A PRIORI ESTIMATE ON THE FREE BOUNDARY PROBLEM AND ITS APPLICATION

By
Yoshiniko Yamaura

(Received July 16, 1998; Revised June 11, 1999)

Abstract

The free boundary problem with the area functional is investigated. A priori estimate for the measure of the caved part of the set where the function is zero is obtained, so that a convex property of the free boundary is established.

0. Introduction

Let $\mathbf{R}^{n}, n \geq 2$, be the n-dimensional Euclidean space, and let Ω be a bounded domain in \mathbf{R}^{n} whose boundary $\partial \Omega$ is locally a Lipschitz graph. Given a nonnegative bounded function u^{0} belonging to $B V(\Omega)$ and a positive $L^{2}(\Omega)$-function Q, we consider the variational problem of minimizing the energy functional

$$
J(w)=\int_{\Omega} \sqrt{1+|D w|^{2}}+\int_{\Omega} Q^{2} \chi_{w>0} d \mathcal{L}^{n}+\int_{\partial \Omega}\left|w-u^{0}\right| d \mathcal{H}^{n-1}
$$

among all $w \in B V(\Omega)$. Here, \mathcal{L}^{n} is the n-dimensional Lebesgue measure, \mathcal{H}^{n-1} is the ($n+1$)-dimensional Hausdorff measure and $\chi_{w>0}$ is the characteristic function of the set $\{z \in \Omega \mid w(z)>0\}$. $B V(\Omega)$ is the space of \mathcal{L}^{n}-integrable functions defined on Ω whose derivatives in the sense of distributions are signed measures with finite total variation in $\Omega . \sqrt{1+|D w|^{2}}$ denotes the total variation measure of the vector valued measure $\left(\mathcal{L}^{n}, D_{1} w, \ldots, D_{n} w\right)$. The last term of $J(w)$ is defined in the sense of L^{1}-trace (see [7, Chapter 2]).

Our aim of this paper is to investigate a convex property of the set $\Omega(u=$ $0):=\{z \in \Omega \mid u(z)=0\}$ for a minimizer u of J in the case $\inf _{\Omega} Q>1$. The regularity of the free boundary $\partial \Omega(u>0)=\Omega \cap \partial\{z \in \Omega \mid u(z)>0\}$ for a minimizer u is studied by Caffarelli and Friedman in [6] under the hypothesis $n \leq 6$ and $\sup _{\Omega} Q<1$. However, their approach that essentially needs the Lipschitz continuity of minimizers is no longer be useful unless $\sup _{\Omega} Q<1$. In fact, we constructed in the case where $n=2$ and $Q \equiv$ Const. >1 an example of a radially symmetric minimizer which is not even continuous in Ω (see [14],
[17]). On the other hand, we pursue in this paper a property of the set $\Omega(u=0)$ without arguing about the regularity of u.

For $u \in B V(\Omega)$ let E_{u} be an interior of the set $\Omega(u=0)$. Then main result of this paper is described as follows: Suppose $\inf _{\Omega} Q>1$ and let u be a minimizer of J. If $\mathcal{L}^{n}(\partial \Omega(u>0))=0$, then E_{u} is convex in \mathcal{L}^{n}-measure (see Theorem 2). In showing this result the following a priori estimate plays an essential role:

$$
\left.\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n} \leq \mathcal{L}^{n}\left(F \cap\left[F \cap \partial H_{\nu_{0}}\left(z_{0}\right)\right) \times \mathbf{R}\right]\right)
$$

holds for any connected component F of $H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u}$ having no points of Ω^{c}, where $z_{0} \in \mathbf{R}^{n}$ and $\nu_{0} \in S^{n-1}$ and $H_{\nu_{0}}\left(z_{0}\right)=\left\{z \in \mathbf{R}^{n} \mid\left\langle z-z_{0}, \nu_{0}\right\rangle \geq 0\right\}$ (see Theorem 1). Here $\left(F \cap \partial H_{\nu_{0}}\left(z_{0}\right)\right) \times \mathbf{R}=\left\{\xi+t \nu_{0} \mid \xi \in F \cap \partial H_{\nu_{0}}\left(z_{0}\right), t \in \mathbf{R}\right\}$.

For proving the inequality above, it suffices to adopt

$$
v(x)= \begin{cases}0 & \text { if } x \in F \\ u(x) & \text { if } x \in \Omega \backslash F\end{cases}
$$

as the comparison function. But, when we strictly accomplish the proof, there will appear the necessity that we should verify the legitimacy of choosing such a comparison function. For this purpose we must show the proposition that v belongs to $B V(\Omega)$. This seems, at first glance, to be generally false because the regularity of the free boundary is unknown. However, due to the property that F is a connected component we are able to demonstrate that u must take the value zero on ∂F (see (7) and (9) in the proof of Lemma 1 in Section 2), so that, it is possible to make sure that the proposition above is true. The practical calculation is established with the help of the theory of 'Fubinization' of $B V$-functions which is summed up in Section 1.

The variational problem of the kind treated in this paper was firstly introduced by Alt and Caffarelli in the article [1]. Their results have good applications for solving jet and cavitational flow problem (see [2], and refer to [3]). In [10], [11], [12], the free boundary problem for quasi linear equations is investigated. Their problem can be related to the experiment of peeling off the charged film in the electric field (see [12, Appendix]). The surface area type problem is dealt with in [6], [14]-[17]. In [6] the regularity result of the free boundary is shown in the case $n \leq 6$ and $\sup _{\Omega} Q<1$, and the result is applied to the capillary drop problem. The author investigated in [14]-[17] the regularity of a minimizer in the radially symmetric case according to the value of the constant Q. In particular, a 'peeling off' and a 'soap film' experiments which can be tied in with the variational problem of the present paper are stated in [15].

Notation We sum up notation used throughout this paper: \mathbf{N} is the set of all positive integers, and \mathbf{R} is the set of all real numbers. We set $\mathbf{R}^{+}=$
$\{t \in \mathbf{R} \mid t>0\}$. For subsets A and B of $\mathbf{R}^{n}, A \backslash B:=A \cap B^{c}$, where B^{c} is the complement of B. For a subset A of \mathbf{R}^{n}, we indicate with ∂A and A^{o} the boundary and interior of A respectively. For $x \in \mathbf{R}^{n}$ and a positive number r, $B_{r}(x)$ is the n-dimensional open ball of radius r with the center x. We denote for a subset A of \mathbf{R}^{n} by χ_{A} the characteristic function of A. Let $i \in \mathbf{N}$, then \mathcal{L}^{i} is the i-dimensional Lebesgue measure. For an open subset W of \mathbf{R}^{i}, we denote by $L^{1}(W)$ is the space of all \mathcal{L}^{i}-integrable functions defined on W, and $B V(W)$ is the space of $L^{1}(W)$-functions whose derivatives are measures with finite total variation. For a function f defined on \mathbf{R}^{i} and a subset A of $\mathbf{R}^{i},\left.f\right|_{A}$ is the function obtained by restricting the domain of definition of f to A. Let $\zeta \in B V(\mathbf{R})$ and $t_{0} \in \mathbf{R}$. When there exists a \mathcal{L}^{1}-null set N such that

$$
\lim _{\substack{\varepsilon \in\left(t_{0}, \infty\right) \backslash N \\ \varepsilon \downarrow t_{0}}} \zeta\left(t_{0}+\varepsilon\right)
$$

exists, we say ζ has the right-trace at t_{0} and denote by $\zeta^{+}\left(t_{0}\right)$ its value. Similarly we define the left-trace of ζ at t_{0} denote by $\zeta^{-}\left(t_{0}\right)$. It is well-known that $\zeta^{ \pm}\left(t_{0}\right)$ are definite for any $\zeta \in B V(\mathbf{R})$ and $t_{0} \in \mathbf{R}$.

1. Summary on Fubinization of BV-functions

The theory of Fubinization is useful for showing properties of $B V$-functions (see for instance [4], [5]). The results stated in this section can be demonstrated by referring the proofs of [18, Theorem 5.3.5] and theorems in [9, Chapter 2 \& 3] (see also [13, Theorem in Page 160]). The following theorem is shown by taking advantage of the theory of the decomposition of measures (refer to [8]). In the statement, for $w \in B V\left(\mathbf{R}^{n}\right)$ and an integer $k, 1 \leq k \leq n,\left|D_{k} w\right|$ is the total variation measure of $D_{k} w$.

Theorem A. Let $w \in B V\left(\mathbf{R}^{n}\right)$, and let $1 \leq k \leq n$. Then there exists a $\mathcal{L}^{n-1}-$ null set $\mathcal{N} \subset \mathbf{R}_{k}^{n-1} \equiv\left\{\left(z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{n}\right) \mid\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{R}^{n}\right\}$ such that for any fixed $\xi=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{n}\right) \in \mathbf{R}_{k}^{n-1} \backslash \mathcal{N}$, the function $w_{\xi}(t) \equiv w\left(\xi_{1}, \ldots, \xi_{k-1}, t, \xi_{k+1}, \ldots, \xi_{n}\right)(t \in \mathbf{R})$ belongs to $B V(\mathbf{R})$. Furthermore, for any Borel measurable and $\left|D_{k} w\right|$-integrable function ψ on \mathbf{R}^{n} and for any fixed $\xi \in \mathbf{R}_{k}^{n-1} \backslash \mathcal{N}$, the function $\psi_{\xi}(t) \equiv \psi\left(\xi_{1}, \ldots, \xi_{k-1}, t, \xi_{k+1}, \ldots, \xi_{n}\right)(t \in \mathbf{R})$ is $\left|D w_{\xi}\right|$-integrable on \mathbf{R}, and the function defined on \mathbf{R}_{k}^{n-1} by

$$
\xi \mapsto \begin{cases}\int_{\mathbf{R}} \psi_{\xi}\left|D w_{\xi}\right| & \text { if } \xi \in \mathbf{R}_{k}^{n-1} \backslash \mathcal{N} \\ 0 & \text { if } \xi \in \mathcal{N}\end{cases}
$$

is \mathcal{L}^{n-1}-integrable and the following equality holds:

$$
\int_{\mathbf{R}^{n}} \psi\left|D_{k} w\right|=\int_{\mathbf{R}_{k}^{n-1}} d \mathcal{L}^{n-1}(\xi) \int_{\mathbf{R}} \psi_{\xi}\left|D w_{\xi}\right|
$$

The following theorem is directly proved by applying Fubini-Tonelli theorem. The notations $\mathbf{R}_{k}^{n-1}, w_{\xi}$ and $\left|D_{k} w\right|$ appeared in the statement are defined in the same way as in the preceding theorem:

Theorem B. Let $w \in L^{1}\left(\mathbf{R}^{n}\right), V$ be an open set in \mathbf{R}^{n}, and let $1 \leq k \leq n$. Assume that there exists a \mathcal{L}^{n-1}-null set $\mathcal{N} \subset \mathbf{R}_{k}^{n-1}$ such that $\int_{V_{\xi}}\left|D w_{\xi}\right|<\infty$ for any fixed $\xi=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{n}\right) \in \mathbf{R}_{k}^{n-1} \backslash \mathcal{N}$, where $V_{\xi}=\Phi_{\xi}\left(V \cap \mathbf{R}_{\xi}\right)$, $\mathbf{R}_{\xi}=\left\{\left(\xi_{1}, \ldots, \xi_{k-1}, t, \xi_{k+1}, \ldots, \xi_{n}\right) \mid t \in \mathbf{R}\right\}$ and $\Phi_{\xi}\left(\xi_{1}, \ldots, \xi_{k-1}, t, \xi_{k+1}, \ldots, \xi_{n}\right)$ $=t$ for each $t \in \mathbf{R}$, and assume that the function on \mathbf{R}_{k}^{n-1} defined by

$$
\xi \mapsto \begin{cases}\int_{V_{\xi}}\left|D w_{\xi}\right| & \text { if } \xi \in \mathbf{R}_{k}^{n-1} \backslash \mathcal{N} \\ 0 & \text { if } \xi \in \mathcal{N}\end{cases}
$$

is \mathcal{L}^{n-1}-integrable on \mathbf{R}_{k}^{n-1}. Then

$$
\int_{V}\left|D_{k} w\right|<\infty
$$

2. Lemmas

Let u be a minimizer for the functional J in the class $B V(\Omega)$ (see [14] for the existence of such a minimizer) and let E_{u} be the interior of the set $\{z \in$ $\Omega \mid u(z)=0\}$. Since the regularity of u is not obtained, u is nothing but the equivalence class of functions, where two functions are equivalent if they agree everywhere on Ω except possibly for a set of \mathcal{L}^{n}-measure zero. In the following, nevertheless, u signifies an arbitrarily fixed representative in the class. As a result, the value of u is definite everywhere on Ω, and we may assume

$$
\begin{equation*}
0 \leq u(z) \leq \operatorname{essup}_{\Omega} u^{0} \quad \text { for each } z \in \Omega \tag{1}
\end{equation*}
$$

by taking into account the maximum principle described as in [15]. Moreover, we emphasize that the set E_{u} is well-defined for such u. Let $z_{0} \in \mathbf{R}^{n}$ and $\nu_{0} \in \mathbf{S}^{n-1}$, then $H_{\nu_{0}}\left(z_{0}\right)$ and $\mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ be the family of connected component of $H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u}$ containing no point of Ω^{c}. In the present section, we designate by F an arbitrarily fixed element of $\mathcal{F}_{\nu_{0}}\left(z_{0}\right)$. To simplify notation, we will take $z_{0}=0$
and $\nu_{0}=\vec{e}_{1}=(1,0, \ldots, 0)$, and moreover, the notaions $H_{\vec{e}_{1}}(0)$ and $\mathcal{F}_{\vec{e}_{1}}(0)$ are abbreviated to H and \mathcal{F} respectively. We start from the following remark:

Remark. F is a compact set contained in Ω.
In fact, F is closed since F is a connected component of the closed set $H \backslash E_{u}$. Furthermore, F does not have any point belonging to Ω^{c}, and so $F \subset \Omega$. Thus, the desired result follows from the boundedness assumption on Ω.

Lemma 1. The function v defined by

$$
v(x)= \begin{cases}0 & \text { if } x \in F ; \\ u(x) & \text { if } x \in \Omega \backslash F\end{cases}
$$

belongs to $B V(\Omega)$.
Proof. We shall extend the domain of definition of u to \mathbf{R}^{n} by defining $u=0$ in $\mathbf{R}^{n} \backslash \Omega$. We here notice that $u \in B V\left(\mathbf{R}^{n}\right)$ because $\partial \Omega$ is assumed to be Lipschitz continuous (see [18, Lemma 5.10.4 and Remark 5.10.2]). In order to show the assertion of Lemma 1, it is enough to prove that the function

$$
x \mapsto \begin{cases}0 & \text { if } x \in F \\ u(x) & \text { if } x \in \mathbf{R}^{n} \backslash F\end{cases}
$$

which we again denote by v belongs to $B V\left(\mathbf{R}^{n}\right)$. For this purpose, we shall show for each $i=1, \ldots, n$ that

$$
\begin{equation*}
\int_{H^{\circ}}\left|D_{i} v\right|<\infty . \tag{2}
\end{equation*}
$$

If (2) will be shown to be true, we have $\left.v\right|_{H^{\circ}} \in B V\left(H^{o}\right)$. Moreover, $\left.v\right|_{H^{c}}=$ $\left.u\right|_{H^{c}} \in B V\left(H^{c}\right)$, and hence due to the facts that v is bounded in \mathbf{R}^{n} and the support of v is compact we are able to reach $v \in B V\left(\mathbf{R}^{n}\right)$ (see [7, Proposition 2.8]).

Let us demonstrate (2). We prove only the case $i=1$ since the other cases are similarly shown. Let $\mathcal{N} \subset \partial H$ be a \mathcal{L}^{n-1}-null set obtained by applying Theorem A to $w=u$ and $k=1$. Then, by adopting Theorem B to $w=v, W=H^{o}$ and $k=1$, the proof of (2) with $i=1$ will be achieved if we show

$$
\begin{align*}
& \circ \int_{\mathbf{R}^{+}}\left|D v_{\xi}\right|<+\infty \text { holds for each } \xi \in \partial H \backslash \mathcal{N} ; \tag{3}\\
& \circ \text { The function } \xi \mapsto \begin{cases}\int_{\mathbf{R}^{+}}\left|D v_{\xi}\right| & \text { if } \xi \in \partial H \backslash \mathcal{N} \\
0 & \text { if } \xi \in \mathcal{N}\end{cases} \\
& \text { is } \mathcal{L}^{n-1} \text {-integrable on } \partial H, \text { where } v_{\xi}(t)=v(t, \xi) \text { for } t \in \mathbf{R} . \tag{4}
\end{align*}
$$

Before showing (3) and (4), we verify a property of $u_{\xi}, u_{\xi}(t)=u(t, \xi)$, which will play a key role in the proof below. Let us fix $\xi \in \partial H \backslash \mathcal{N}$ arbitrarily. We then note that u_{ξ} belongs to $B V(\mathbf{R})$ and

$$
u_{\xi}(t)= \begin{cases}0 & \text { if }(t, \xi) \in F \cap \mathbf{R}_{\xi}^{+} \tag{5}\\ u_{\xi}(t) & \text { if }(t, \xi) \in U \cap \mathbf{R}_{\xi}^{+}\end{cases}
$$

where $U=F^{c}$ and $\mathbf{R}_{\xi}^{+}=\left\{(t, \xi) \mid t \in \mathbf{R}^{+}\right\}$. In the sequel, for a subset C of \mathbf{R} we denote by C_{ξ} the set $\left\{(t, \xi \mid t \in C\}\right.$. Let $C_{R}(0)=\left\{x \in \mathbf{R}^{n}| | x^{j} \mid<R, j=\right.$ $1,2, \ldots, n\}$ be an n-dimensional cube such $\Omega \subset \subset C_{R}(0) . U \cap \mathbf{R}_{\xi}^{+} \cap C_{R}(0)$ is a 1 -dimensional open set, it is, as well-known, described as the union of at most countable and pairwise disjoint open intervals. The following three cases can occur:

$$
\begin{align*}
& U \cap \mathbf{R}_{\xi}^{+} \cap C_{R}(0)=(0, R) \tag{6a}\\
& U \cap \mathbf{R}_{\xi}^{+} \cap C_{R}(0)=\left(0, b_{0}\right) \cup \bigcup_{l=1}^{\infty}\left(a_{l}, b_{l}\right) \cup\left(a_{0}, R\right) \quad \text { (disjoint union) } \tag{6~b}\\
& U \cap \mathbf{R}_{\xi}^{+} \cap C_{R}(0)=\bigcup_{l=1}^{\infty}\left(a_{l}, b_{l}\right) \cup\left(a_{0}, R\right) \quad \text { (disjoint union) } \tag{6c}
\end{align*}
$$

where $a_{l}, b_{l} \in(0, R), l=0,1,2, \ldots$ Hereafter, for notational simplicity, we identify subsets of \mathbf{R} and the corresponding subsets of \mathbf{R}_{ξ}. In the case ($6 \mathrm{~b}, \mathrm{c}$) we shall show

$$
\begin{equation*}
u_{\xi}^{+}\left(a_{l}\right)=0 \quad \text { for } l=0,1,2, \ldots \tag{7}
\end{equation*}
$$

where $u^{+}\left(a_{l}\right)$ is the right-trace of u_{ξ} at a_{l} (see Notation of Introduction). To do this, we have only to show that $u_{\xi}^{+}\left(a_{l}\right)$ is not positive because $u_{\xi}^{+}\left(a_{l}\right)$ is known by (1) to be non-negatime. Suppose on the contrary that $u_{\xi}^{+}\left(a_{l}\right)>0$. Then there exists a positive number δ and a \mathcal{L}^{1}-null set Λ such that

$$
\begin{equation*}
u_{\xi}(t)>0 \quad \text { for any } t \in\left(a_{l}, a_{l}+\delta\right)_{\xi} \backslash \Lambda \tag{8}
\end{equation*}
$$

Therefore, we particularly have $\left(a_{l}, a_{l}+\delta\right)_{\xi} \backslash \Lambda \subset H \backslash E_{u}$. On the other hand, any point $x \in\left(a_{l}, a_{l}+\delta\right)_{\xi} \cap \Lambda$ also belongs to $H \backslash E_{u}$. Otherwise, $x \in E_{u}=\{z \in \Omega \mid$ $u(z)=\}^{\circ}$ must hold, and hence there exists a positive number ε such that $u_{\xi}=0$ in $A_{\varepsilon}:=B_{\varepsilon}(x) \cap\left(a_{l}, a_{l}+\delta\right)_{\xi}$. We thus have from (8) the inclusion $A_{\varepsilon} \subset \Lambda$, which yields the contradiction $0<\mathcal{L}^{1}\left(A_{\varepsilon}\right) \leq \mathcal{L}^{1}(\Lambda)$. Subsequently, we obtain $\left(a_{l}, a_{l}+\delta\right)_{\xi} \subset H \backslash E_{u}$. Now, by noticing that the point $\left(a_{l}, \xi\right) \in \mathbf{R}^{n}$ belongs to F, $F \cup\left(a_{l}, a_{l}+\delta\right)_{\xi}$ is turned out to be a connected subset of $H \backslash E_{u}$ which strictly
contains F. This contradicts to the maximality of F. We thus have proved (7). Similarly, it holds that

$$
\begin{equation*}
u_{\xi}^{-}\left(b_{l}\right)=0 \quad \text { for } l=0,1,2, \ldots \tag{9}
\end{equation*}
$$

We are now in a position to prove (3). In the case (6a), since $v_{\xi}=u_{\xi}$ in \mathbf{R}, the assertion holds. We only show the case (6 b) because (6 c) is done in the same way. Set for $j \in \mathbf{N}$,

$$
f_{j}(t):= \begin{cases}u_{\xi}(t) & \text { if } t \in \mathbf{R} \backslash\left[\cup_{l=1}^{j}\left(a_{l}, b_{l}\right) \cup\left(0, b_{0}\right) \cup\left(a_{0}, R\right)\right] ; \\ 0 & \text { if } t \in \bigcup_{l=1}^{j}\left(a_{l}, b_{l}\right) \cup\left(0, b_{0}\right) \cup\left(a_{0}, R\right),\end{cases}
$$

For $\zeta \in B V(\mathbf{R})$ and $t_{0} \in \mathbf{R}$ the equality

$$
\int_{\left\{t_{0}\right\}}|D \zeta|=\left|\zeta^{+}\left(t_{0}\right)-\zeta^{-}\left(t_{0}\right)\right|
$$

is known (refer to [7, Proposition 2.8]). Taking this equality and (7), (9), we infer

$$
\begin{align*}
\int_{\mathbf{R}^{+}}\left|D f_{j}\right| & =\int_{\mathbf{R}^{+} \backslash\left[\cup_{l=1}^{j}\left[a_{l}, b_{l}\right] \cup\left(0, b_{0}\right] \cup\left[a_{0}, R\right)\right]}\left|D u_{\xi}\right|+\sum_{l=1}^{j}\left(\left|u_{\xi}^{-}\left(a_{l}\right)\right|+\left|u_{\xi}^{+}\left(b_{l}\right)\right|\right) \\
& =\int_{\mathbf{R}^{+} \backslash\left[\cup_{l=1}^{j}\left[a_{l}, b_{l}\right] \cup\left(0, b_{0}\right] \cup\left[a_{0}, R\right)\right]}\left|D u_{\xi}\right|+\sum_{l=1}^{j}\left(\int_{\left\{a_{l}\right\}}\left|D u_{\xi}\right|+\int_{\left\{b_{l}\right\}}\left|D u_{\xi}\right|\right) \\
& =\int_{\mathbf{R}^{+} \backslash\left[\cup_{l=1}^{j}\left(a_{l}, b_{l}\right) \cup\left(0, b_{0}\right) \cup\left(a_{0}, R\right)\right]}\left|D u_{\xi}\right| \leq \int_{\mathbf{R}^{+}}\left|D u_{\xi}\right| . \tag{10}
\end{align*}
$$

Since from (5) $\lim _{j \rightarrow \infty} f_{j}=u_{\xi}-v_{\xi}$ pointwise in \mathbf{R}^{+}and $\left|f_{j}\right| \leq u_{\xi}$ in \mathbf{R}^{+} for each $j \in \mathbf{N}$, with the aid of the dominated convergence theorem we have $\lim _{j \rightarrow \infty} f_{j}=u_{\xi}-v_{\xi}$ in $L^{1}\left(\mathbf{R}^{+}\right)$. Thus, by the lower-semicontinuity of the total variation measure (see [18, Theorem 5.2.1]), we obtain by letting $j \rightarrow \infty$ in (10) that

$$
\begin{equation*}
\int_{\mathbf{R}^{+}}\left|D\left(u_{\xi}-v_{\xi}\right)\right| \leq \int_{\mathbf{R}^{+}}\left|D u_{\xi}\right| . \tag{11}
\end{equation*}
$$

Consequently, (11) implies

$$
\int_{\mathbf{R}^{+}}\left|D v_{\xi}\right| \leq \int_{\mathbf{R}^{+}}\left|D u_{\xi}\right|+\int_{\mathbf{R}^{+}}\left|D\left(u_{\xi}-v_{\xi}\right)\right| \leq 2 \int_{\mathbf{R}^{+}}\left|D u_{\xi}\right|<+\infty
$$

We now turn to the proof of (4). Denote for each $\xi \in \partial H$ and $t \in \mathbf{R}$, $\left(\chi_{U \cap H^{\circ}}\right)_{\xi}(t)=\chi_{U \cap H^{\circ}}(t, \xi)$. Then our aim is established if the equality

$$
\begin{equation*}
\int_{\mathbf{R}^{+}}\left|D v_{\xi}\right|=\int_{\mathbf{R}}\left(\chi_{U \cap H^{\circ}}\right)_{\xi}\left|D u_{\xi}\right| \quad \text { for } \xi \in \partial H \backslash \mathcal{N} \tag{12}
\end{equation*}
$$

will be shown, because by Theorem A the function

$$
\xi \mapsto \begin{cases}\int_{\mathbf{R}}\left(\chi_{U \cap H^{\circ}}\right)_{\xi}\left|D u_{\xi}\right| & \text { if } \xi \in \partial H \backslash \mathcal{N} \\ 0 & \text { if } \xi \in \mathcal{N}\end{cases}
$$

is known to be \mathcal{L}^{n-1}-integrable on ∂H. Let us show (12). Fix $\xi \in \partial \backslash \mathcal{N}$ arbitrarily. As usual we only show the case (6b). Let $\left\{\left(a_{l}, b_{l}\right)\right\}_{l=0}^{\infty}$ be as in (6b). Set for $j \in \mathbf{N}$

$$
g_{j}(t)= \begin{cases}u_{\xi}(t) & \text { if } t \in \bigcup_{l=1}^{j}\left(a_{l}, b_{l}\right) \cup\left(0, b_{0}\right) \cup\left(a_{0}, R\right) ; \\ 0 & \text { otherwise } .\end{cases}
$$

Then, $\lim _{j \rightarrow \infty} g_{j}=u_{\xi}$ pointwise in $U \cup \mathbf{R}_{\xi}^{+}$, and therefore by noticing that $0 \leq g_{j} \leq \operatorname{essup}_{\Omega} u^{0}$ in $U \cap \mathbf{R}_{\xi}^{+}$we have $\lim _{j \rightarrow \infty} g_{j}=u_{\xi}$ in $L^{1}\left(U \cap \mathbf{R}_{\xi}^{+}\right)$. Hence, from the lower semi-continuity of the total variation measure

$$
\begin{equation*}
\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D u_{\xi}\right| \leq \lim _{j \rightarrow \infty} \int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right| \tag{13}
\end{equation*}
$$

On the other hand, for each $j \in \mathbf{N}$

$$
\begin{equation*}
\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right|=\int_{U_{i=1}^{j}\left(a_{l}, b_{l}\right) \cup\left(0, b_{0}\right) \cup\left(a_{0}, R\right)}\left|D u_{\xi}\right| \leq \int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D u_{\xi}\right| . \tag{14}
\end{equation*}
$$

From (13) and (14)

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right|=\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D u_{\xi}\right| \tag{15}
\end{equation*}
$$

Since by make use of (7) and (9)

$$
\begin{align*}
\int_{\mathbf{R}^{+}}\left|D g_{j}\right| & =\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right|+\sum_{l=0}^{j}\left(\left|u_{\xi}^{+}\left(a_{l}\right)\right|+\left|u_{\xi}^{-}\left(b_{l}\right)\right|\right) \\
& =\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right| \tag{16}\\
& =\int_{u_{l=1}^{j}\left(a_{l}, b_{l}\right)}\left|D u_{\xi}\right|=\int_{U_{l=1}^{j}\left(a_{l}, b_{l}\right)}\left|D v_{\xi}\right| \leq \int_{\mathbf{R}^{+}}\left|D v_{\xi}\right|
\end{align*}
$$

and $\lim _{j \rightarrow \infty} g_{j}=v_{\xi}$ pointwise in \mathbf{R}^{+}, we are able to conclude by the same argument leading to (15) that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\mathbf{R}^{+}}\left|D g_{j}\right|=\int_{\mathbf{R}^{+}}\left|D v_{\xi}\right| . \tag{17}
\end{equation*}
$$

(16) also tells us that

$$
\int_{\mathbf{R}^{+}}\left|D g_{j}\right|=\int_{U \cap \mathbf{R}_{\xi}^{+}}\left|D g_{j}\right|
$$

and therefore from (15) and (17) we arrive at our desired result (12).

Lemma 2. With the hypothesis of Lemma 1, we have the equality

$$
\int_{F \cap H^{\circ}}|D v|=0 .
$$

Proof. Let the notation U, u_{ξ}, v_{ξ} and $\left(\chi_{F \cap H^{\circ}}\right)_{\xi}$ be defined as in Lemma 1. It suffices to show

$$
\int_{F \cap H^{o}}\left|D_{i} v\right|=0 \quad(i=1, \ldots, n)
$$

For each $\xi \in \partial H$,

$$
\begin{align*}
\int_{\mathbf{R}^{+}}\left|D v_{\xi}\right| & =\int_{\mathbf{R}_{\xi}^{+} \cap U}\left|D v_{\xi}\right|+\int_{\mathbf{R}_{\xi}^{+} \cap F}\left|D v_{\xi}\right| \tag{18}\\
& =\int_{\mathbf{R}_{\xi}^{+} \cap U}\left|D u_{\xi}\right|+\int_{\mathbf{R}_{\xi}^{+} \cap F}\left|D v_{\xi}\right|
\end{align*}
$$

Let \mathcal{N} be a \mathcal{L}^{n-1}-null set as in the proof of Lemma 1. Then by recalling (12) in the proof of Lemma 1, we infer from (18) that

$$
\begin{equation*}
\int_{\mathbf{R}_{\xi}^{+} \cap F}\left|D v_{\xi}\right|=0 \quad \text { for } \xi \in \partial H \backslash \mathcal{N} . \tag{19}
\end{equation*}
$$

Since from Lemma 1 v $v \in\left(\mathbf{R}^{n}\right)$, we are able to apply Theorem A in order to obtain

$$
\begin{aligned}
\int_{F \cap H^{\circ}}\left|D_{1} v\right| & =\int_{\mathbf{R}^{n}} \chi_{F \cap H^{\circ}}\left|D_{1} v\right| \\
& =\int_{\partial H} d \mathcal{L}^{n-1}(\xi) \int_{\mathbf{R}}\left(\chi_{F \cap H^{\circ}}\right)_{\xi}\left|D v_{\xi}\right| \\
& =\int_{\partial H} d \mathcal{L}^{n-1}(\xi) \int_{\mathbf{R}_{\xi}^{+} \cap F}\left|D v_{\xi}\right|
\end{aligned}
$$

Thus, we establish by (19) our assertion for $i=1$. The result follows in the corresponding way for $i=2, \ldots, n$.

Let $\mathcal{A}=\left\{\xi \in \partial H \mid \xi+t \vec{e}_{1} \in F\right.$ holds for a certain $\left.t \geq 0\right\}$, and for each $\xi \in \mathcal{A}$ we set $l_{\xi}=\min \left\{t \in \mathbf{R} \mid \xi+t \vec{e}_{1} \in F\right\}$. Notice here that the minimum is
attained because the set $\left\{t \in \mathbf{R} \mid \xi+t \vec{e}_{1} \in F\right\}$ is compact (see Remark). Let $\mathcal{A}_{+}=\left\{\xi \in \mathcal{A} \mid l_{\xi}>0\right\}$ and $\mathcal{A}_{0}=\left\{\xi \in \mathcal{A} \mid l_{\xi}=0\right\}$. Then, we in particular notice that $\mathcal{A}_{0}=\partial H \cap F$.

The last lemma of this section asserts an inequality which will be a keyestimate in the proof of main theorem of this paper:

Lemma 3. Let v be the function defined as in Lemma 1. Then we have

$$
\int_{F \cap\left[\mathcal{A}_{0} \times \mathbf{R}\right]}\left|D_{1} u\right| \geq \int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}} .
$$

Proof. Let $\mathcal{N} \subset \partial H$ be the \mathcal{L}^{n-1}-null set which is obtained by applying Theorem A to $w=u$ and $k=1$. Fix $\xi \in \mathcal{A}_{0} \backslash \mathcal{N}$ arbitrarily. In particular, from the proof of Lemma 1 it holds that u_{ξ} and v_{ξ} belong to $B V(\mathbf{R})$. Let us define

$$
\delta_{\xi}:=\sup \left\{t \geq 0 \mid[0, t]_{\xi} \subset F\right\} .
$$

We here remark that δ_{ξ} is definite since $\xi \in \mathcal{A}_{0}$, and that $\left[0, \delta_{\xi}\right]_{\xi} \subset F$ for the compactness of F. We shall assert

$$
\begin{equation*}
u_{\xi}^{+}\left(\delta_{\xi}\right)=0 \tag{20}
\end{equation*}
$$

Assume that $u_{\xi}^{+}\left(\delta_{\xi}\right)$ is positive. Then, by the same argument as for the proof of (7), there exists a positive number δ such that $\left(\delta_{\xi}, \delta_{\xi}+\delta\right]_{\xi} \subset H \backslash E_{u}$. By the maximality of F it must hold that $\left[0, \delta_{\xi}+\delta\right]_{\xi} \subset F$, which contradicts to the definition of δ_{ξ}. We thus have $u_{\xi}^{+}\left(\delta_{\xi}\right) \leq 0$. Taking the non-negativity of u (see (1)) into account, we are led to (20).

Now, we shall show the inequality

$$
\begin{equation*}
\int_{F \cap \mathbf{R}_{\xi}}\left|D u_{\xi}\right| \geq u_{\xi}^{-}(0) \tag{21}
\end{equation*}
$$

In case $\delta_{\xi}=0$, we are able to lead (21) as follows:

$$
\int_{F \cap \mathbf{R}_{\xi}}\left|D u_{\xi}\right| \geq \int_{\{0\}}\left|D u_{\xi}\right|=\left|u_{\xi}^{+}(0)-u_{\xi}^{-}(0)\right|=u_{\xi}^{-}(0),
$$

where the last equality follows from (20) with $\delta_{\xi}=0$. On the other hand, in case $\delta_{\xi}>0$, we establish (21) with the aid of the fundamental theorem of the
calculus for $B V(\mathbf{R})$-functions in the following manner:

$$
\begin{aligned}
\int_{F \cap \mathbf{R}_{\xi}}\left|D u_{\xi}\right| & \geq \int_{\left[0, \delta_{\xi}\right]}\left|D u_{\xi}\right| \\
& =\left|u_{\xi}^{+}(0)-u_{\xi}^{-}(0)\right|+\int_{\left(0, \delta_{\xi}\right)}\left|D u_{\xi}\right|+\left|u_{\xi}^{+}\left(\delta_{\xi}\right)-u_{\xi}^{-}\left(\delta_{\xi}\right)\right| \\
& \geq\left|u_{\xi}^{+}(0)-u_{\xi}^{-}(0)\right|+\left|\int_{\left(0, \delta_{\xi}\right)} D u_{\xi}\right|+u_{\xi}^{-}\left(\delta_{\xi}\right) \\
& \geq\left|-u_{\xi}^{-}(0)+\left(u_{\xi}^{+}(0)+\int_{\left(0, \delta_{\xi}\right)} D u_{\xi}\right)\right|+u_{\xi}^{-}\left(\delta_{\xi}\right) \\
& =\left|-u_{\xi}^{-}(0)+u_{\xi}^{-}\left(\delta_{\xi}\right)\right|+u_{\xi}^{-}\left(\delta_{\xi}\right) \geq u_{\xi}^{-}(0),
\end{aligned}
$$

where we used (20).
Since $u=v$ in H^{c},

$$
\begin{equation*}
u_{\xi}^{-}(0)=v_{\xi}^{-}(0) \tag{22}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
v_{\xi}^{+}(0)=0 \tag{23}
\end{equation*}
$$

is valid. In fact, when $\delta_{\xi}=0$, we infer from (20) and the inequality $u \leq v$ in Ω the desired result (23). When $\delta_{\xi}>0$, because $\left(0, \delta_{\xi}\right)_{\xi} \subset F$ holds, we have $v=0$ in $\left(0, \delta_{\xi}\right)_{\xi}$, and therefore we also in this case reach (23) by the definition of v_{ξ}^{+}. Coupling (22) and (23), we deduce from (21) that

$$
\begin{equation*}
\int_{F \cap \mathbf{R}_{\xi}}\left|D u_{\xi}\right| \geq\left|v_{\xi}^{+}(0)-v_{\xi}^{-}(0)\right|=\int_{\mathbf{R}} \chi_{\{0\}}(t)\left|D v_{\xi}\right| \tag{24}
\end{equation*}
$$

Due to Theorem A, we are able to integrate the both sides of (24) on \mathcal{A}_{0} by $d \mathcal{L}^{n-1}$, so that we obtain

$$
\begin{equation*}
\int_{F \cap\left[\mathcal{A}_{0} \times \mathbf{R}\right]}\left|D_{1} u\right| \geq \int_{\mathcal{A}_{0}}\left|D_{1} v\right| \tag{25}
\end{equation*}
$$

If we denote by $P_{i}(i=2, \ldots, n)$ the orthogonal projection: $P_{i}(z)=\left(z_{1}, \ldots, z_{i-1}\right.$, $\left.z_{i+1}, \ldots, z_{n}\right)$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{R}^{n}$, it holds that $\mathcal{L}^{n-1}\left(P_{i}\left(\mathcal{A}_{0}\right)\right)=0$ for $i=2, \ldots, n$. Therefore, with the help of Theorem A, we derive

$$
\int_{\mathcal{A}_{0}}\left|D_{i} v\right|=0 \quad \text { for } i=2, \ldots, n
$$

Hence, we have $\int_{\mathcal{A}_{0}}\left|D_{1} v\right|=\int_{\mathcal{A}_{0}}|D v|$. Moreover, since $\mathcal{L}^{n}\left(A_{0}\right)=0$, we have $\int_{\mathcal{A}_{0}}|D v|=\int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}}$. Combining these equality with (25), we are able to derive our desired result.

3. A priori estimate

For $u \in B V(\Omega)$, we denote by E_{u} the interior of the set $\Omega(u=0)$. For $z_{0} \in \mathbf{R}^{n}$ and an unitary vector $\nu_{0} \in \mathbf{S}^{n-1}$, let $H_{\nu_{0}}\left(z_{0}\right):=\left\{z \in \mathbf{R}^{n} \mid\left\langle z-z_{0}, \nu_{0}\right\rangle \geq\right.$ $0\}$. We designate by $\mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ the family of all connected components of the set $H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u}$ which have no points belonging to Ω^{c}. If we denote by $\mathcal{G}_{\nu_{0}}\left(z_{0}\right)$ the family of all connected components of $H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u}, \mathcal{F}_{\nu_{0}}$ can be described in the following way:

$$
\mathcal{F}_{\nu_{0}}\left(z_{0}\right)=\mathcal{G}_{\nu_{0}}\left(z_{0}\right) \backslash \bigcup\left\{\text { connected components of } H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u} \text { containing } x\right\}
$$

where the union is taken over all $x \in\left[H_{\nu_{0}}\left(z_{0}\right) \backslash E_{u}\right] \cap \Omega^{c}$.
Theorem 1. (A priori estimate) Let u be a minimizer for J in the class $B V(\Omega)$. Let $z_{0} \in \mathbf{R}^{n}$ and $\nu_{0} \in \mathbf{S}^{n-1}$. Then for each $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ the following estimate holds:

$$
\left.\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n} \leq \mathcal{L}^{n}\left(F \cap\left[F \cap \partial H_{\nu_{0}}\left(z_{0}\right)\right) \times \mathbf{R}\right]\right)
$$

where $\left(F \cap \partial H_{\nu_{0}}\left(z_{0}\right)\right) \times \mathbf{R}=\left\{\xi \in F \cap \partial H_{\nu_{0}}\left(z_{0}\right), t \in \mathbf{R}\right\}$.
Proof. We denote $H=H_{\nu_{0}}\left(z_{0}\right)$ for notational simplicity. Let v be the function defined as in Lemma 1. Then, owing to the assertion v is an admissible function, and so by the minimality of u, we have the inequality $J(u) \leq J(v)$. Since F is a compact subset of Ω whereas $u=v$ in $\Omega \backslash F$, it holds that $u=v$ on $\partial \Omega$ in the sense of L^{1}-trace. Consequently, we obtain

$$
\begin{equation*}
\int_{F} \sqrt{1+|D u|^{2}}+\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n} \leq \int_{F} \sqrt{1+|D v|^{2}} \tag{26}
\end{equation*}
$$

where we use the fact that $v=0$ on F. Since $\mathcal{A}_{0}=\partial H \cap F, \mathcal{A}_{0}$ is a closed set. Therefore $\mathcal{A}_{0} \times \mathbf{R}$ is closed and so $\sqrt{1+|D u|^{2}}$-measurable. Thus, by the additivity of measure

$$
\begin{aligned}
\int_{F} \sqrt{1+|D u|^{2}} & =\int_{F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]} \sqrt{1+|D u|^{2}}+\int_{F \cap\left[\mathcal{A}_{0} \times \mathbf{R}\right]} \sqrt{1+|D u|^{2}} \\
& \geq \mathcal{L}^{n}\left(F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]\right)+\int_{F \cap\left[\mathcal{A}_{0} \times \mathbf{R}\right]}\left|D_{1} u\right|
\end{aligned}
$$

We here adopt Lemma 2 to derive

$$
\begin{equation*}
\int_{F} \sqrt{1+|D u|^{2}} \geq \mathcal{L}^{n}\left(F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]\right)+\int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}} \tag{27}
\end{equation*}
$$

Coupling (26) and (27), we obtain

$$
\begin{equation*}
\mathcal{L}^{n}\left(F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]\right)+\int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}}+\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n} \leq \int_{F} \sqrt{1+|D v|^{2}} . \tag{28}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\int_{F} \sqrt{1+|D v|^{2}} & =\int_{F \cap \partial H} \sqrt{1+|D v|^{2}}+\int_{H^{\circ} \cap \partial F} \sqrt{1+|D v|^{2}}+\int_{F^{\circ}} \sqrt{1+|D v|^{2}} \\
& \leq \int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}}+\int_{H^{\circ} \cap \partial F}|D v|+\mathcal{L}^{n}(\partial F)+\mathcal{L}^{n}\left(F^{o}\right) \tag{29}\\
& =\int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}}+\int_{H^{\circ} \cap \partial F}|D v|+\mathcal{L}^{n}(F) .
\end{align*}
$$

Since F is closed, $\partial F \subset F$, and therefore we infer from Lemma 1 that

$$
\int_{H^{\circ} \cap \partial F}|D v| \leq \int_{H^{\circ} \cap F}|D v|=0 .
$$

This brings us from (29) to the estimation

$$
\int_{F} \sqrt{1+|D v|^{2}} \leq \int_{\mathcal{A}_{0}} \sqrt{1+|D v|^{2}}+\mathcal{L}^{n}(F)
$$

Combining this with (28), we obtain

$$
\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n} \leq \mathcal{L}^{n}(F)-\mathcal{L}^{n}\left(F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]\right),
$$

and by noticing that $F \backslash\left\{F \cap\left[\mathcal{A}_{+} \times \mathbf{R}\right]\right\}=F \cap\left[\mathcal{A}_{0} \times \mathbf{R}\right]=F \cap[(F \cap \partial H) \times \mathbf{R}]$ we arrive at our goal.

4. A convex property of the set E_{u}

Our aim is to lead a property on the shape of $E_{u}=[\Omega(u=0)]^{\circ}$ for a minimizer u of J. To begin with we proceed our estimate adding the condition n-dimensional Legesgue measure of $\partial \Omega(u>0)$ is zero.

Lemma 4. Let u be a minimizer of J. Assume that $\mathcal{L}^{n}(\partial \Omega(u>0))=0$. Then for any $z_{0} \in \mathbf{R}^{n}, \nu_{0} \in \mathbf{S}^{n-1}$ and $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$

$$
\int_{F} Q^{2} d \mathcal{L}^{n} \leq \mathcal{L}^{n}(F)
$$

Proof. From the hypothesis, $u>0$ holds \mathcal{L}^{n}-almost everywhere in $\Omega \backslash E_{u}$. Since $F \subset \Omega \backslash E_{u}, u>0$ holds \mathcal{L}^{n}-almost everywhere in F. Thus,

$$
\int_{F} Q^{2} \chi_{u>0} d \mathcal{L}^{n}=\int_{F} Q^{2} d \mathcal{L}^{n}
$$

and hence from Theorem 1 the desired estimate follows.
Let us call E_{u} is convex in \mathcal{L}^{n}-measure when for any $z_{0} \in \mathbf{R}^{n}, \nu_{0} \in S^{n-1}$ and any $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ it holds that $\mathcal{L}^{n}(F)=0$. Here $H_{\nu_{0}}\left(z_{0}\right)=\left\{z \in \mathbf{R}^{n} \mid\left\langle z-z_{0}\right.\right.$, $\left.\left.\nu_{0}\right\rangle \geq 0\right\}$.

Theorem 2. (A convex property) Let $Q_{\min }^{2}=\operatorname{essinf}_{\Omega} Q^{2}>1$. If $\mathcal{L}^{n}(\partial \Omega$ $(u>0))=0$, then E_{u} is convex in \mathcal{L}^{n}-measure.

Proof. Let $z_{0} \in \mathbf{R}^{n}, \nu_{0} \in S^{n-1}$ and $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$. Then from Lemma 4 we directly have $Q_{\text {min }}^{2} \mathcal{L}^{2}(F) \leq \mathcal{L}^{n}(F)$. Therefore, remembering the assumption $Q_{\text {min }}^{2}>1$, we must have $\mathcal{L}^{n}(F)=0$.

We close this section by considering the sufficient condition for obtaining $F \cap\left(H_{\nu_{0}}\left(z_{0}\right)\right)^{o}=\emptyset$ instead of $\mathcal{L}^{n}(F)=0$ asserted in Theorem 2. We now in particular choose a representative u (refer to Section 2) such that

$$
\begin{equation*}
u\left(z_{0}\right)=\lim _{\rho \nmid 0} \frac{1}{\mathcal{L}^{n}\left(B_{\rho}\left(z_{0}\right)\right)} \int_{B_{\rho}\left(z_{0}\right)} u d \mathcal{L}^{n} \tag{30}
\end{equation*}
$$

holds for any $z_{0} \in \mathbf{R}^{n}$ at which the limit is finite-definite. The existence of such a representative is guaranteed by the well-known theorem due to Lebesgue.

Corollary. Suppose that $Q_{\min }^{2}=\operatorname{essinf}_{\Omega} Q^{2}>1$ and Ω is a convex domain. Let u be as above and assume that $\mathcal{L}^{n}(\partial \Omega(u>0))=0$. Let $z_{0} \in \mathbf{R}^{n}$ and $\nu_{0} \in \mathbf{S}^{n-1}$. If the cardinarity of elements of $\mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ is at most countable, then $F \cap\left(H_{\nu_{0}}\left(z_{0}\right)\right)^{\circ}$ is empty for any $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$.

Proof. Let $F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)$ and denote $H=H_{\nu_{0}}\left(z_{0}\right)$. Assume that $F \cap H^{o}$ is not empty and let $x \in F \cap H^{o}$. Then we shall show that there exists a positive number ρ_{x} such that $\mathcal{L}^{n}\left(B_{\rho}(x)(u>0)\right)=0$ for any $\rho<\rho_{x}$, where $B_{\rho}(x)(u>0)=\left\{z \in B_{\rho}(x) \mid u(z)>0\right\}$. For this purpose, suppose on the contrary that there exists a sequence $\left\{\rho_{j}\right\}_{j=1}^{\infty} \subset \mathbf{R}^{+}$with $\lim _{j \rightarrow \infty} \rho_{j}=0$ such that $\mathcal{L}^{n}\left(B_{\rho_{j}}(x)(u>0)\right)>0$ for each $j \in \mathbf{N}$. Then

$$
\begin{equation*}
B_{\rho_{j}}(x)(u>0) \cap \Delta \neq \emptyset \quad \text { for each } j \in \mathbf{N} . \tag{31}
\end{equation*}
$$

Here Δ is the connected component of $H \backslash E_{u}$ containing a point of Ω^{c}, where we notice that Δ is uniquely determined because of the hypothesis of convexity
of Ω. Suppose on the contrary that (31) does not hold. Then $B_{\rho_{j}}(x)(u>0) \subset$ $\bigcup_{F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)} F$ holds for sufficiently large $j \in \mathbf{N}$, and hence from the countability asuumption we deduce for such j that

$$
\mathcal{L}^{n}\left(B_{\rho_{j}}(x)(u>0)\right) \leq \mathcal{L}^{n}\left(\bigcup_{F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)} F\right) \leq \sum_{F \in \mathcal{F}_{\nu_{0}}\left(z_{0}\right)} \mathcal{L}^{n}(F)
$$

The right side is equal to zero owing to Theorem 2, and thus we have a contradiction. Now, from (31), $x \in \bar{\Delta}=\Delta$, which contradicts to the fact $x \in F$. We thus have proved the existence of ρ_{x} as described above. In particular, $u=0$ holds \mathcal{L}^{n}-almost everywhere in $B_{\frac{x_{x}}{2}}(x)$. Recalling here (30), we have $u=0$ everywhere in $B_{\frac{\rho_{x}}{2}}(x)$. As a result, we finally reach the contradiction $x \in E_{u}$, and therefore $F \cap \stackrel{2}{H}^{o}=\emptyset$.

Acknowledgement The author would like to express his gratitude to Professor Luigi Ambrosio who suggested him about Fubinization and the reduction to 1-dimensional argument.

References

[1] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.
[2] H.W. Alt, L.A. Caffarelli, and A. Friedman, Jet flow with gravity, J. Reine Angew. Math., 331 (1982), 58-103.
[3] H.W. Alt, L.A. Caffarelli and A. Friedman, A free boundary problem for quasi-Linear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 11 (1984), 1-44.
[4] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital., 3-B (1989), 857-881.
[5] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm. Pure Apple. Math., 43 (1990), 999-1036.
[6] L.A. Caffarelli and A. Friedman, Regularity of the Boundary of a Capillary Drop on an Inhomogeneous Plane and Related Variational Problems, Revista Mathemática Iberoamericana, Vol. 1 N. ${ }^{\circ} 1$ (1985), 61-84.
[7] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, 1984.
[8] P.R. Halmos, The decomposition of measures, Duke Math. J., 8 (1941), 388-392.
[9] K. Krickeberg, Distributionen, Funktionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen, Ann. Mat. Pura Appl., IV Ser., 44 (1957), 105-134.
[10] S. Omata, A free boundary problem for a quasilinear elliptic equation Part I: Rectifiability of free boundary, Differential and Integral Equations, 6 No. 6 (1993), 1299-1312.
[11] S. Omata and Y. Yamaura, A free boundary problem for quasilinear elliptic equations, Proc. Japan Acad. Ser. A Math., 21 (1990), 281-286.
[12] S. Omata and Y. Yamaura, A free boundary problem for quasilinear elliptic equations Part II: $C^{1, \alpha_{-}}$-regularity of free boundary, Funkcialaj Ekvacioj, Bolumo 42, numero 1 Aprilo (1999), 9-70.
[13] A.I.Vol'pert and S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Kluwer Academic Publishers, Dordrecht, 1985.
[14] Y. Yamaura, The regularity of minimizers of a radially symmetric free boundary problem, Ann. Univ. Ferrara. Sez. VII Sc. Mat., Vol.XXVIII (1992), 177-192.
[15] Y. Yamaura, A free boundary problem for the minimal surface equation, Boll. U.M.I., (7) 8-B (1994), 201-229.
[16] Y. Yamaura, A uniform estimate of the perimeter for minimizers of a free boundary problem, Rend. Mat. S., VII 13 (1993), 609-625.
[17] Y. Yamaura, The Jump-discontinuous Minimizer of a Free Boundary Problem, Proceedings of International Conference, Zhejiang University, June 1992.
[18] W.P. Ziemer, Weakly Differentiable Functions, GTM 120, Springer-Verlag, 1989.

Department of Mathematics,
College of Humanities \& Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550,
JAPAN
E-mail: yamaura@math.chs.nihon-u.ac.jp

