A CHARACTERIZATION OF REAL HYPERSURFACES **OF COMPLEX PROJECTIVE SPACE III**

By

Yoshio Matsuyama

(Received March 12, 1998; Revised September 25, 1998)

Abstract. In [5] and [6] we showed a characterization of real hypersurfaces of type A_1 and A_2 (see Introduction) among all real hypersurfaces of complex projective space. In the present paper we will consider them under a weaker condition.

1. Introduction

Let CP^m , $m \ge 2$ be an m-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface CP^m . Let ν be a unit local normal vector field on M and $\xi = -J\nu$, where J denotes the complex structure of CP^m . M has an almost contact metric structure (ϕ, ξ, η, g) induced from J. We denote A and R the shape operator and the curvature tensor of M, respectively. Many differential geometeres have studied M (cf. [1], [3], [7] and [8]) by using the structure (ϕ, ξ, η, g) .

Typical examples of real hypersurfaces in CP^m are homogeneous ones. Takagi [8] showed that all homogeneous real hypersurfaces in CP^m are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following: Let M be a homogeneous real hypersurface of CP^m . Then M is a tube of radius r over one of the following Kaehler submanifolds:

(A₁) hyperplane CP^m , where $0 < r < \frac{\pi}{2}$, (A₂) totally geodesic CP^k $(1 \le k \le m-2)$,

(B) complex quadric Q_{m-1} , where $0 < r < \frac{\pi}{4}$,

(C) $CP^1 \times CP^{\frac{m-1}{2}}$, where $0 < r < \frac{\pi}{4}$ and $m \geq 5$ is odd,

(D) complex Grassmann $CG_{2,5}$, where $0 < r < \frac{\pi}{4}$ and m = 9,

(E) Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and m = 15.

¹⁹⁹¹ Mathematics Subject Classification: 53B25, 53C40

Key words and phrases: complex projective space real hypersurface, geodesic hypersphere, ruled hypersurface.

Research partially supported by an individual grant of Chuo Univ, 1997-1998.

Y. MATSUYAMA

Due to his classification, we find that the number of distinct constant principal curvatures of a homogeneous real hypersurface is 2, 3, or 5. Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha = 2 \cot 2r$ with multiplicity 1 (See [1]) and that in the case of type A_1 M has two distinct principal curvatures and in the case of type A_2 (resp. B) M has three distinct principal curvatures t, $-\frac{1}{t}$ and $\alpha = t - \frac{1}{t}$ (resp. $\frac{1+t}{1-t}$, $\frac{t-1}{t+1}$ and $\alpha = t - \frac{1}{t}$).

Contrary to homogeneous real hypersurfaces of CP^{m} , it is known that any ruled real hypersurface of CP^{m} is not complete and its structure vector field ξ is not principal ([4]).

In [2] Gotoh proved that if $m \ge 3$ and the shape operator A of a real hypersurface M satisfies (R(Y,Z)A)X = 0 for all tangent vectors X, Y, Z in ξ^{\perp} , then M is locally congruent to a geodesic hypersphere, where ξ^{\perp} denotes the orthogonal complement of ξ in TM. The author in [5] showed that if $m \ge 2$ and

(1)
$$R(AX,Y)(Z) - AR(X,Y)Z = 0$$

for any X, Y, Z tangent to TM, then M is congruent to an open part of a homogeneous real hypersurfaces of type A_1 and A_2 . Also in [6] he proved that it remains true in the case where M satisfies (1) for any X, Y, Z in ξ^{\perp} . We say that M is ruled ([4]) if there is a foliation of M by complex hypersurfaces CP^{m-1}

The purpose of the present paper is to prove that if $m \ge 3$, then, it remains true except some case where M satisfies

(2)
$$g(R(AX,Y)(Z) - AR(X,Y)Z,W) = 0$$

for any X, Y, Z and W in ξ^{\perp} , i.e.,

Theorem. Let M be a real hypersurface of CP^m , $m \ge 3$. Then M satisfies (2) for any X, Y, Z and W in ξ^{\perp} if and only if it is congruent to an open part of a homogeneous real hypersurfaces of type A_1 and A_2 or a ruled real hypersurface.

2. Preliminaries

Let X be a tangent vector field to M. We write $JX = \phi X + \eta(X)\nu$, where ϕX is the tangent component of JX and $\eta(X) = g(X,\xi)$. As $J^2 = -Id$, where Id denotes the identity endomorphism on TCP^m , we get

(3)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\phi X) =, \ \phi \xi = 0$$

for any X tangent to M. It is also easy to see that for any X, Y tangent to M

(4)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi$$

(5)
$$\nabla_X \xi = \phi A X.$$

Finally from the expression of the curvature tensor of CP^m , we see that the curvature tensor of M is given by

(6)
$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z + g(AY,Z)AX - g(AX,Z)AY,$$

(7)
$$(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi.$$

Now, we recall without proof the following results in order to prove our theorem:

Theorem 1. (Kimura [3]) Let M be a real hypersurface of CP^m . Then M has constant principal curvatures and ξ is a principal curvature vector if and only if M is locally congruent to a homogeneous real hypersurface.

Theorem 2. Okumura [7] Let M be a real hypersurface of CP^m . Then the following are equivalent:

(i) $\phi A = A\phi$. (ii) M is locally congruent to one of homogeneous real hypersurfaces of type A_1 and A_2 .

3. Proof of the theorem

Let $\{E_1, \ldots, E_{2m-2}\}$ be an orthonormal basis of ξ^{\perp} at any point of M. If in (2) we take $X = E_j$, $Z = \phi E_j$, from (6) and applying the formulas (3) we have any $Y, W \in \xi^{\perp}$

(8)

$$-g(AE_{j},\phi E_{j})g(Y,X) + g(\phi Y,\phi E_{j})g(\phi(AE_{j},W))$$

$$-g(\phi AE_{j},\phi E_{j})g(\phi Y,W) - 2g(\phi AE_{j},Y)g(\phi^{2}E_{j},W)$$

$$-g(A^{2}E_{j},\phi E_{j})g(AY,W) + g(\phi E_{j},\phi E_{j})g(AY,W) - g(\phi Y,\phi E_{j})g(A\phi E_{j},W)$$

$$+g(\phi E_{j},\phi E_{j})g(A\phi Y,W) + 2g(\phi E_{j},Y)g(A\phi^{2}E_{j},W)$$

$$+g(AE_{j},\phi E_{j})g(A^{2}Y,W) = 0$$

Taking summation of (8) on j, we obtain

$$g((2m-3)A\phi Y + \phi AY - (\operatorname{trace} A - g(A\xi,\xi)\phi Y,W) = 0.$$

Hence we have

$$(9) \quad (2m-3)A\phi Y+\phi AY-(\mathrm{trace} A-g(A\xi,\xi))\phi Y=(2m-3)g(A\phi Y,\xi)\xi$$

•

(10)
$$-(2m-3)\phi AY - A\phi Y + (\operatorname{trace} A - g(A\xi,\xi))\phi Y = -g(A\phi Y,\xi)\xi.$$

Taking Y-component of (9) to get

(11)
$$2(m-2)g(A\phi Y,Y) = 0$$

If in (2) we take $Y = \phi E_j$, $Z = E_j$ and take summation on j; we obtain for $Y \in \xi^{\perp}$

(12)
$$2mA\phi Y - 2m\phi AY - A\phi A^2Y + A^2\phi AY$$
$$= \{2mg(A\phi Y,\xi) - g(A\phi A^2Y,\xi) + g(A^2\phi AY,\xi)\}\xi.$$

Taking Y-component of (12) to get

(13)
$$2mg(A\phi Y,Y) + g(A^2\phi AY,Y) = 0.$$

Combining (11) with (13), we have

(14)
$$g(A^2\phi AY,Y)=0,$$

since $m \geq 3$. Therefore putting $Y = E_j$ in (14) and taking summation on j,

(15)
$$g(A^2\phi A\xi,\xi)=0.$$

Now, define a cross section U of ξ^{\perp} and a smooth function α on M by

$$A\xi = U + \alpha\xi.$$

Then $\phi A \xi = \phi U$ and $A^2 \xi = AU + \alpha U + \alpha^2 \xi$, so (15) implies

$$(16) g(\phi U, AU) = 0.$$

We also note

(17)
$$g(\phi U, A\xi) = 0.$$

Thus from (16) and (17), we get the following by putting X = U and $Z = \phi U$ in (2):

(18)

$$g(Y,U)g(\phi AU,W) - g(AU,U)g(\phi Y,W)$$

$$2g(\phi AU,Y)g(U,W) - g(A^{2}U,\phi U)g(AY,W)$$

$$-g(Y,U)g(A\phi U,W) + ||U||^{2}g(A\phi Y,W)$$

$$-2g(\phi U,Y)g(AU,W) = 0,$$

122

where $||U||^2 = g(U, U)$. From (18) we have

(19)

$$g(Y,U)\phi AU - g(AU,U)\phi Y + 2g(\phi AU,Y)U -g(A^{2}U,\phi U)AY - g(Y,U)A\phi U + ||U||^{2}A\phi Y -2g(\phi U,Y)AU = \{-2g(A^{2}U,\phi U)g(Y,U) + ||U||^{2}g(A\phi Y,\xi) - 2g(\phi U,Y)g(AU,\xi)\}\xi.$$

Putting Y = U in (9) and (10) and summing up those equations, we have

$$A\phi U - \phi A U = 0,$$

since $m \ge 3$ and (17). Putting Y = U in (19), we obtain

(21)
$$-g(AU, U)\phi U + ||U||^2 A\phi U$$
$$= g(A^2 U, \phi U)AU - g(A^2 U, \phi U)||U||^2 \xi.$$

From (20) we know that

. .

(22)
$$g(A^2U,\phi U) = g(AU,A\phi U) = g(AU,\phi AU) = 0.$$

Combining (21) with (22) we have

(23)
$$||U||^2 A \phi U = g(AU, U) \phi U.$$

Assume that $||U||^2 \neq 0$ at a point, say x. By (23) there exists a certain real number λ such that

(24)
$$A\phi U = \lambda \phi U.$$

If Y is perpendicular to all of U, ϕU and ξ , from (19)

Let $T_x M = V \oplus \operatorname{span}\{U, \xi\}$ be the orthogonal decomposition. Then the above argument implies

where I_V stands for the identity transformation of V. Further we decompose V orthogonally as $V = V' \oplus \text{span}\{\phi U\}$. Note that dim $V' \ge 1$ by the assumption $m \ge 3$. Since V' is invariant by ϕ , (9) reduces to

$$-(\mathrm{trace} A-\alpha)\phi Y+(2m-2)\lambda\phi Y=0,$$

for each $Y \in V'$. So we have

trace
$$A - (2m - 2)\lambda - \alpha = 0$$
.

On the other hand, (26) implies

$$trace A = (2m - 3)\lambda + g(AU, U) + \alpha.$$

Thus $g(AU, U) = \lambda$, which implies

$$AU = \lambda U + ||U||^2 \xi.$$

Putting Y = W = U and Z = X in (2) and substituting (24), (26) and (27), we obtain

$$\lambda g(X,X) \|U\|^4 = 0.$$

Thus we know $\lambda = 0$. Then

$$A\xi = U + \alpha\xi, \quad AU = ||U||^2\xi.$$

Now, it is proved by the same argument with the proof in [4] that a real hypersurface M of \mathbb{CP}^m whose the second fundamental form A satisfies

(28)
$$A\xi = \alpha\xi + U, \quad AU = ||U||^2\xi, \quad AX = 0$$

for any vector X orthogonal to ξ and U, is a ruled hypersurface of CP^m , where α is a smooth function on M. Here we show that there is a foliation of M by complex hyperplane CP^{m-1} . We have only to see that the distribution T_0 defined by $T_0(x) = \{X \in T_x(M) : \eta(X) = 0\}$ is integrable and totally geodesic in M. We consider the open set M_0 of M defined by ||U||, say $\nu \neq 0$. Let T_1 be a distribution defined by $T_1(x) = \{X \in T_x(M) : \eta(X) = g(X, U) = g(X, \phi U) = 0\}$. Let $X \in T_1$. Then we have AX = 0 and $\nabla_X \xi = 0$ by (5) and (28). Using (7) and (28), we have $(\nabla_X A)\xi - (\nabla_\xi A)X = -\phi X$, and

$$(\nabla_X A)\xi - (\nabla_\xi A)X = \nabla_X (A\xi) - A\nabla_X \xi - \nabla_\xi (AX) + A\nabla_\xi X$$
$$= \nabla_X (\nu V + \alpha \xi) + A\nabla_\xi X$$
$$= (X\nu)V + \nu \nabla_X V + (X\alpha)\xi + A\nabla_\xi X,$$

where V = U/||U||. Hence we have $\phi X + (X\nu)V + \nu\nabla_X V + (X\alpha)\xi + A\nabla_\xi X = 0$. This equation yields $\phi X + \nu\nabla_X V = 0$, since all other terms are linear combinations of ξ and V. Thus we get

(29)
$$\nabla_X V = -(1/\nu)\phi X$$

on M_0 . This shows that $M = M_0$, because if $\{x_j\}$ is a sequence of points in M_0 such that it converges to some boundary point of M_0 [hence $\nu(x_j) \to 0$ as $j \to \infty$], then the sequence $\{||\nabla_X V||(x_j)\}$ diverges. Moreover, we have

$$(30) X\nu = 0,$$

124

because $g(\nabla_{\xi}X, AV) = \nu g(\nabla_{\xi}X, \xi) = -\nu g(X, \nabla_{\xi}\xi) = -\nu g(X, \phi A\xi) = 0$, using (28). Next, (7) also implies that $(\nabla_X A)V - (\nabla_V A)X = (\nabla_X A)\phi V - (\nabla_{\phi V} A)X = 0$. By using (4), (28)-(30), we have

$$(\nabla_X A)V - (\nabla_V A)X = \nabla_X (AV) - A\nabla_X V - \nabla_V (AX) + A\nabla_V X$$
$$= \nabla_X (\nu\xi) + (1/\nu)A\phi X + A\nabla_V X$$
$$= \nu\nabla_X \xi + A\nabla_V X,$$
$$= A\nabla_V X,$$

and

....

$$(\nabla_X A)\phi V - (\nabla_{\phi V} A)X = \nabla_X (A\phi V) - A\nabla_X (\phi V) - \nabla_{\phi V} (AX) + A\nabla_{\phi V} X$$

= $-A((\nabla_X \phi)V + \phi \nabla_X V) + A\nabla_{\phi V} X$
= $-A(\eta(V)AX - g(AX, V)\xi + (1/\nu)X) + A\nabla_{\phi V} X$
= $A\nabla_{\phi V} X.$

Hence $\nabla_V X$ and $\nabla_{\phi V} X$ are orthogonal to ξ and V. On the other hand, the Codazzi equation (7) implies that $(\nabla_{\xi} A)V - (\nabla_V A)\xi = \phi V$, and we get

$$(\nabla_{\xi}A)V - (\nabla_{V}A)\xi = \nabla_{\xi}(AV) - A\nabla_{\xi}V - \nabla_{V}(A\xi) + A\nabla_{V}\xi$$

$$= \nabla_{\xi}(\nu\xi) - A\nabla_{\xi}V - \nabla_{V}(\nu V + \alpha\xi)$$

$$= (\xi\nu)\xi + \nu\phi A\xi - A\nabla_{\xi}V - (V\nu)V - \nu\nabla_{V} - V(V\alpha)\xi$$

$$= (\xi\nu - V\alpha)\xi + \nu^{2}\phi V - A\nabla_{\xi}V - (V\nu)V - \nu\nabla_{V}V,$$

by using (28), (29) and $\nabla_V \xi = 0$. This implies that $g(\nabla_V V, \phi V) = \nu - 1/\nu$. Since $g(\nabla_V X, V) = 0$ for $X \in T_1$, we have

(31)
$$\nabla_V V = (\nu - 1/\nu)\phi V \text{ and } \nabla_V (\phi V) = -(\nu - 1/\nu)V.$$

using (4) and (28). Similarly, we obtain $(\nabla_{\xi} A)\phi V - (\nabla_{\phi V} A\xi) = -V$, and we have

$$(\nabla_{\xi}A)\phi V - (\nabla_{\phi V}A)\xi = \nabla_{\xi}(A\phi V) - A\nabla_{\xi}(\phi V) - \nabla_{\phi V}(A\xi) + A\nabla_{\phi V}\xi$$

$$= -A((\nabla_{\xi}\phi)V + \phi\nabla_{\xi}V) - \nabla_{\phi V}(\nu V + \alpha\xi)$$

$$= -A(\eta(V)A\xi - g(A\xi, V)\xi + \phi\nabla_{\xi}V) - (\phi V\nu)V$$

$$-\nu\nabla_{\phi V}V - (\phi V\alpha)\xi$$

$$= \nu A\xi - A\phi\nabla_{\xi}V - (\phi V\nu)V - \nu\nabla_{\phi V}V - (\phi V\alpha)\xi.$$

These equations yield

(32)

$$\nabla_{\phi V} V = 0,$$

because $\nabla_{\phi V} V$ is orthogonal to ξ and V, and

 $\phi V\nu = \nu^2 + 1.$

Then we have

$$\nabla_{\phi V}(\phi V) = 0,$$

by using (4) and (32). From these equations, we can easily show that if X and Y are contained in T_0 , then $\nabla_X Y \in T_0$ and $[X, Y] = \nabla_X Y - \nabla_Y X \in T_0$. Hence T_0 is integrable and totally geodesic in M. Moreover, (28) means that the integral manifold of T_0 is a totally geodesic in CP^m . Since T_0 is J-invariant, its integral manifold is a complex hypersurface CP^{m-1} . Conversely, assume that (28). Then we know M satisfies (2).

Next, assume that $\lambda \neq 0$. It asserts $\phi A\xi = 0$, i.e., ξ is a principal vector. Hence from (9) and (10) it holds $A\phi - \phi A = 0$ on M. Thus by virtue of Theorem 1 and 2, we can obtain Theorem.

References

- T. Cecil and P. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-498.
- [2] T. Gotoh, Geodesic hypersurfaces in complex projective space, Tsukuda J. Math. 18 (1994), 207-215.
- [3] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [4] M. Kimura, Sectional curvatures of holomorphic planes of a real hypersurfaces in Pⁿ(C), Math. Ann. 276 (1987), 487-497.
- Y. Matsuyama, A characterization of real hypersurfaces in complex projective space, J. Institute Sci. and Eng., Chuo Univ. 2 (1996), 11-13.
- Y. Matsuyama, A characterization of real hypersurfaces in complex projective space II, J. Institute Sci. and Eng., Chuo Univ. 3 (1997), 1-3.
- [7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [8] R. Takagi, On real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 355-364.

Department of Mathematics Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, JAPAN

126