 1}\subseteq L^{q}(Z)$ is bounded. We have

$0\leq<x_{n}^{*},$ $x-x_{n}>+\epsilon_{n}||x-x_{n}||$

$=<A(x_{n}),$ $x-x_{n}>-\int_{Z}v_{n}(z)(x-x_{n})(z)dz+\epsilon_{n}||x-x_{n}||$

$\Rightarrow$ $\varlimsup<A(x_{n}),$ $x_{n}-n>\leq 0$

(since $\int_{Z}v_{n}(z)(x-x_{n})(z)dz-n\rightarrow\infty 0$ and $\epsilon_{n}||x-x_{n}||\rightarrow n\rightarrow\infty 0$).

Because $A$ is maximal monotone, is generalized pseudomonotone (see Hu-
Papageorgiou [10], $remarkIII6.3n\rightarrow\infty$ p. 365). So we have $<A(x_{n}),$ $x_{n}-x\rightarrow^{n\rightarrow\infty}$

$<A(x),$ $x>\Rightarrow||Dx_{n}||_{p}\rightarrow||Dx||_{p}$ . Recall that $Dx_{n}\rightarrow wDx$ in $L^{p}(Z, R^{N})$

and that $L^{p}(Z, R^{N})$ is uniformly convex, thus it has the Kadec-Klee property
(see Hu-Papageorgiou [10], Definition I.1.72, p. 28). Therefore $Dx_{n}\rightarrow Dx$ in
$ L^{p}(Z, R^{N})\Rightarrow x_{n}\rightarrow Xn\rightarrow\infty$ in $W_{0}^{1,p}(Z)$ . Q.E.D.

Because $\partial R(x)\subseteq W^{-1,q}(Z)$ is weakly compact, we can find $x^{*}\in\partial R(x)$ such
that $||x^{*}||_{*}=m(x)=\inf\{||y^{*}|| : y^{*}\in\partial R(x)\}$ (by $||\cdot||_{*}$ we denote the norm of
$W^{-1,q}(Z))$ . Then the same proof as for proposition 5 show that $R(\cdot)$ satisfies
the nonsmooth (PS)-condition (see section 2).

Proposition 6.

If hypotheses $H(f)$ hold, /

then $R(\cdot)$ satisfies the nonsmooth (PS)-conditon.
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4. Existence of three nontrivial solutions

In this section we state and prove the main result of this work, which says
that under the hypotheses introduced in section 3, problem (4) has at least three
nontriviaI $s$olutions.

Theorem 7.
If hypotheses $H(f)$ and $H_{1}$ hold,

then prvblem (4) has at least three nontrivial solutions.

Proof. Let $U^{\pm}=\{x\in W_{0}^{1,p}(Z) : x=\pm tu_{1}+v, t>0, v\in V\}$ . We show
that $R(\cdot)$ attains its infimum on both open sets $U^{+}$ and $U^{-}$ To this end let
$m+=\inf[R(x) : x\in U^{+}]=\inf[R(x) : x\in\frac{1}{U^{\prime}}]$ (since $R(\cdot)$ is locally Lipschitz on
$W_{0}^{1,p}(Z))$ . Let

$\overline{R}(x)=\left\{\begin{array}{ll}R(x) & if x\in\overline{U}^{+}\\+\infty & otherwise.\end{array}\right.$

Evidently $\overline{R}(\cdot)$ is lower semicontinuous on the Banach space $W_{0}^{1,p}(Z)$ and
is bounded below (see proposition 2). By Ekeland’s variational principle (see
Hu-Papageorgiou [10], corollary V.1.2, p. 520), we can find $\{x_{n}\}_{n\geq 1}\subseteq U^{+}$ such
that $ R(x_{n})\downarrow m+asn\rightarrow\infty$ and

$\overline{R}(x_{n})\leq\overline{R}(y)+\epsilon_{n}||y-x_{n}||$ for all $y\in W_{0}^{1,p}(Z)$

$\Rightarrow$ $R(x_{n})\leq R(y)+\epsilon_{n}||y-x_{n}||$ for all $y\in\frac{1}{U^{I}}$

Because is convex, for every $t\in(0,1)$ and every $w\in\overline{U}^{+},$ $y_{n}=(1-$

$t)x_{n}+tw\in\overline{U}^{+}$ for all $n\geq 1$ . So we have

$-\epsilon_{n}||w-x_{n}||\leq\frac{R(x_{n}+t(w-x_{n}))-R(x_{n})}{t}$

$\Rightarrow$ $0\leq R^{0}(x_{n} ; w-x_{n})+\epsilon_{n}||w-x_{n}||$ for all $w\in\frac{1}{U^{I}}$

By virtue of proposition 5 and by passing to a subsequence if necessary, we
may assume that $x_{n}\rightarrow^{n\rightarrow\infty}y_{1}$ in $W_{0}^{1,p}(Z)$ . If $y_{1}\in\partial U^{+}=V$ , then by virtue
of proposition 3, we have $\lim R(x_{n})=R(y_{1})=m+>0$ . On the other hand
proposition 4 implies that $ 0>m+\cdot$ Hence we have a contradiction, from which
we infer that $y_{1}\in int^{\frac{i}{U^{I}}}=U^{+},$ $y_{1}\neq 0$ . Thus $y_{1}$ is a local minimum of $R$ and
so $0\in\partial R(y_{1})$ (see section 2). Similarly working on $U^{-}$ , we obtain $y_{2}\in U^{-}$ ,
$y_{1}\neq y_{2}\neq 0$ such that $0\in\partial R(y_{2})$ .

Next we will produce a third distinct, nontrivial critical point of $R(\cdot)$ . By
virtue of hypotheses $H(f)(v)$ , given $\epsilon>0$ we can find $\delta>0$ such that for almost
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all $z\in Z$ and all $|x|\leq\delta$ we have

$F(z, x)\leq\frac{1}{p}(-\beta+\epsilon)|x|^{p}$ .

On the other hand recall that $|F(z, x)|\leq a(z)|x|+\frac{c}{p}|x|^{p}$ for almost all $z\in Z$

and all $ x\in$ R. Using Young’s inequality on the term $a(z)|x|$ and since $ a\in$

$L^{\infty}(Z)$ , we deduce that for almost all $z\in Z$ and all $x\in R$ , we have $|F(z, x)|\leq$

$c_{1}+c_{2}|x|^{p}$ for some $c_{1},$ $c_{2}>0$ . Thus we can find $c_{3}>0$ such that for almost all
$z\in Z$ and all $|x|>\delta$ we have $F(z, x)\leq c_{3}|x|^{\theta}$ with $\theta\in(p,p^{*}=\frac{Np}{N-p}$ ]. therefore
finally we can say that for almost all $z\in Z$ and all $x\in R$ we have

$F(z, x)=\frac{1}{p}(-\beta+\epsilon)|x|^{p}+c_{3}|x|^{\theta},$ $p<\theta\leq p^{*}=\frac{Np}{N-p}$ .

Using this growth of $F$ , we obtain

$R(x)=\frac{1}{p}||Dx||_{p}^{p}-\frac{\lambda_{1}}{p}||x||_{p}^{p}-\int_{Z}F(z,x(z))dz$

$\geq\frac{1}{p}||Dx||_{p}^{p}-\frac{\lambda_{1}}{p}||x||_{p}^{p}+\frac{1}{p}(\beta-\epsilon)||x||_{p}^{p}-c_{3}||x||_{\theta}^{\theta}$

$=\frac{1}{p}||Dx||_{p}^{p}-\frac{(\lambda_{1}-\beta+\epsilon)}{p}||x||_{p}^{p}-c_{3}||x||_{\theta}^{\theta}$ .

From hypothesis $H(f)(v)$ we know that $\beta>\lambda_{1}$ . So we can choose $\epsilon>0$

such that $\lambda_{1}+\epsilon<\beta$ . Also because $\theta\leq p^{*}=\frac{Np}{N-p}W_{0}^{1,p}(Z)$ is embedded
continuously in $L^{\theta}(Z)$ (Sobolev embedding theorem). Thus we can find $c_{4}>0$

such that $||x||_{\theta}\leq c_{4}||Dx||_{p}$ . Hence for $c_{5}=\overline{c}_{3}^{\Delta}c^{\theta}>0$ , we have

$R(x)\geq\frac{1}{p}||Dx||_{p}^{p}-c_{5}||Dx||_{p}^{\theta}$ .

By Poincar\’e’s inequality we can find $c_{6},$ $c_{7}>0$ such that

$R(x)\geq c_{6}||x||_{1,p}^{p}-c_{7}||x||_{1,p}^{\theta}$ for all $x\in W_{0}^{1,p}(Z)$ .

This last inequality implies that there exists $0<\rho<\min\{\xi+,\xi_{-}\}$ such that
$R(x)>0$ for all $||x||_{1,p}=\rho$ . Because $R(\xi\pm u_{1})<0=R(0)$ , we can apply theorem
1 and obtain $y_{3}\in W_{0}^{1,p}(Z),$ $y_{3}\neq 0,$ $y_{3}\neq y_{1},$ $y_{3}\neq y_{2}$ (since $R(y_{3})>0$ ) such that
$0\in\partial R(y_{3})$ .

Finally let $y=y_{k},$ $k=\{1,2,3\}$ . From our previous considerations we know
that $0\in\partial R(y)$ . Hence $A(y)-\lambda_{1}|y|^{p-2}y=v$ with $v\in L^{q}(Z),$ $ f_{1}(z, y(z))\leq$

$v(z)\leq f_{2}(z, y(z))$ a.e. on $Z$ (i.e. $u\in\partial J(y)$ ). Then for any $\theta\in C_{0}^{\infty}(Z)$ we have

$<A(y),$ $\theta>-\lambda_{1}\int_{Z}|y(z)|^{p-2}y(z)\theta(z)dz=\int_{Z}v(z)\theta(z)dz$

$\Rightarrow$ $\int_{Z}||Dy(z)||^{p-2}(Dy(z), D\theta(z))_{R^{N}}dz=\int_{Z}(v(z)+\lambda_{1}|y(z)|^{p-2}y(z))\theta(z)dz$
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Note that $D\in L(W_{0}^{1,p}(Z), L^{p}(Z, R^{N}))$ and $D^{*}=-div\in L(L^{q}(Z, R^{N})$ ,
$W^{-1,q}(Z))$ . Thus we have

$<-div(||Dy||^{p-2}Dy),$ $\theta>=(v+\lambda_{1}|y|^{p-2}y, \theta)_{pq}$ .

Since $C_{0}^{\infty}(Z)$ is dense in $W_{0}^{1,p}(Z)$ , we deduce that

$-div(||Dy(z)||^{p-2}Dy(z))-\lambda_{1}|y(z)|^{p-2}y(z)=v(z)$ a.e. on $Z$

(11)
$ y_{|\Gamma}=0,2\leq p<\infty$

and $ v(z)\in f(z, x(z))\wedge$ a.e. on $Z$ . This proves that $y_{1},$ $y_{2},$ $y_{3}$ are three distinct
nontrivial solution $s$ of (4). Q.E.D.
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