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Abstract. We study the exact tail behaviour of the supremum of a random
walk defined on a finite Markov chain. The setting is that of subexponential
distributions and the related S(+)-classes of convolution equivalent distributions
with exponential tails (v > 0).

1. Introduction

Let {kn}3%, be a Markov chain with state space N = {1,..., N} and tran-

sition matrix P = (p;;), where p;; = P(k, = j | kp_1 = i), n = 1,2,....
We suppose that the chain {x,} is ergodic (irreducible, aperiodic and positive
recurrent) with stationary distribution 7 = (my,...,7y) with m; > 0, i € N.

For each pair (4, j) € N x N, let {X,, (3, j)}°-, be a sequence of independent
identically distributed random variables with distribution F;;. We assume that
the sequences of random variables {X,, (i, j)}$_;, (i,5) € N x N, and {k,}2,
are mutually independent. Write Sy = 0 and S, = S,,_; + Xn(Kn-1,ky) for
n > 1. Denote M, = sup,>qSh.

The object of this paper is to study the exact tail behaviour of the supre-
mum My, of the random walk {S,} defined on the Markov chain {kn}. The
ideal setting for such a study will be provided by the class S of subexponential
distributions and the related classes S(v) (see in Section 2). More
precisely, we shall consider the asymptotic behaviour of the functions

Wij(z) = P(Moo > z,kq(2) = j | Ko = 1)

as ¢ — oo, where 7(z) € min{n > 1:5, > z} and n(z) %’ 0o on the event
{My < z}. :

This problem has already been considered by K. Arndt [1] under more strin-
gent conditions than those of the present paper (for a detailed comparison of
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results see Section 5).

The tail behaviour of the supremum of an ordinary random walk has been
considered at various levels of generality by several authors. We mention the
works of Borovkov [4, Chapter 4], Varaverbeke [26], Embrechts and Goldie [11],
and Bertoin and Doney [2]

2. Preliminaries

Definition. The distribution G of a non-negative random variable Y is said
to belong to the class S(7), v > 0, if the following conditions are satisfied:
(1) lim (1 - G(z +y))/(1 — G(z)) = exp(—vy) forall y € R;

G(v) £ Eexp(vY) < oo; )
Jim (1-G™*(2))/(1- G(z)) = 2G(v).

The class S = S(0) (later called the class of subezponential distributions) was
introduced in [5], while the classes S(v) for positive 4 were first considered in
and [7]. There is a rather extensive literature concerning both the properties
of 8(v)-distributions themselves and numerous applications in various areas of
probability theory (branching processes, queueing theory, infinite divisibility,
etc.); see, e.g. [8], [9], [10], [12], [14], [17], [20], [21], and [25]. The importance
of such distributions has widely been illustrated by the fact that in many cases
the exact asymptotic behaviour of probabilistic quantities of interest can be
expressed in terms of the distributions of S(¥).

Denote by 6., the Banach algebra of all complex-valued measures v on B
such that

Il = vl(=00,0) + [~ e™Ivi(da) < oo
0

here |v|(A) stands for the total variation of the measure v on a set A € B.
The addition of measures in &, and multiplication of a measure by a scalar
are defined in the usual way; the product of any two elements of &, is their
convolution, and the measure §p of unit mass concentrated at the origin is the
unit element of &,. Denote by ¥(s) the Laplace transform of a measure v :
v(s) = [gexp(sz)v(dr). The integral converges absolutely — with respect to

|v| — in the strip II(7) def {s € C:0 < Rs < v}. Obviously, dp(s) = 1. We shall

denote by &., the isometric Banach algebra of Laplace transforms of elements of

S, ie &, % {f(s), sell(y): fe 67} and ||f]| & |1£|| for f € &,,.

Let v be a finite complex-valued measure defined on B. Define the measure
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V(1) by
vy (A) = / ni(z)de, A€B,
A

where ny(z) = —v(—o00,z] for ¢ < 0 and ni(z) = v(z,00) for z > 0. If
Jr 1z lv|(dz) < oo, then V(1) is a finite complex-valued measure and Vay(s) =
(¥(s) — D(0)) /s, s = 0.

Now choose an arbitrary distribution G € S(y). Put 7(z) = 1— G(z). Define
a functional Q(v) on &, by the formula

Q(v) = sup v|(z,00)/7(2), vEB,.
20
Consider the collections of measures &(r) = {v € 6, :Q(v) < oo} and

_ ) def .. V(z,00) )
Sl(r) = {u €G(r): l(v) = rl-l_)l'{.lo —W eC ex1sts}
As shown in [20, Propositions 1 and 2] &(r) is a Banach algebra with respect
to some norm ||v|| equivalent to the norm [|v|| + Q(v), and Sl(7) is a Banach
subalgebra of &(7). Moreover, for any two elements v, x € Gl (7), the following
equality holds:

(2) (v &) = 1(V)&(7) + I(x)P (7).

Let A be an arbitrary commutative complex Banach algebra with unit ele-
ment e. The spectrum ¢(a) of an element a € A is defined to be the set of all
complex numbers A such that the element a — Ae does not have an inverse. If
f(2) is an analytic function in a domain containing the spectrum of an element
a € A, then there exists an element f (a) € A such that for each homomorphism
m : A — C the following relation holds: m(f(a)) = f(m(a)) [27, Section 3].
The element f(a) is called the value of the analytic function f(z) at the element
a€ A.

We shall need the following result on the values of an analytic function at
elements of &I(r) [20, Theorem 3].

. Theorem 1. Let f(z) be an analytic function in a domain containing the
spectrum o (v) of an element v € G.,, and let f(v) be the value of f(z) atv € &,.

(i) Ifv € &(r), then f(v) € &(r).
(i) Ifv € 6l(r), then f(v) € &l(r) and the following equality holds:

W) = £ [p()] - 1w).

We also mention a result on the invertibility of elements in &l (7).
2 of says that each maximal ideal of the Banach algebra &I(7) can be
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represented in the form M = M; N GI(r), where M; is a maximal ideal of G&5;
and vice versa, if M is an arbitrary maximal ideal of &.,, then M = M; N Sl(T)
is a maximal ideal of G&l(7). It follows [19, Section 11.5] that if an element
v € Bl(r) has an inverse v~! in &,, then v~! € &l(r). The same is also true
for the Banach algebra &(7).

Lemma 1. Let G € S(v) for some v > 0 and let 7(z) = 1 — G(x). Suppose
a finite positive measure v is such that v(y) € Sl(r). Then also v € &l(r) and
I(v) = v - U(vq)). Conversely, if v € &l(r) and v >0, then also v(y) € 6l(r).

Proof. Suppose v > 0 and choose an arbitrary h > 0. We have

(3

v(t+ h,00) - h *h y(x,00)dz _ v(t,00) - h
=) S/t = OB N

By (1), the middle term tends to I(v(1))(1— e~"") as t — 00, so that the inequal-
ities (3) imply

(1—e~7h) .. pv(t,00)
() < liminf —ra )
. v(t,00) _ e™(1—e™h)
< :
< hﬂ SUp TGy S : l(vq))

Letting h — 0, we arrive at the conclusion of the lemma for v > 0. The case
v = 0 is easily dealt with. We have

. v(t,00) ) V(l)(t —1,00) — ) (¢, o0)
h?:,i‘.}p 7(t) = tl-}glo (1)

= 0.

Suppose now that v € SI(r) and v > 0. We have

vy(t, ) _ S v(z,00)dz [ T(x)dz
7(?) )7 r(@)de T(?)
The first factor on the right-hand side tends to I(v) as t = oo. The desired

assertion v(1) € &l(r) will follow if we show that the second factor tends to 1 /7,
ie.

. [ r(e)de © r(t+z), 1
) Jim S = i [ e = 2

By (1), there exists T > 0 such that 7(t + 1)/7(t) < e=1/2 for all t > T. The
integrand 7(t + «)/7(t) tends to exp(—yz) as t — oo and, for t > T, it is

majorized by the integrable function f(z) def exp(—n+vy/2), where ¢ € [n,n + 1),
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n=0,1,.... Applying the dominated convergence theorem, we obtain (4). The
lemma is proved.

Suppose a matrix B = || B;;||, say, is made up of elements of 6,. Then we
shall denote by ﬁ( ) the matrix whose entries are the Laplace transforms of the

entries of B, i.e. B(s) & def [|Bij(s)||. In this case we shall also write B € 6,

~

and ﬁ(s) € 6,. The same convention will be applied to other collections of

measures, e.g. such as &l(r). If B = ||B;j|| € Sl(r), then [(B) = def (Bs;)|- If
B = ||B;j|| is a matrix whose entries are finite complex-valued measures such
that [ |z|B;;(dz) < oo, i,j € N, then we shall denote by B(1) the matrix

II( u)(l)“

Denote by E the N x N matrix || Eij|| whose entries are measures such that
Eij = bo for i = j and Ej; = 0 for i # j (recall that §; is the unit element of the
Banach algebra &I(7)).

Lemma 2. Suppose that a matriz D € Sl(1) has an inverse D~1 € &i(7),
i.e. DxD-! = E. Then

(5) I(D7Y) = —[D(y)]"* - {(D) - [D(m)]™".

Proof. The equalities D * D~! = E and (2) imply
(6) {(D) - [D(y)]™* + D(y) - (D™!) = I(E) =0,
where 0 stands for the null matrix. Equality (5) follows from (6).

Denote by A the N x N matrix ||p;; F;;|| and by W the N x N matrix 1Will,
where W;; is the measure defined on B by the relations

Wij(z,00) € P(Moo > 2, kp(z) = j | K0 =4), >0,

Wij(=00,0) €0, 4,5 € N, and
Wii({0}) = 6ij = P(Moo > 0, k0(0) = j | 40 = i),

d;; is the Kronecker delta (the reason for this latter definition will become clear
later).
Finally, we shall denote by A(€) the maximal positive eigenvalue of the matrix

K(E); here £ is a real number.
We shall need a matrix factorization involving the underlying matrix A. Put

def ||s+1
U(s) = ||Ui;(s)I| =

61: + 51](1 - 51_1)
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3L diag(my,...,mn) and B(s )d'3f U(s)J. We have
s+1 s+1 s+1
™ T ... ™
s s s
B(s) = 0 o 0
0 0 ™

Let I be the identity matrix of order N x N.

The following theorem about right canonical factorization is an easy conse-
quence of already known results [16], and [3]. Recall 5(z) = inf{n > 1:
S, > z} and define 5, = maxj<m<n Sm and x(z) = Sy;) — z. Denote also
Pi() = P(- | ko = 1), i € N, and ExS; def z” L mipi;EX1(i, §), ie. ExSi
is the expectation of a one-step increment of the random walk {S,} under the
stationary distribution 7 of the chain {x,}.

Theorem 2. Let {S,}3, be a random walk defined on a Markov chain
{kn}o. Suppose the expectations EX1(i,j) i,j € N, are finite and Ex S €
(—00,0). Assume also that the underlying distributions F;; are absolutely con-
tinuous with respect to Lebesgue measure and E exp(yXi(%,j)) < oo for some
y>0andalli,j €N, i.e. F;; €6,,14,j € N. Ify >0, suppose additionally
that A(y) < 1. Then, for s € II(y),

(7) B(s)[I- A(s)] = [B(s)A-(s)] A4 (s)

where

eaxpi(gn—l < Sp €dz,kp = .7)

and

Ai(s)=1-

/0 e** P;(x(0) € dz, ky(0) = J')ﬂ

Moreover, the matrices [B(s)A_(s)] and A, (s) have inverses with entries being
elements of the Banach algebm 6 The matriz [A4(s)]~! is given by

Z/ P;(5p-1 < Sy €dz,kn = j)| -

[A+(S = I+

Proof. If ¥ = 0, the assertion of the theorem is an immediate consequence
of [3, Theorem 2(c)]. Suppose v is positive. If s = 0, then, as before, the
factorization (7) is valid. Fix an arbitrarily small ¢ > 0. As pointed out in
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[1, Proposition 1] with reference to [16], the matrix I — (s) admits the right
canonical factorization I — A(s) = A_ (5)A4(s) for all ¢ < Rs < v, where the
matrices A_ (s) and A.,. (s) have the same meaning as before. Moreover, not only
A.,_(s) but also A_ (s) is invertible in the strip ¢ < ®s < 4. Since the matrix
B(s) is automatically invertible in the same strip and since € > 0 is arbitrary,
the desired factorization follows for 0 < Rs < 7.

3. Main result

Let 1 denote N x 1 column vector whose entries equal 1 and = the 1x N
row vector ||my,...,7n|].

Theorem 3. Let {Sp}3%, be a random walk defined on a Markov chain
{kn}alo- Let G belong to the class S(v) for some vy > 0. Suppose A(y) < 1 for
Y > 0. In the case v = 0, assume additionally that the expectations EX, (i, 7)),
i,j € N, are finite and E,S; € (—0,0). If A € Bl(r) for y > 0 or if
7n-A) € 6l(1) fory =0, then W € GI(r) and

M= AW UAW)AL(NITAL0) i 7>0,

8 (W) =

Proof. In order to make the proof more readable, we split it into several
stages, according to various technical assumptions.
L. Basic relation. As in Arndt [1], we start with the relation

I—||P( M >0, K, 0) = 5)||

(9) + /o:-o e**Pi(Mo € dz,Kp(z) = ])" ef W(s) = [K+(s)]—lx+(0),

which follows from Presman [18, Theorem 2.2]. If we prove that A7l € si(r),
then relation (9) will imply W € &l(r) and

(10) I(W) =1(A7})A4(0).

Denote Q(s) = 1Qi;(s)]| = B(s) [1-A(s)].

Before we proceed further, we will prove the following two lemmas.

Lemma 3. Let {S,}3%, be a random walk defined on a Markov chain
{kn}nZo. Let G belong to the class S(v) for some v > 0. Suppose A(y) <1 for
v > 0. Assume that all the expectations EX1(i, j) are finite and ExS; € (oo, 0).
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If Aq) € BI(1) fory >0 orif m-Aqy € Gl(t) for y =0, then Q € &l(r) and

( —7B(7) - l(A) if v>0,
(1) ¥Q) = —’(("':(1))1) - _l((“':(l))N) f :
. iy y=0\U.

\ 0 0

Lemma 4. Suppose that the hypotheses of Lemma 3 are satisfied. Assume
additionally that all the distributions F;; are absolutely continuous. Then

[Q(s)] -1 € él(‘r) .

Proof of Lemma 3. Consider the (1,1)-entry of the matrix Q(s) (the ar-
gument will also apply to the remaining (1, j)-entries of Q(s)). The entry under
consideration is equal to

s+1 s+ 1 o
[771 Z mipis Fia ( S)] — D _mipi[1— Fa(s)]
=1 i=1

8

(12) = me 1 - Fa(s) - (Fa) ()],

Row i of the matrix Q(s) for i > 1 is equal to row ¢ of I — K(s) multiplied by
m,1=2,...,N.

Let us compute the value of [(Q ( )). Suppose ‘y > 0. By the hypotheses
of the lemma, (F3)a) € GI(T) i,j € N. By [Lemma 1, Fi; € &I(r) and
I(Fi;) = v - 1((Fij)1))- Hence 1Q(s)) is equal to the matrix

— )Y mpal(Fa)y) - —(r+ 1) T, mnd (Fav) )
—ymapal ((Fa1) (1)) e —ymapant ((Fan) 1))
—yanpnil ((Fvi)ay) . —yrnpN Nl ((FNN) (1))

which, in turn, is equal to —yB(Y) - [(A(1)).

Let 4 = 0. By Lemma 1, 7-A € &l(7) and I(7-A) = 0 (the null row vector).
It follows that I(p;;F;;) = 0 for all ¢,j € N since p;;F;; < (w-A)j(z,00)/7;.
Hence Q € 6!I(7) and the corresponding equality for /(Q) holds.

Proof of Lemma 4. Remembering the structure of an inverse matrix, we
arrive at the desired conclusion as follows. The a.dJOIHt matrix of Q(s) is obvi-

ously an element of &l (1), and so is det{Q(s)} d(s) as well. The determinant
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d(s), s € II(y), is the Laplace transform of a measure of the form ady + B,
where a = Hf\;l m # 0 and B € &l(r) C &, is absolutely continuous (recall
do is the measure of unit mass concentrated at the origin). We need to check
only a = Hf;l 7;. Applying the Riemann-Lebesgue lemma, we see that the
(1,1)-entry of Q(s) tends to m; as s & oo, s = 0. Similarly, the (i, j)-enrty
of Q(s) tends to m;d;; as s — oo, Rs = 0; here i = 2,...,N, j = 1,...,N.
Since B(s) — 0 as s — 0o, Rs = 0, and since the determinant of a matrix is a
continuous function of its entries, the equality a = 1—111\;1 m; is proved.

Next we note that the function ¢(z) def exp(yz)V1is clearly submultiplicative,
le.

p(0)=1,  p(z+y) <p(x)p(y) forall z,yeR.
Moreover,

logp(z) _ 1., logp(2)

0= lim <
T——00 x r—00 x

Consider the subalgebra V,, say, of 6., consisting of all elements adg + B, where
a € C and B is absolutely continuous. By the general theory of such algebras
[13, Section 18], 1/d(s) is the Laplace transform of a measure v € Vy C &, since
d(s) =a+ ﬁ(s) # 0, s € II(7), and a # 0. By Theorem 1, v € 6I(r). Summing
up, we conclude that [(3(8)]—1 € 8i(r).

We now return to the proof of Theorem 3J.

II. Absolutely continuous case. Here, we assume that all the distributions
F;; are absolutely continuous with finite means EX 1(2,j) such that E,S; < 0,
even in the case vy > 0.

It follows from that
[A+()]7" = {Q(s)} ' [B(s)A_(s)).

By [Theorem 2, B(s)A (s) is a matrix of the Laplace transforms of finite (not
necessarily positive) measures concentrated on (—00,0). Hence, automatically,
B(s)A_(s) € SI(r) with [(B(s)A_(s)) = O (the null matrix). By (7) and
Lemma 4,

[A4(5)] 7" = [Q(s)] "' [B(s)A_(s)] € Bi(r)
and, by (2),
([A+]™) = 1([Q=)] ") - BMA_(7) + [@()] ™ - 1(B(s)A-(s))
(13) =1([Q(s)] 7)) - B A_(v).
By Lemma 2 with D = Q, we obtain from that

(14) H[A4+(9)]™) = =[QM] ™" - 1(8(s)) - [As(m)] ™"
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Let v > 0. By Lemma 3, it follows from [14) that

(15) H([A+()] ™) =v[I-AW] 7" UAw) - [Ae@)] ™

Relations and [(13) now imply (8), provided that all the distributions F;;
are absolutely continuous and have finite means E X (i, j) such that E;S; €
(—0,0).

Suppose ¥ = 0. In order to obtain an explicit expression for l([X.,.(s)]_l)
(see [(14)), let us compute [Q( 0)]"1 1(Q(s)). Since all the rows of I(Q(s)),
except for the first one vanish, we need to compute only the first column of
the matrix [Q(O)] in order to obtain the desired product of matrices. Notice
that the sum of the entries in row ¢, = 2,..., N, vanish. Denote by Q(%, j) the

matrix obtained from Q(O) by deleting row i and column j. We have

N
(16) det 6(0) = - Z mipijpij - det Q(1, 1) = —E,S; -det Q(1,1).
ij=1

This may be seen as follows. We add to the first column of Q(O) the remaining
columns. The first column of the matrix thus obtained will have the first entry
equal to — Eﬁljﬂ 7;pijpij, and the remaining ones will vanish, whence the de-

sired conclusion (16) will follow. We assert that column 1 of [6)(0)]-1 consists
of identical entries equal to —1/E,S;. In fact,

7 (180)),, o tor oL G0,

Denote by Q(l) the (N — 1) x N matrix obtained from Q(O) by deleting row 1.
The cofactor of Q; ;(0) is equal to (—1)7*! times the determinant of the matrix
Q(1, 7). If we replace column 1 of Q(1,j) by the sum of all columns of Q(1, j),
then the resulting matrix S, say, can also be obtained from the matrix Q(1, 1) by
moving column j to first place and then multiplying this column by —1. Hence

(18) detQ(l,j) =detS = (—1)-(—1)7"2.det Q(1,1) = (—1)"1det Q(1,1).

Relations (16)—(18) imply the desired assertion about column 1 of [Q(O)]_l. It

now follows that the matrix [62(0)]"1 I(Q(O)) consists of identical rows each
equal to

EIS (A1) 3 S H((mAp)) - El—sl-l((w-A(l))N) “

that it
(19) [QO]™1(QE) = Esl(lﬂA(l))
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Taking relations [10), (14) and [19) into account, we arrive at the conclusion of
the theorem in the case v = 0:

(W) =1([A4(s)] ") A4(0) =

1
—E,5; l(lﬂ'A(l))i
provided the distributions F;;, i, j € N, are absolutely continuous.

III. General case. We now drop the absolute continuity assumption, but
retain for the time being the requirements that the expectations EX1(2,7),
i,j € N, be finite and that E,S; be negative. (Later, these restrictions will
be removed in the case 4 > 0.) Since a direct attack to evaluate (W) does
not seem to be viable, we shall make a detour to compute first the matrix
I(A3'), whence, by (9), the desired conclusion (8) will follow. To this end,
let us consider a family {Ym(i,j)}:zl, (3,7) € N x N, of sequences of in-
dependent indentically distributed random variables with uniform distribution
Un on [0,h], where h > 0 will be taken sufficiently small. Moreover, we as-
sume that all the sequences {Xm(z’,j)}:::l, {Ym(izj)};.::l) (1,7) € N x N,
and {&,}5%, are mutually independent. Along with the random walk {Sn}s,
let us consider a similar random walk {S%}5%, defined on the same chain:
S; =0and S} = S;_; + X,(kn—1,kn) + Yn(Kn—1,6n), n > 1. Its underly-

ing matrix is given by A, = ||p;;F;; * Us||. Obviously, Kh(s) = e",;;lﬁ(s)
and A\, (§) = eh,:f_ LX(€), where Ay (§) stands for the maximal positive eigen-

value of Kh(ﬁ), ¢ real. Choosing h > 0 sufficiently small, we can achieve that
both An(y) < 1 and E;S} = E.S1 + h/2 < 0. Denote M* = SUP,>o S and
n*(z) = min{n > 1: 5% > z}. Clearly,

N
Pi(Mo > &) < Pi(MZ, > 2) = Y Pi(M, > 2, Kye(z) = J).
i=1
Applying the theorem already proved for absolutely continuous Fj;;, we infer
that the ratios P;(MZ > z)/r(z) tend to finite limits as £ — oo, whence the
boundedness of all W;;(z,00)/7(z) follows, i.e. W € &(r). Then, by (9), we
have
' ~ -1 & -1 _ =
[A+(s)]” = W(s)[A+(0)] " € &(r).
Our goal is to establish , whence the desired assertion for {(W) will follow.
Denote, for short, the tails of the entries of A7 by a;j(z), ie.

ai.’i(x) déf ZPz ({En-—l < Sp,kn = j}\{gn—l <S8 L Z,kn= .7}) .
n=1

Fix an arbitrary pair (k,1) € N x N. Put hy % limsup,_,, axi(z)/7(x).
By the above, hy; < co. Choose a sequence {x,} such that z, — oo and
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axt(zr)/7(2n) = hkr as n — oco. Let D be a denumerable dense set in R such
that 0 € D. Passing to a subsequence of {z,}, which we will again denote by
{zn}, we can achieve that all the limits

(20) hii(y) %€ lim aij(zn — y)/7(zn), yE€D,

n—o0

exist (they are automatically finite by the above). The functions k;;(y), y € D,
are monotone non-decreasing. For each (i, j) € N x N, define h;;(y) on R\D by

continuity from the right. By the monotonicity of A;;(y) relation [20) will hold

for each y belonging to the continuity set of h;;(y). Set K;;(y) def hij(y)/e".

Then Ki(y) < Kxi(0) = hut for all y € R. Put K(y) &' ||Kij(y)|| and
ﬁl(s) def dia.g(e""a/z, e _’2/2) Q( ).
It follows from that
B, (s) [K.,. (s)]_1 = diag(e™*"/2,...,e=*"/2) . B(s)A_(s).

The entries of B(s);&_(s) represent the Laplace transforms of measures con-
centrated on (—oc,0]. Trivially, {(B(s)A_(s)) = 0. The matrix diag(e=*"/2, ...,

e=*"/2) is the Laplace transform of d1ag(N(0 1),...,N(0,1)). Clearly, I(N(0,1))
= 0. Hence, by (2), l(B1 (s) [A+ s)]_ ) =0, ie.

(21) lim (By * A7")(z,00)/7(z) = 0.

On the other hand,

z/2
(B1+AT)(z,00) = [ Bi(dy) ATz~ v,0)

-0

z/2
+ / Bi(z — y,0)AT ! (dy)
0
+ B1(z/2,00) - A7 (z/2, )
(22) € 11(2) + I(z) + Is(2).
Lemma 3 says that Q(s) € él(‘r). By (2), we also have
(23) 1(By) = diag(e™"7?,...,e77/2) . 1(Q(5)).

By (1) and the dominated convergence theorem,

(24) lim 22(2)

z—oo T(z)

=1(By)[A+(7)]
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Since the measures (B1)i; have no atoms (actually, they are absolutely continu-
ous), the dominated convergence theorem may again be applied to yield

Il(mn) _

(25) lim = /R Bi(dy)e™K(y)

n—oo T(Zy,)
although the convergence in may be violated at points belonging to a de-
numerable set. (This is one of the reasons of why we have introduced the ma-
trix B, instead of working directly with Q(s).) We also have [20, (28)] that
limg o0 [7(2/2)]2/7(x) = 0. Since, obviously, [I3(2z)| < Q(B1) - QAT [r(z/2)]?
(here Q(B;) & IQ((B1)s5)]| and, similarly, for Q(A3')), we obtain

(26) lim 3(2)

THo0 T(;c)

=0.

Collecting relations (21, (22), and [24]-(26), we arrive at the following matrix
equality: [p B;(dy)e™K(y) +1(B1)[A+(7)]"! = 0. It should be clear that if we

replace z by z — z in [[21), [22), I»(z) and I3(z) and z,, by z, — z in I; (zn) and
repeat that above reasoning, the last equality will become, by (1),

(27) | Bi@)evK(y +2) = 1B R4 (1]

It is from this identity that we shall extricate the needed information about the
exact value of hy;. Assume first that the matrix function K(y) is equal to a

constant matrix almost everywhere (a.e.) with respect ot LebesgueAmeasure, 1.e.
K(y) = K* = ||K};| a.e. Then becomes B, (v)K* = —I(B1)[A+(y)]"}, or,
recalling the definition of ﬁl(s) and [23), :

~ - ~ -~ -1

Q(MK* = —1(Q(s)) [A+(7)] .
Hence

. N -1 A ~ -1
(28) K" = ~[Q()] (@) [A+ (0] "
The function hy;(y) is monotone non-decreasing and, by definition, hx(y) =
€’ Ky (y). Hence, letting y — 0+ over the set {y € R : K(y) = K*}, we obtain

hx = hi(0) < K. On the other hand, hx; > Ky (y) for all y € R, and hence
hr > K3, Thus, by = K};. In other words, we have proved that

(AZDk(z, o0)

def ..
hiy; = limsu =K},
:c—}oop T((E) ki
In a similar way, we can demonstrate that
. (AT ki, 00
b % lim ing (A J0i(2,00) _ K.

r—o0 T(Z’)
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It follows that the limit lim; o0 (AT ')ki(2,00)/7(2) exists and is equal to the
corresponding entry on the right-hand side of [28). Since the pair (k,I) € N' x N
was chosen arbitrarily, the proof of [14) and, at the same time, that of (8) will
be complete as soon as we prove the following lemma.

Lemma 5. Let H = ||H;;|| be an absolutely continuous matriz-valued mea-
sure such that H(s) is invertible for all s with Rs = 0. Suppose that the densities
pij(z), ¢ € R, of the entries H;; belong to the space S1 of rapidly decreasing func-
tions. Let M(z), ¢ € R, be a bounded Lebesgue-measurable matriz function such

that M + H(z) &' Jr H(dy)M(z —y) =0. Then M(z) =0. a.e.

Proof of Lemma 5. We shall adapt ot the matrix case the proof due to
V.M. Kruglov of a similar assertion [22, Lemma 3]. First recall some basic facts

from the theory of tempered distributions (see, e.g. [19, Chapter 7]). A function
f € C*(R) is called rapidly decreasing if

(29) sup sup (1 + 22)|f*)(z)] < oo, n=0,1,....

0<k<n z€eR
The space S; of rapidly decreasing functions is a locally convex space defined
by the countable family of norms . A continuous linear functional u on the
space 8 of rapidly decreasing functions is called a tempered distribution, and we

write u € S|. The Fourier transform F(u) € S} of a tempered distribution u is

defined as follows: F(u)(v) def u(F(v¥)), ¥ € 81, where

FOO L @0 [ eHoy@)s,  teR
R

A bounded Lebesgue-measurable function g(z), z € R, defines an element of

S; by the formula g( 1/)) fR g(z)¥(z)dz, ¥ € S;. Similarly, a finite complex-
valued measure u with density p(z ) E S, defines a continuous linear functional
u on S; by

u(y) & / b(e)u(ds) = /R p2)(2)ds, Y ES,.

The Fourier transform F(u) € 8 of such an element u € S may be identified
with the function F(p)(t) (which equals (27)~1/%%(—it), t € R), i.e.

W = [ Foewed,  ves.

Next, the function u * g(z) def Ir g(a: — y)u(dy) is clearly an element of S and,
by Theorem 7.19(c) of [19], F(u * g) = F(p) - F(9)-
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Let us now turn to the matrix case of the lemma. Choose an arbitrary pair

(k,1) € N x N and consider the (k,)-entry of H * M(x) ef Jr H(dy)M(z — y).
We have

(H xM)(z E/ Hyj(dy) My (z — y) = 0.

An action of the Fourier transform on both sides of this identity understood as
elements of & yields ZJ—1 F(pxj) - F(Mj) =0, or in the matrix form

(30) (2m)~Y2H(~it) - F(M) = 0.

Let D(R) be the space of functions f € C*(R) with compact support [19, Chap-
ter 6]. The space D(R) C S, is dense in 8; [19, Theorem 7.10(a)]). Therefore,
each tempered distribution u is uniquely determined by its restriction to D(R).
Multiplying both sides of (this tlme considered as linear functionals on
D(R)), by the matrix (2r)Y/2[H(—it)]”' € C®(R), we obtain that FM)=0
(as a matrix of linear functionals on D(R)). By the above, F (M) =0in S.
Taking the inverse Fourier transform, we come to the conclusion that the linear
functionals on S; given by the functions M;;(z) vanish. Hence M;;(z) =0 a.e.
The lemma is proved.

Par acquit de consczence one should verify that the ingredients of relation

) satisfy the hypotheses of Lemma 5. Let v > 0. Put
M(z) = K(~z) + [B1(7)] ™ 1(B1)[A+(1)] "

and H(dz) = e"* B, (dz) et e"?||p;j(z)||dz, where the densities
pij(z) = (27r)‘1/2/ e~ (U'12Q,;(dy), =z €R,
R

obviously belong to 8;; (we recall that Q(s) = 1Q:;(s)|| = LI B(s)[I- A(s)]). The
hypothesis )\('y) < 1 of [Theorem 2 ensures, by the Perron-Frobenius theory, the
invertibility of H(s) for all s with ®s = 0.

Let 7 = 0. Put M(z) = K(—2) + [Q(0)]-"/(Q)[A4(0)]-! and H(dz) =
B,(dz) = ||p,J(:c)||d:c, where the densities p;;(z) are the same as in the case
¥ > 0. For s =0, H(s) Q(O) is invertible since, by the Perron-Frobenius
theory, det Q(1, 1) # 0, and det Q(O) —E,,Sl det Q(1.1). If s # 0 and s = 0,
then the matrix H(s) = diag(e=*"/2,...,e*"/2) . Q(s) is invertible since each of
the three factors on the right-hand Slde is invertible (the invertibility of I — K(s)
again follows from the Perron-Frobenius theory). Thus, we have proved that
relation satisfies the hypotheses of Lemma 5. The proof of the theorem for
the case v = 0 is complete.
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In order to complete our proof in the case ¥ > 0, it remains to remove the
restriction that the expectations EX;(z,j), i,j € N, are finite. By truncat-
ing the random variables X,,(¢,j) at a sufficiently remote negative level and
considering a new random walk: S} = 0 and S% = S%_; + X}(kn-1,%n),
n > 1, we can achieve that the expectations EX}(¢,j), i,j € N, are finite,
A*(v) < 1 and Ex ST € (—00,0). The latter relation follows from the fact that
[A*(€)i=o = ExSt [15]. Actually, the function A*(€), £ < v, is convex [15],
whence [A*(€)]¢=o < 0. Obviously, P;(Mw > z) < Pi(M, > z). As before, the
ratios P;(M%, > z)/7(z) are bounded. Now repeating the preceding reasoning
based on Lemma 2, we come to the desired conclusion (8) for v > 0.

is proved.

4. Further results

Summing over j € N the probabilities P;(Mq > &, ky(s) = j) and taking the
obvious equality A (0)1 = ||P;(Ms = 0)|| into account, we obtain the following
result about the exact asymptotic behaviour of P;(My, > ).

Theorem 4. Under the hypotheses of Theorem 8, we have

- R(Me > ) Y- A NAW)[A+()] AL O ify >0,

=00 r(z)

1 :
“E.S, l(11r-A(1))1 ify=0.

As a byproduct of the preceding section, a corresponding result about the
asymptotic behaviour of the joint distribution of the first positive sum and the
state of the chain {k,} when the random walk hits the positive half-axis is readily
obtained.

Theorem 5. Under the hypotheses of Theorem 8, we have
~ -1 .
N - [A—("/)] 1(Aqwy) ify >0,

1~ .
5 Ar(0)I(1m-Any) ify=0.

— Lol

. P;(x(0) > =z, ky(0) = J)
im
T 00 T(z)

Proof. Denote E(A) = " Pi(X(O)i?;;"(°)=j) ”, A € B. By [Theorem 2, E =
I- A,. Hence l(Z) = —I(A}). Now relations (7), (6) with D = A and (15)
yield the assertion of the theorem.

In just the same manner as in the case of the supremum, implies
the following result on the exact asymptotic tail behaviour of the first positive

sum x(0).
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Theorem 6. Under the hypotheses of Theorem 3, we have

—[A-M] AL ifv>0,
1

T

L PG(0) > 2)
T 00 T(.’L‘)

5 K.}. (0) l(lﬂ'~A(1))1 ify=0.

We complement the assertion of with a result in the opposite
direction.

Theorem 7. Let {S,}3>, be a random walk defined on a Markov chain
{Kkn}s2o. Let G belong to the class S(vy) for some v > 0. Suppose A\(y) < 1 for
¥ > 0. In the case v = 0, assume additionally that the expectations EX, (i, j),
i,j € N, are finite and E;S; € (—00,0). Ify > 0 and W € &I(r), then
A1) € 6l(1) (which is equivalent to A € &l(r)). Ify =0 and W € SI(7), then
w-A(1) € &l(T). In both cases the corresponding parts of relation (8) hold.

Proof. We readily obtain from W = A;lﬁ.,.(O) that Ay € SI(7). Re-
gardless of whether the matrix A has absolutely continuous entries or not, the
factorization I — A(s) = A_(s)A,(s) still holds, and we have

Q(s) ¥ B(s)[I - A(s)] = [B(s)A-(s)] A (s)

[18, Theorem 2.1] (at the same time, one cannot assert anything about the
invertibility of the factors involved).

Consider first the case ¥ = 0. By the above, Q(s) € él('r). The (1, j)-entries
of Q(s) equal

mj = (m-A(s)); = (%A (5)); € 8I(7).
We now show that w-A € &i(r), whence the desired assertion #-A;) € SI(r)

will follow.

Suppose a finite positive measure v, say, is such that T e+ va) € 6l(7).
We have

v(t,00) < /t v(z,o00)dz
t—1

=T(t—1,00) — T(t,00) — v(t — 1,00) + v(t,00).

Hence v(t—1,00) < T(¢—1,00) — T (¢, 00). Dividing both sides of this inequality
by 7(t — 1) and recalling (1) for ¥ = 0, we obtain

. . [ T(t,00) TT(t+1,00) T(t+1)
limsup == Stl_‘fi‘o[ ) rit+1) (@) ]
=1(T) - I(T)-1=0.

v(t,00)
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Therefore, v € &l(r) and I(v) = 0, whence v(1) € &l(r). Putting successively
v=(mA);, j €N, we come to the conclusion w-A) € 6l(T).

Let v > 0. The factorization I — A(s) = X_(s)ﬁ_,.(s) and relation A, €
6l(7) imply A € &i(r). However, in case of ¥ > 0, A) €6Il(T) & A € SI(T),
which follows from [Lemma 1. The proof of Theorem 7 is complete.

5. Comparison of results

As was noted in Section 1, the problem of finding the exact tail behaviour
for the distribution of the supremum M., has been considered by Arndt (1,
Theorems 1 and 2]. Let v = sup{¢ : p;; Eexp{€X,(i, j)} < oo for all 4,5 € N}.
Theorem 1 of [1] deals with the case A(y) > 1 for v > 0, while Theorem 2 of [1] is
concerned with the cases ¥ = 0 and A(y) < 1fory > 0, as in the present paper. In
Theorem 2 of 1], the role of the comparison function (z) is played by e~"*h(z),
where h(z) is a superpower function, that is (i) lim,_, o, h(z + t)/h(z) = 1 and
(ii) for each s € (0,1], 0 < h(sz)/h(z) < c(s) < 00, £ > 0, where ¢(s) is bounded
on every interval [s;, 1] with s; > 0. We will show that the functions of the form
e~ 7 h(z) are a particular case of the comparison functions provided by the tails
of distribution in S(y). More precisely, we will demonstrate that a distribution
G with 7(z) = 1 — G(z) = e~""h(z), where h(z) is superpower, is an element
of S(v). First, notice that in [1, Theorem 2] it is tacitly assumed that in case
of ¥ > 0 the superpower function is such that f0°° h(z)dz < oo. In fact, the
hypotheses of Theorem 2 of [1] include (a) X('y) < o0 and (b) (A(1))sj(x,00) ~
ce~"h(zx), as £ — oo for some ¢ > 0 and i,j € N (we are using for the most
part the notation of the present paper). Since K(‘y) < o0& 3(1)(7) < oo for
v > 0, it follows that [;° h(x)dz < co. This point settled, we proceed as follows.
Consider the equalities

G*z(x’oo) - 2‘/0'3/2 T(l‘ - y) G(dy) + [T(.’B 2)]2

s (| (A 1] )| == ————

() 7(z) 7(z)
_ o [PhE=y) 4 (h(=/2)1
= 2/0 ) G(dy) + ")
(31) Lo0 (2) + Iy(z).

We have limg_, o I2(2) = 0 since I(z) < c¢(1/2)h(x/2) and limg, o0 h(z) = 0.
This follows from the fact that [~ (A(1))ij(x, 00)e"dz < 0o, the integrand being
asymptotically ¢ - h(z), which together with property (i) of superpower functions
yields lim, o, h(2) = 0. Furthermore, in case of ¥ > 0, [;° €¥*G(dz) < oo since
I3 e[l — G(x)]dz = I h(z)dz < co. Hence, by the dominated convergence
theorem, lim,_, o, I;(z) = @(7) By (31), limz 00 G*2(z, 00)/7(z) = 2@(7), that
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s G e S(y).

Although the class of superpower functions h(x) is rather large (in particular,
it contains the class of regularly varying functions at infinity), it does not, how-
ever, coincide with the class made up by the tails of subexponential distributions;
e.g. the function 7(z) = exp(—z*) with 0 < a < 1 is the tail of a subexponential
distribution G € S(0), but obviously property (ii) of superpower functions is
violated, so that 7(z) is not superpower. Next, it is assumed in [1, Theorem 2]
that the matrix w = ||p;; Fi;(0, 00)|| is irreducible, which is presumably due to
the form in which the assertions of [1, Theorem 2] are presented (see relations
(6) and (7) therein). Finally, in the case v = 0 of [1] stipulates
that the distributions F;; have no singular components and at least one of the
F;; with p;; > 0 does possess an absolutely continuous component. Summing
up, of the present paper generalizes of [1] essentially in
two ways: first, it covers a broader range of asymptotic behaviour of the tails
involved and, secondly, the requirement that in the case ¥ = 0 at least one of
the F;; possess an absolutely continuous component has been removed.

Let {Sn} be an ordinary random walk generated by the partial sums of a se-
quence {X, } of independent identically distributed random variables with com-
mon distribution F. This corresponds to the case when the state space A of the
chain {x, } reduces to the one-element set {1}. In this setting, a result due to Ve-
raverbeke [26, Theorem 2(B)] says that if u T EX € (=00,0), then F(y) € S(0)
if and only if W € §(0) and both relations imply

P(My > z) ~ —IZF(I)(:::,oo) as £ — 00,

which coincides with the assertions of Theorems 3 and 7 of the present paper
when ¥ = 0 and /' = {1}. In case of ¥ > 0, Theorem 1 of Bertoin and Doney [2]
coincides with the corresponding statement of Theorem 3 of the present paper
when NV = {1}. As far as the result due to Bertoin and Doney [2, Theorem 1] is
concerned, an alternative proof relying on Banach algebra techniques was given
in [24].
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