AN EXAMPLE OF A p-QUASIHYPONORMAL OPERATOR

By

ATSUSHI UCHIYAMA

(Received August 27, 1998; Revised November 20, 1998)

Abstract. We give a p-quasihyponormal operator T = U|T| such that (i) T is not q-quasihyponormal for all $q \in (0, p)$ and (ii) $|T|^s U|T|^t$ for s, t > 0 is not q-quasihyponormal for all $q \in (0, \infty)$, which is a counter example for the main results in [1], [2].

A bounded linear operator T on a Hilbert space \mathcal{H} is called p-quasihyponormal if $T^*\{(T^*T)^p - (TT^*)^p\}T \geq 0$ for p > 0.

Let $\{\varepsilon_n; n \in \mathbb{Z}\}$ be the canonical orthonormal basis of $\ell^2(\mathbb{Z})$ and p_n the projection of $\ell^2(\mathbb{Z})$ to $\mathbb{C}\varepsilon_n$. Using the shift operator S on $\ell^2(\mathbb{Z})$ with $S\varepsilon_n = \varepsilon_{n+1}$ and positive 2×2 Hermitian matrices A and B, we define operators H and T on $\mathbb{C}^2 \otimes \ell^2(\mathbb{Z})$ by

$$H = \sum_{n < 0} A \otimes p_n + \sum_{n \ge 0} B \otimes p_n$$

and

$$T = (1 \otimes S)H.$$

Denote the polar decomposition of T by U|T|. Then $U=1\otimes S$ and |T|=H. Since $|T^*|=U|T|U^*=\sum_{n\leq 0}A\otimes p_n+\sum_{n>0}B\otimes p_n$, it is easy to see that

$$T^*(|T|^{2p} - |T^*|^{2p})T = A(B^{2p} - A^{2p})A \otimes p_{-1}$$

for p > 0. Hence T is p-quasihyponormal if and only if $A(B^{2p} - A^{2p})A \ge 0$. In what follows we assume that A and B are of the form

$$\begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$,

respectively. Let f be a function on the half interval $(0, \infty)$ defined by

$$f(p) = \left(\frac{9^p + 1}{2}\right)^{\frac{1}{2p}}$$

Then it is strictly increasing.

1991 Mathematics Subject Classification: 47B20 Key words and phrases: p-quasihyponormal operator

Theorem 1. (i) T is p-quasihyponormal if and only if $\alpha \leq f(p)$.

(ii) If $\alpha = f(p)$, then T is not q-quasihyponormal for $q \in (0, p)$, but q-quasihyponormal for $q \in [p, \infty)$.

Proof. (i) Since

$$B^{2p} = \frac{1}{2} \begin{pmatrix} 9^p + 1 & 9^p - 1 \\ 9^p - 1 & 9^p + 1 \end{pmatrix},$$

it is easy to see that T is p-quasihyponormal if and only if $(9^p + 1)/2 - \alpha^{2p} \ge 0$. (ii) It is immediate from (i). Q.E.D.

Theorem 2. Let $T(s,t) = |T|^{s}U|T|^{t}$ for s,t > 0.

- (i) If T(s,t) is p-quasihyponormal, then $\alpha \leq f(s)$.
- (ii) If $\alpha = f(p)$ and $s \in (0, p)$, then T(s, t) is not q-quasihyponormal.

Proof. (i) Since

$$T(s,t)^* (|T(s,t)|^{2p} - |T(s,t)^*|^{2p}) T(s,t)$$

$$= A^{s+t} \{ (A^t B^{2s} A^t)^p - A^{2(s+t)p} \} A^{s+t} \otimes p_{-2}$$

$$+ A^t B^s \{ B^{2(s+t)p} - (B^s A^{2t} B^s)^p \} B^s A^t \otimes p_{-1}.$$

Hence T(s,t) is p-quasihyponormal if and only if

$$(A^t B^{2s} A^t)^p - A^{2(s+t)p} > 0$$
, and $A^t B^s \{B^{2(s+t)p} - (B^s A^{2t} B^s)^p\} B^s A^t > 0$.

The former inequality implies that $\alpha \leq f(s)$.

(ii) It is immediate from (i).

Q.E.D.

Remark. The range of operator T is closed.

Acknowledgements

I am grateful to Professor Takashi Yoshino for his valuable comments and I would also like to thank the editor Yoshiomi Nakagami for his helpful and kind suggestions.

References

- S.C. Arora and P. Arora, On p-quasihyponormal operators for 0 Math. J. 41 (1993), 25-29.
- [2] Mi. Young. Lee and Sang. Hun. Lee, Some generalized theorems on p-quasihyponormal operators for 0 , Nihonkai Math. J. 8 (1997), 109-115.

Mathematical Institute, Tohoku University, Sendai 980-8578 JAPAN E-mail: uchiyama@math.tohoku.ac.jp