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Abstract. Let Q be a bounded domain in R¥Y with smooth boundary I, T is
a positive real number, p : [0,T] x & — R is a real function. In this paper, we
consider the existence of solutions for the following nonlinear unilateral problem:

p(t, )uee(t,z) — ||Vu(t,:z:)||§7Au(t,:z;) > |u(t, )|* u(t,z) on [0,T] x £,
u(t,z) = 0 on Z =[0,T]x T,
u(0,z) = uo(z), ut(0,z) = u1(x) on Q,

where A is the Laplacian in R¥, o > 0 and v > 1.

1. Introduction

Let 2 be a bounded domain in RV with smooth boundary T, T is positive
real number, p : [0,7] x @ — R is a real function. In this paper, we consider the
nonlinear unilateral problem:

p(t, z)un(t, z) — ||Vu(t, 2)||3 Au(t, z) > |u(t,z)|* u(t,z) on [0,T] x £,
(1.1) u(t,z) =0on »_ =[0,T]x T,

u(0,z) = uo(z), u(0,z) = u;(z) on Q,

where A is the Laplacian in RN, a > 0 and v > 1.
Equation (1.1) has its origin in the mathematical description of small am-
plitude vibrations of an elastic string. Many authors have studied about the

existence and uniqueness of solutions of (1.1) by using various methods.
When p = 1, the unilateral problem (1.1) was studied in Ono , Brito ,

Ikehata [10], Yamada ([13], [14]) and the references therein.
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In this paper, we will study the existence and uniqueness of solutions of
(1.1) in the degenerate case for bounded domains Q C RY without geometrical
restrictions and p is a positive function by using Galerkin method.

The contents of this paper are as follows; In section 2, we present the prelim-
inaries and some lemmas and we give the statement of main theorem. In section
3, we deals with a priori estimates for solutions of (1.1) and prove our Theorem.

2. Preliminaries

We denote by Q a bounded open set of RY with a smooth boundary T', T is
a positive real number, Q is the cylinder [0,T] x @ and ) = [0,T] x T is the
boundary of Q. The norm and inner product in the Hilbert space L%(Q2) are

denoted by
]z = ( /n |u(a:)|2da:)% and (u,v) = /n u(z)v(z)dz.

Let X be a Banach space. For a fixed p, 1 < p < oo, LP(0,T; X) denotes the
space of LP-integrable functions from [0, T] into X, which is a Banach space with
the norm

T 3
llullLeo,7;x) = (/0 ||u(t)||§(dt) , 1<p<oo,
||%|| Lo (0,7,x) = esssup [Ju(®)||x-

By W™?(Q), we represent the usual Sobolev space and Wy "' (Q2) denotes the
closure of C°(R2) in W™P(Q). The dual space of Wy ?(Q) is indicated by
W~™2(Q), where ¢ > 1 such that > + ;11- =1.

For p = 2, we give a special notation, that is,

H™(Q) = W™2(Q), HQ) = Wi*(Q), and H-™(Q) = (HF (@)

The norm and inner product in Hg () are denoted as follows:

Ou (91)
(|Vul)Z = Z/ da: and ((u,v)) E/ 2. 63:,

For a real function h : @ — R, we put h~(z) = max{—h(z),0} and h*(z) =
max{h(z),0}, z € Q. Now, we introduce a closed and convex subset of wa(Q),

6__

K ={vewi*@)|1A¢|<1,$ > 0ae on o}
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and 8 : W24 Q) - W=%3%(Q) denotes the penalty operator defined by B(z) =
B1(z) + B2(z), z € W24(Q) where Bi(z) : W2%4(Q) — R defined by v —
(Br(2),v) = — [ 27 vde and Ba(z) : W2*(Q) = R defined by v — (B2(2),v) =
Jo(1 = |Az|?)~ AzAvdz. We note that (see [5])

(¢) B is a monotone operator;
(B(u) — B(v),u — v) > 0 for all u,v € WZ*(Q).

(i4) B is a hemicontinuous operator; the map A — (B(u + Av), w) is continuous
in R.

(i) B(S) is bounded in W~23(Q) for all bounded set S in W2*(Q).

(tv) B(u) =0 if and only if u € K.

We first prepare the following well known lemmas which will be needed later.

Lemma 2.1. (Sovolev-Poincaré [2]) If either 1 < a < co(N = 1,2) or
1< a< 555(N > 3), then there is a constant C, such that

lullat2 < Cu||Vu|lz for u € HE(DQ).

In other words, C, = sup {”-’"‘-lvlf'”);l | v € H}(Q), u# 0} is positive finite.

Lemma 2.2. (Gagliardo-Nirenberg [2]) Let 1 < r < ¢ < oo and p < g¢.
Then the inequality

lullwes < Cllullty msllulls=® for W™?(Q) 0 L7 ()

-1
holds with some C > 6 and ¢ = (% + i— - ;—) (%+ } - }1—,) provided that
0<6<1 (weassume 0 <6 <1 ifqg=o00.).

For further a priori estimates, we need the generalized Gronwall’s inequality
which is due to Bihari and Langenhop.

Lemma 2.3. ([1], [6) Ifk>0andc > 0 are constants and 9(s) is positive,
nondecreasing for s > 0, then the inequality

2.1) s)sk+e | ' B(5)9(6(s))ds

implies that ¢(t) < G~(c [y ¥(s)ds), where G(n) = [ oyds, n> k> 0.
If g(s) = s, then the inequality (2.1) is just the usual Gronwall’s inequality
and Lemma 2.3 reads as follows:

¢(t) < k+ cfo (s)p(s)ds implies that ¢(t) < kexp (c fot w(s)ds), t>0.
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Now, we indicate the following proposition which is needed to obtain conver-
gence resulls.

Lemma 2.4. (Teman [12]) Let X and Y be two Banach spaces such that
X C Y with a continuous injection. If a function ¢ belongs to L°(0,T; X) and

is weakly continuous with values in Y, then ¢ is weakly continuous with values
in X.

Lastly, the following useful imbedding result is needed.

Lemma 2.5. ([2]) Suppose m(Q) = [ dzx < oo and1 <p< g < oo If
u € LI(Q), then u € LP(R) and ||ull, < m(Q)# ™ |jullq. Hence LI(Q) < LP(R).
Finally, if u € LP(Q) for 1 < p < oo and if there is a constant k such that for
all such p, ||u|lp < k, then u € L*(Q) and ||u||lc < k.

Now, we consider the following initial value problem:
p(t)ue — |Vu(@)||37Vu(t) > |u(t)|* u(t), t € [0,T],
u(0) = uo, ut(0) = u,

where T'> 0 and v > 1.

Firstly, let us define the potential and energy associated with the problem
(1.1) by

(2.2)

I = gy IV - et
and E(u) = £ [lW[lf + J(w).
We introduce the I-positive set
W = {u € H3(Q) N H*(Q) | I(u) > 0} U {0},
where I(u) = [|Vull3"* — [|ul|3t3

then we can state main Theorem.
Lemma 2.6. Let p € C! be a real nonincreasing continuous function such

that 0 < py < p(t) for allt € [0,T). Ifug €W, u; € int (K) and 2y < a < 745
(0 < a < oo if N = 1,2), then there exists a unique function u such that :

u € L(0,T; Hi(Q) N H2(Q)), v € L*0,T; Wa*(Q)),

2.3

23) u"” € L*°(0,T; L3(R)), u'(t) € K a.e. on [0,T]

and

(2.4) (puss — ||Vu||3? = |u|®u,v — u') > 0 for allv € K a.e. on [0,T],

u(0) = ug, ©(0) = u,.
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3. Penalized problem and proof of the existence theorem
The result on the penalized problem is given by the following theorem.

Theorem 3.1. Assume that the assumptions of Theorm 2.6 are hold. Then
for each € € (0,1), there exists a function u. such that

ue € L(0,T; H}(Q) N H2(Q)), ul. € L4(0, T; W2*(Q)),

3.1) u/ € L*(0,T; L*(R))

and

(5.2 (pu — |Vuell3” Aue — Jue|*ue,v) + L(B(ul),v) = 0 for all u € WE4(Q),

u(0) = uo, ul(0) = u;.

Note that if u,(t) is solution of (3.2), then u.(t) satisfies

(3.9 B(uc(t) < Bluo) + 5 [ #/(o)lut(e) I do.

In fact, taking v = u/(t) in (3.2), then we have

d 1
i (P + 52—

+ ;(ﬂ(ué(t)), ue(t)) = %P’(t)HUL(i)Ili

Integrating it from 0 to ¢, from the definition of E(u.(t)) and the fact that
(), = [ )P de
+/ (1-[Au?)” |Aul)? de
o

1Vue (2)[[30FY) —

1 @
g ulzt?)

<0,
we easily obtain [(3.3).
From and the fact that p is nonincreasing, we get
(3.4 B(ue(t)) < E(uo), 2 0.

Next, to obtain a priori bound, we need the following result.

Lemma 3.2. Assume that either 1 < a < oo(N = 1,2) or1 < a <
N 2(N > 3) is satisfied. Let uc(t) be the solution of (3.2) with ug € W and
uy € H3(Q). Ifug and u; are sufficiently small in the sense that

(3.5) e (2(0‘ Z 2_)(;;” 1 E(u0)> S
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then uc(t) € W on [0,T), that is,
Vel ;7 = lluellZd3 > 0 on [0,7).
Here, E(uo) = 3p(0)||ua|l* + J (uo).
Proof. Since I(up) > 0 and u(t) is continuous in ¢,

(3.6) I(u(t)) > 0 for some interval near ¢t = 0.

Let tmax be a maximal time (possibly tmax = T') when (3.6) holds on [0, tmax)-
Then J(u.(t)) satisfies

T(ue(t)) = 2(7+1)(2§+2)HW()|| ) — I(u(®)

-2y Vu, 2(’1r+1)
> t tma.x .

Thus from and (3.7), we have on [0, ¢max)

(3.7)

Va3 < 22D 0 o
2(y+ 1) (a+2)
o — 2y

< 2y + 1)(a+2)
- o — 2y
It follows from the Sobolev-Poincaré’s inequality, [3.5) and [3.8) that

llue@IZ13 < CI*2 (I Vue()]I5+

(3.8) E(us(t))

E(ug).

= C&F2 (| Vue (b)[|3~ || Vue () [|120FY

. g
< ozv2 (AR 5y ) ™ o, e+

< IVue(@)|ZY on [0, tmax).

Therefore, we get I(uc(t) > 0 on [0,tnax). This is implies that we can take
tmax = T'. This ends the proof of [Lemma 3.2. O

Proof of Theorem 3.1. We shall use the Galerkin’s approximation. Let
(wj)jen be a basis of W;"*(Q) which is orthonormal in L2(£2). For each m € N,
we consider Uem (1) = ZT=1 gejm(t)wj, the solution for the following system:

(POt (2), ) = (I 0em (D137 At (8), )

(3.10) 1
+ (B (1)), ) = tem ()| (tem (1), w), w € Vin



QUASILINEAR WAVE EQUATION 167

(= 'z% and " = %) with the initial conditions,

Uem (0) = Ugemn = Z(uo, w;) — up strongly in H}(Q) N H*(Q),
(3.11) =1
ul (0) = Uyers = E(ul,wj) — u; strongly in H}(Q),
j=1

where V,;, is the m-dimensional subspace of W2'*(Q) spanned by
{w1,wa, -, wy}.

Therefore we can solve the system (3.10) by a Picard’s iteration method.
Hence the system (3.10) has a unique solution on some interval [0, T.,,) with
0 < Tem < T. Note that uey,(t) is in the C2-class. We shall see that u,,, (t) can
be extended to [0,7]. We can utilize a standard compactness argument for the
limiting procedure, which allows us to employ the energy method for smooth
solution u¢(t) of the problem (3.2).

A Priori Estimates I

Taking w = ug,,(t) in (3.10) and then integrating it from 0 to ¢, t < Tep,
then we have

1 1 1
5 (Ol (2)13 Ve O = ——lluem (11512

2+ 2(v+1)
1 t
612+ [ (o)) (o)
1 t
= E(wo) + 5 [ #/®)lluimn(s) ds
Now, applying the similar method as the one for Lemma 3.2, I(uem(t)) > 0 on

[0, Tem). Thus we have

1 o — 2y
oo [(em(®) + 2(a+2)(v+1)

a— 2y 2(v+1)
> .

| J (tem (1)) = |V ttern (2) 57

(3.13)

From the assumptions on p, we have

1 t
(3-14)  pollucm (I < p(#)lluem ()13 and 5/0 P (B)lluem (s)lI7 ds < 0.
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Thus (3.13) and (3.14) imply that

o — 2y
a+2)(y+1

42 [ B (6), o (5))do < Buo).

1
3 Polluem (I + 37 IV e @3+

(3.15)

Now, we have
(3.16) At = 1< 2(1 = At ) A, .
Thus from (3.16), we get

1 ¢ ’ ’ _ 1 i / - / 2
2 ) (o) hom s = 2 [ [ (ut(0)) A (57 dnd
1 t
(3.17) 2 [ (0= 180 (0)) Nt (5) s
0JQ
1 t
2 5 [ [ 08w - deds.
The inequality (3.15) and (3.17) give
‘ t
18mlEaiqy = [ [ 18U (6)* dods
< 2E(ug)e + Ké?z

we choose constants Cy, > 0 and Cy > 0 such that E(uo)e < Cy and %m(Q)T <
Cy¢e. Then we have

(3.18) 1A% |11y < Ca(T),

where C3 = Cl + Cg.
Also, (3.15) implies

(3.19) ||ﬂ(uem)IIL§(O,T;W_=.?) < Cy(T).
On the other hand, from (3.18) and [Lemma 2.5, we get
td
8t (13 = 18uoenlly + [ Z-lAun (5 d

¢
d
= ||Auofm||§ + 2/ I (Auem (s), Aul,, (s))ds
0

t
d
< (| Atoem||7 + 2/0 75 18uem ()l g | Aug, (s)]]4 ds
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3 [t d s 1 [t
<llauenlf + 3 [ d—uAuem<s)n;ds+ 5 | NAun (o)l ds

Cs i 3
< Auoanlly + 52 + 5m(@)} [ 1Auen ()14 ds,

where we have used Holder s inequality and Young’s inequality.
Here, we set g(s) = s% on s > 0. Then we have

t
1A (@1 < Cs + Ca [ (1Asan (5)12) ds,
where Cs = [|Augem|l} + §* and Cs = 3m(Q)4.

Note that g(s) is continuous and nondecreasing on s > 0. By applying
Bihari-Langenhop’s inequality, we obtain

y
lAuem (t)I3 < G™1(Cst), where G(y) =/ Lo\ls, y>Cs >0
cs 9(5)
and so
1
(3.20) 1A (113 < 3 (3¢ + C’GT) = Co(T).

Moreover, it follows from Lemma 2.1 and 2.5 that
IVterm (@)ll2 < Cll Augn, ()2
(3.21) < | Auem (t)[]4
< Cs(T).

A Priori Estimates II

Firstly, we note that from assumption on P

pollucm ()13 < p(0)(|ucm (0)113

and since %jem -—) u1 € int(K), we can assert that ujem € K for m large enough.
Then (B(uiem), ulh,(0)) = 0. Hence, taking ¢ = 0 and w = u/,(0) in (3.10), we
have

Polluem (0113 < [1Vterm (0)1137 | Atterm (0) 2| (0) 12
+ ltem Q)15 1 (O) -
Thus
(3-22)  polluc (0)llz < 1V tem (01157 | Atem (0)]l2 + [[uem (0)lI5hL -
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Since a < ﬁ < ﬁ, it follows from Gagliardo-Nirenberg inequality that

(3.23) [uem (O) I3ty 1) < CllAUem (0)[IElluem (0)lI27° < Co(T)
for some constant Cy(T"). Hence (3.15), (3.20), (3.22) and imply that
(3.24) lluem (O)lz < C1o(T),

where C;¢ does not depend on m and e.
Let us define

Pr(8) = 3 (tem (t + 1) = vem (8)
Fu(8) = 3 (I (& + W) (2 + 1) = ltem (D1 (1)
on(®) = 1 (p(t + ) = p(1)

M (1) = 3 (IVem(t + B)IP? = [Vetem OIP).

(3.25)

Therefore, from (3.10), we have
(3.26)
(p(t + BY¥3 (2), Y1 (2)) + (o () uem (2), ¥4 () + —IIVuem(t +h)|13 dtIIWh( )IIE
+ F(ﬂ(ﬂ’em(t +h)) = B(tem (2), Uem (t + B) — u (2))
= —(Mh(t)Auem (1), ¥4(2)) + (fn(2), ¥4 (2))-

Hence using monotonicity of 3, we have

2p(t+ h) % I|¢h(t)llz + (Pa (B uem (1), ¥4 (1) + IIVuem(t+ h) IIV%( t)lI2

< (M () Atiem (2), Y1, (1) | + (Fa (2), ¥4, (2))-

“2 dt

Letting h tend to zero, then we have
(3. 27)
1 d
( )3 IIu O + (¢ ()t (8) + SV tem B Z Ve (1113

< | (173 O At (0, 1)) |+ (i m O1 m (), (8 )
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Integrating (3.27) from 0 to ¢, then we have

1 1 [t d
=p(t)|lul, (O3 + = / IV them (8)1157 5= Vsl (5|13 ds
2 2 0 ds

< 52Ol O + 5 max (17 O1} [ i (9 s
¢ d o "
+/0t (:{s—(luem(S)l Uem(s))uem(s))
+ [ | (£ 075em D Sten (), )

On the other hand, taking into account (3.15), and (3.21), we can verify

that
t
I

(3.28)
ds

ds.

ds

(F5 17 e (B At (o), (5

=2y /0 IV ttem (8)[137~ % (Vttem (5), Vitlyn (8)) (Atiem (5), ulhy (5))ds

(3.29) t
< 2 /0 19 tkem ()12 [V ke (8) 21| Ve () 21l (8) > s

t
< Ou(T) [ Nt (6)la s
0

Now, Schwarz’s inequality implies that

(5 e )1 (5, (6)) = (o + 1)t ()1 (), 6

< (o + D)|||uem (5)|* tem ()2 llucm (s)]]2-
Ifa< Fz—-zy then we have

lIletem (8)1* wem (8)ll2 = l|uem (8)|Fe, e ()] gy

< Ol Vuem ()13 [ Vuem (5)ll2
< Clz(T).

3.30) [ (5 uam @1 vam(), 6 (9)) do < CialT) [ @l .
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On the other hand, we have after integration by parts

17 O 1
5.5 = IVt IV — [en OIS O

- 27/ IV tem ()17~ (Ve (8), Vsl (8)) 1|Vt (5) 13 dis.

However, we have

25 [ 1V tem (VBT (Tt (3, V(DT 5

-39 < 2y [ 19 uem O V(o) [
< C14(T)
and
(3.33) 0 < (IVuem (0)[13"1I VL, (0)113 < Cis(T).

Thus (3.31)-(3.33) imply that
IV tem (£)|127 1| Vet ($)]13 — C14(T) — Ci5(T)
t
d
< [ 190 O 7 (5 .
0 S
Thus from (3.28), (3.29), (3.30) and (3.34), we get

(3. 34)
2po||u O3+ = IIV'uem(t)II§”IIVuem(t)Hz

< Cuu(T) + Cus(T) + 2o 0Nt O)F + 5 g 1601 [ Il (o) s

te[0,T]

+ (Cu(T) + Ci3(T /llu (s)|]2 ds

< Cuo@) (1+ (o)l + 1 ()R )
Hence Bihari-Langenhop’s inequality implies that

(3.35) lugn ()2 < C12(T),

where C7 does not depend on m and e.
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Limiting process

It follows from immediately from estimates (3.15), (3.18), [(3.20), (3.21) and
(3.35) that there exist functions {u¢}, ¢ and a subsequence of u; which we
will denote by {uem } such that

(3.36) Uem — Ue in L(0,T; H3 (Q) N H3(Q)) weak®,
(3.37) ul,, = ul in L*(0, T; W2*(Q) weakly,

(3.38) ul,, = u. in L°°(0,T; L*(Q)) weak”,

(3.39) ul, = ul in L°(0,T; L*(Q)) weak",

(3-40) B(uly) = ¢ in L3(0,T; W=23(RQ)) weakly.

Using Aubin-Lions’ compactness lemma, we can extract from {uey,} a subse-
quence still denoted by {u,y,} such that

(3.41) Uem — Ue strongly in L2(0, T; HL(Q)),
(3.42) ug,, — u, strongly in L%(0,T; L*()).
Now, letting m — oo in (3.10), we can find that u satisfies the equation:
(p(t)uf (£), w) = (IIVuc(®)]|37 Aue(), w) + %(%W)
= |ue()|* (ue(t), w) a.e. on [0,T] for all w € W2*(Q).
It follows from that

Uem (0) = voem — ue(0) strongly in HJ ().

(3.43)

From (3.11), we get u.(0) = uo. Also, from [[3.42), we obtain
(uem (0) — ul(0), w) = 0 as m — oo for each w € H} (Q),
which together with (3.11) imply that
ul(0) = u;.
Finally, by means of monotonicity and hemicontinuity, we get
e = B(ul) in L¥(0,T;W=23(Q)).
This completes the proof of Theorem 3.1. O

Now we can prove theorem 2.6.
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Proof of Theorem 2.6. Let (¢,)nen be a sequence of real numbers such
that

O<ep,<lforallne N and lim ¢, = 0.

n—o00
For each n € N, we get a function which satisfies [Theorem 3.1. Since the
estimates were uniform on € and n, we can see that there exist a subsequence of
U, , again called u._, and a function u such that

ue L®(0,T; H Q) N H3(Q)), v € L*(0,T; W2*(Q)),
u"” € L*°(0,T; L*(RQ))

and
ue, — u in L*®(0,T; H3 (Q) N H%(R2)) weak”,
u, — u' in L4(0,T; Wg*(Q)) weakly,
(3.44) u. — v in L*°(0,T; L*(2)) weak™,

u” — u”in L*°(0,T; L*(2)) weak”,

€n

B(u,, ) — B(u') in L3(0,T; W=23%(Q)) weakly.

Thus, using monotonicity of S,
T
[ OO (0 = 19, (D17 Atk (1) = ey ()1 ey (0), 0 = i, (1))t
T
=-= [ (oL, 0), v - ui, )t
T
= = [ 60) - s, (), v, ()t
n Jo
1 [T ,
645 i /"T (B(0), (1) — u, ()t
> == [ (B, vlt) - ul, ()
1 [T _ ,
= = [ oo oo - v, o)

- /T/u Av(®)]?)" Av(®)A(u(t) — o, (1)) dedt > 0
for all v ; L{*I(O,T; WZ*(Q)) with v(t) € K a.e. on[0, T).
Letting n tend to oo, we have
(3.46) /0 T(p(t)U”(t) — IVu(@)[l3" Au(t) — [u(®)|* u(?), v — «/(2))dt > 0
for all v € L*(0,T; W2*(Q))with v(t) € Ka.e. on [0, T].
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Thus we get (2.4). Now, in order to prove u/(t) € K a.e. on [0,T], we observe
that from (3.15), '

118w, (s))“Lw(o,T;W‘°'3‘(n) < éenE(ug) foralln e N.
Since lim,,_, o €, = 0, letting n tend to oo, we have
B(ul ) = 0in L=(0,T; W-23(Q)).
From (3.44) and the previous convergence for B(u; ), we have
B(u) = 0in L®(0,T; W~23(Q))

which shows that u/(t) € K a.e. on [0,T).

We shall prove the uniqueness of the solutions of (2.2)-(2.3). Let u(t) and
v(?) be two solutions of (2.2)-(2.3) and w(t) = u(t) — v(t). Then w(t) satisfies
that

(P(Ow"(2) - IVa(IR Aw(t) - (ITu@IZ — ITo(OI12") Av(t
= ([u@1% u(®) = o()|* v(2)), w'(2))

<0

(3.47)
and w(0) = w'(0) =0.
Integrating the inequality (3.46) from 0 to ¢, then we have
1 1
27olle’ IR + 2 VeV ()3
t
S/O [IVu(s)12” = 1IV0()I137] 199()]l2lw! (5] ds
t
+ /0 Il [u(s)I* u(s) — |v(s)|* v(s)|l2llw'(5)l|2 ds
‘(4 2y 2
+ [ (G198 ) 17w(s)i3 ds.
0 S
Note that from mean value theorem,
[IVu(s)I13" = IVo(s)I15"] < Cra(T)(IVu(s) 137" + Vo (s) 12~ [Vew(s) Iz

and

d - /
ZIVu(s)II3" < Cro(T)IIVu(s) I3~ Ve (5)l-
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Also,for 1<a< 75 (1<a<xif N =1,2)

I u(s)|* u(s) — [v(s)[* v(s)ll2 < Cao(T)([[Vu(s)lIZ + [[Vu(s)lIZ)IVw(s)ll2-
Thus

Seollw (E + 2 ML) IV (2)3
< CioT) [ (IVu@IE7 +ITo(E) ) Vo(s)lllAv(e)allu! ()]s d
+Cua(T) [ V()9 6) [ Tu(s) B ds

+Czo(T)/0 (IVu(s)llg + Ve (e)lIE)IVw(s)llzllw'(s)2 ds.

By Holder inequality and Young’s inequality, we have

' (I3 + IVe(@)]; < Czl(T)/0 (I’ ()11 + [IVew(5)[13) ds.

Gronwall’s inequality implies that w = 0. This completes the proof of Theorem
26. O
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