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Abstract. The purpose of this paper is to give the explicit form of Igusa local
zeta function associated to the quadratic form a:i‘7 + otz

0. Introduction

Let K be a finite algebraic extension of the p—adic field Q,, where p is a
rational prime number. Throughout this paper, we assume p # 2. We denote
by Ok the maximal compact subring of K. We fix a prime element mx once
and for all. We denote by Px = mx Ok the unique maximal ideal of Ox and
Ok = Ok — Pk the group of all units of Ox. The residue field Ok /Pk is a
finite field and its cardinarity is denoted by gq :

Ok /Px = F,.

Every a € K* can be uniquely expressed as

a=rr*@gey (a)

with ordk (o) € Z and ack () € O, and its absolute value is normalized by

| = gmomdx (),

Let Q(K*) be the group of all quasi-characters of K and 6% the group of all

characters of O . For every w € Q(K *), there exist uniquely s € C/ (%g;ﬂ) Z

and x € 63 such that
w(a) = |alkx(ack (a)),
then we write w = (s; x) and put Re(w) = Re(s). We call an w = (s;x) € Q(K*)

ramified or unramified quasi-character of K>, according to x # 1 or x = 1,
respectively.

1991 Mathematics Subject Classification: 11E08
Key words and phrases: Igusa local zeta function, quadratic form




182 H. HOSOKAWA

For a polynomial f(z) = f(z1,---,%,) in n-variables z1,---,z, with coeffi-
cients in K, we consider the following integral

Zx(@) = Zi(six) = [ f@licx(aex(f@)de (o= (50) € AEX)),

Ok

in which we denote by dz the Haar measure on K™ normalized by vol(O%) =
fo;; dr = 1. It is clear that Zk(w) is absolutely convergent for Re(w) > 0.
Morerover, J.-I. Igusa proved that Zg(w) has an analytic continuation to a
rational function of ¢ = ¢~* on the whole Q(K*) ([1], [3]), which is called Igusa
local zeta function associated to f(z) after J.-P. Serre, and denoted by the same
notation Zg (w).

Our purpose of this paper is to give the explicit form of Igusa local zeta
function associated to a quadratic form

4(@) =i+ +al

Theorem 1. Let Zk(s;x) be Igusa local zeta function associated to the
quadratic form q(z):

Zx(eix) = [ la(@)lix(acx (a(e)d,

K

then the explicit form of Zk (w) = Zk(s;Xx) is given as follows
(1) »n : odd

[ (1—g¢gH)(1-g™)

FErEnIeEr =1
siy) = — g~V yq(=1)[3]4-[%]
Zk(s;x) =4 (1—g¢q 1))i2,§-'11t)2 g (x = x2)
\ 0 (X # 1’ XZ)’
(2) n : even
(1—g~})(1 = x2(=1) 3¢~ %) =
(1—q~1t)(1 — x2(—1)5q~ 51) x=1

Zk(s;x) =
0 (x #1),

in which we denote by [z] the largest integer < x and X2 the non-trivial character
of O satisfying x2 = 1.
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In the unramified case, our result is already well-known ([2]), but in the
ramified case, the above theorem gives new result.

In §1, we give the proof for the case of x # 1, x2. In §2, we recall results
concering with Mellin transformation and Fourier transformation over K and,
by using these results, we prove the case of X = X2, in § 3.

1. The case of x # 1, x>

In this section, we shall give the proof for the case of y #1,x2.

Lemma 1. Let f(z) = f(z1,---,%,) be a polynomial with coefficients in K
and Zg (w) Igusa local zeta function associated to f(z). If the units group Og
acts on Ok and this action gives a measure-preserving analytic homeomorphism
from O% onto itself, satisfying

flu-z)=u"f(z) (u€Of)
with some positive intger m, then, for any x € Of satisfying x™ # 1, we have

Zk(s;x) = 0.

Proof. Since the action of O% on O% gives a measure-preserving homeo-
morphism from O% onto itself, we have , for u € Og,

A

On the other hand, the polynomial f(z) satisfies f(u - ) = u™f(z), hence we
have, for u € OF

. w(f(u-x))de = /on w(f(z))dz = Zg (w).

Joy 0o =t [ wts@)ts = xtw)™ 2o
or o%

K

with w = (5;x) € Q(K*). Therefore we have
Zg (w) = x(u)™ Zk () (u € Of, w=(s;x) € QKX)).
Hence, if x™ # 1, we have Zg (w) = Zg(s;x)=0. m

Now we shall be back to our situation. If we consider the usual action of 0}:,
on O%:

u-z = (uzy, -, uzy,) (vu€ Ok, z= (21, ,zn) € OF%),



184 H. HOSOKAWA

then we can see easily that, this action gives a measure-preserving homeomor-
phism and

a(u-2) = vq(2).

Therefore, by the above lemma, we have

Zk(s;x) =0 (x #1,x2)-

2. Mellin transformation and Fourier transformation

Our task is only to give the proof for the case of x = x2. For the completion
of our task, in this section, we shall recall some results concering with Mellin
transformation and Fourier trasnsformation over K. For these results, we refer
to , .

For a polynomial f(z) = f(z1,---,z,) with coefficients in K, we denote by
Cy the critical set of f(z), namely,

r € Cy <> gradf(z) = (aanl(:c), e ;TC(x)) = 0.

In this section, the following condition is assumed;

Cy C f7H0),

this condition is satisfied if f(z) is homogeneous.

We put U(i) = f~' = Cy for i € K. Let a be an element of U(3), that is
f(a) =i and further at least one partial derevative of f(z), say %(z), does not
vanish at a, then :
k(9 ) ;
9;(:0) = (—1) (%(x)) cdzi A ANdxpg A --- A da:,,|U(,')
is a well-defined non-vanishing regular (n — 1)-form around a € U(¢) and thereby
gives rise to a global regular and non-vanishing (n — 1)-form on U (z). Moreover,
9;(z) induces on U(i) a Borel measure |0;|x (cf. Chapter I1I1I-§1.3 in [1]).

For any ® in the Schwartz-Bruhat space of K™, the integral

Fa(i) = /U GO

defines a continuous function Fg on K*. When ® is the chracteristic function of
O¥%, the funnction Fg is simply denoted by F. We define the another function
F* on K, associated to f(z) by

F*(i) = - (@ f(z))dz (& € K),
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in which we denote by 1 a fixed additive character of K such that ¥ is non-trivial
on 71’}_(101{ and trivial on Ok and dz the Haar measure on K™, introduced in §1.

From Theorem 1.6 of Chapter III in [1], we have the following results. The
function F' can be uniquely extended to a continuous function on K and its
Mellin transform is nothing but Igusa local zeta function Z Kk assocated to f(z):

Zg(w) = /K F(f)w(i)di (we QK™)),

in which di is the Haar measure on K normalized by vol(Ok) = fOx di = 1.
Moreover, F* coincides with the Fourier transform of F:

F*(:*) :/ F(i)y(i*)di (* € K),
K
and hence, from the Fourier-inversion formula, we have

F(i):/KF*(i*W(—ii*)di (i € K).

3. The case of x = x»

In this section, we shall give the proof for the case of x = x2, by using the
relation of three functions F, F* and Z K, introduced in § 2.

For e € Z and x € OF, we put

X
gex = [ x(w(rtu)du
Ok
We denote by e, the smallest natural number e such that X is trivial on the set
1+ n% Ok, and put

Ix = ey, xs

then we have

Ix = x(—1)gy-1,  |gy|> =g~

([1]). Since we assume p # 2, we have e,, = 1 from Lemma 2.5 of Chapter III
in . Hence, by the above formulae, we have

(1) 2, = x2(-1)g7?

Let F* be the F*—function associated to the quadratic form g(z) :

Fri*) = [ ¢@*q(z))dz  (i* € K).

Ok
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The following lemma gives the explicit form of the function F™*.

Lemma 2.
(1) n : odd

Gt —ordg (i*) : positive even
K

F*(i*) = ¢ g3 gvax2 (1) [Blxa(ack (i) )i*|xF  (—ordx (i*) : positive odd)

w! (—ordg (i*) < 0),
(2) n : even

( |- =

4% | 2 (—ordg (i*) : positive even)

F*(@*) =14 xo(=D)Blli*|z%  (—ordk(i*) : positive odd)

[ 1 (—ordk (i*) < 0).

Proof. Since v is trivial on Ok, we have
F*'(i*) =1 (—orde(:*) <0),

hence we may consider the case of —ordg(i*) > 0.
We denote by F} the F*—function associated to a monomial z2:

Fy(i*) = Y(i*z?)de,
Ok
then we have
(2) F* (&) = Fg (&%)
On the other hand, J.-I. Igusa gives the explicit form of Fj(:*) :
|i*|;(% (—ordg (i*) : positive even)
Fi (i) = )
q% 95,x3 *(ack (1)) |3*| %2 (—ordk (i*) : positive odd)

((111) in [1]). We put these formulae into (2), then, by using (1), we have our
result. W

We shall consider the explicit form of the function F(i) associated to the
quadratic form ¢(z). For ¢ € K — Ok, the set U(i) N O% is empty. Hence, by



IGUSA LOCAL ZETA FUNCTION 187

the definition of F (i), we have F(i) = 0 (i € K — Ok) and so we may consider
F (%) for i € Ok. Since F is the inverse Fourier transform of F*, we have

F(i):/ F* (i*) (i) di*
K
_ / F* (") (—ii*)di* + / F* (%) (—ii®)di".
Ok K—-Og 7
By Lemma 2, F*(i*) = 1 for i* € Ok and ¢ is trivial on Og, hence we have

/ F (i*)tﬁ(—ii*)di* =1.
Ok

On the other hand, we have

S, P = 3 /O (5% (—ii*)ds

k21

#3 [ p F N

k>1

and, by putting the explicit form of F*(i*) given in into each partial
integral in the R.H.S. of the above formula, we obtain the following lemma.

Lemma 3. Fori € Ok, we put e = ordg (i) > 0 and u = ack (i), then we

have
(1) n: odd
Fi) =143 g kg .,
k>1
+ gX2X2(_1)[%]X2(_u)q[%] Z q—(n_z)kgﬂc—e—l,xgs

k>1
(2) n: even

F(i)=1+ Z q_(n—z)k.‘hk—e,l
k>1

+ )(2("1)[%]‘1"‘;—1 Z gD, g o1
k>1
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The following formulae are given by J.-I. Igusa

)

(1-¢7! (e<0, x=1)
J -~ (e=1, x=1)
3) Ge,x =
0 (e>1, x=1)
0 (e=ey, x#1)

((52) in [1]). We put (3) into the formulae in Lemma 3, then, by using (1), we
have the explicit form of F(3).

Lemma 4. Fori € Ok, using same notations in as Lemma 3, we have
(1) n : odd

1+ A, + Xz(_l)[%]xﬂu)q‘(gn__ﬁz)i"'[%]) (e : even)
F(i) =
14 Ay — g~ (4554) (e odd),

in which we put

PR €y [ ST )}

1-— q—(n—2)
(2) n : even
1+ B, 4+ Cpg—(3-1)e (e : even)
F(i) =
1+ B, - Dpg~(3-1)-1) (e : odd),

in which we put

_ (=g DA+ x2(=1)"¢""Y) _ay
Bﬂ - 1 _ q__(n_z) q )

Cn=An+x2(—-1)3¢" %
and

Dn — An _ q—(n—2) (_q—l +X2(_1)nqn—1(1 _ q—l)) )

As introduced in § 2, Igusa local zeta function Zg is the Mellin transform of
F. Hence we have

Z(six2) = /K F(0)liliexa(ack () di



IGUSA LOCAL ZETA FUNCTION 189

= —1p)¢ rtu alu)du
-2 @ /();F(K)x()d
L:even
-15)* ¢ u)au
@) * 2 / _ Pkt
L:0dd

We put the formulae in into (4), then, by using (3), we have

(1 — g~ V)x2(—1)[8]g~ (]
1__'_ q—nt2

(n : odd)
Zk(s;x2) =

0 (n : even),

and hence we complete the proof for [Theorem 1.
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