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Abstract. In [5] and [6] we showed a characterization of real $hyper8ura_{Ce8}$

of type $A_{1}$ and $A_{2}$ (see Introduction) among all real hypersurfaces of complex
projective space. In the present paper we will consider them under a weaker
condition.

1. Introduction

Let $CP^{m},$ $m\geq 2$ be an m-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let $M$ be a real
hypersurface $CP^{m}$ . Let $\nu$ be a unit local normal vector field on $M$ and $\xi=-J\nu$ ,
where $J$ denotes the complex structure of $CP^{m}$ . $M$ has an almost contact metric
structure $(\phi, \xi, \eta, g)$ induced from $J$ . We denote $A$ and $R$ the shape operator
and the curvature tensor of $M$ , respectively. Many differential geometeres have
studied $M$ (cf. [1], [3], [7] and [8]) by using the structure $(\phi, \xi, \eta,g)$ .

Typical examples of real hypersurfaces in $CP^{m}$ are homogeneous ones. Tak-
agi [8] showed that all homogeneous real hypersurfaces in $CP^{m}$ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or rank 2. Namely, he showed the following: Let $M$ be a homogeneous real
hypersurface of $CP^{m}$ . Then $M$ is a tube of radius $r$ over one of the following
Kaehler submanifolds:
$(A_{1})$ hyperplane $CP^{m}$ , where $0<r<\frac{\pi}{2}$

$(A_{2})$ totally geodesic $CP^{k}(1\leq k\leq m-2)$ ,
(B) complex quadric $Q_{m-1}$ , where $0<r<\frac{\pi}{4}$

(C) $CP^{1}\times CP^{\frac{n-1}{2}}$ , where $0<r<\frac{\pi}{4}$ and $m(\geq 5)$ is odd,
(D) complex Grassmann $CG_{2,5}$ , where $0<r<\frac{\pi}{4}$ and $m=9$ ,
(E) Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\frac{\pi}{4}$ and $m=15$ .
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Due to his classification, we find that the number of distinct constant principal
curvatures of a homogeneous real hypersurface is 2, 3, or 5. Here note that the
vector $\xi$ of any homogeneous real hypersurface $M$ (which is a tube of radius
r) is a principal curvature vector with principal curvature $\alpha=2$ cot $2r$ with
multiplicity 1 (See [1]) and that in the case of type $A_{1}M$ has two distinct

$principalcurvaturest,-\frac{1}{t}and\alpha=t-\frac{1}{t}(respprincipalcurvaturesandinthecaseoftypeA_{2}\frac{(re1+t}{1-t},\frac{.t-1B}{t+1}td\alpha=l-\frac{1}{t})sp.)Mhasthreedistinct$

Contrary to homogeneous real hypersurfaces of $CP^{m}$ , it is known that any
ruled real hypersurface of $CP^{m}$ is not complete and its structure vector field $\xi$

is not principal ([4]).
In [2] Gotoh proved that if $m\geq 3$ and the shape operator $A$ of a real hy-

persurface $M$ satisfies $(R(Y, Z)A)X=0$ for all tangent vectors $X,$ $Y,$ $Z$ in $\xi^{\perp}$ ,
then $M$ is locally congruent to a geodesic hypersphere, where $\xi^{\perp}$ denotes the
orthogonal complement of $\xi$ in $TM$ . The author in [5] showed that if $m\geq 2$ and
(1) $R(AX, Y)(Z)-AR(X, Y)Z=0$

for any $X,$ $Y,$ $Z$ tangent to $TM$ , then $M$ is congruent to an open part of a
homogeneous real hypersurfaces of type $A_{1}$ and $A_{2}$ . Also in [6] he proved that
it remains true in the case where $M$ satisfies (1) for any $X,$ $Y,$ $Z$ in $\xi^{\perp}$ . We
say that $M$ is ruled ([4]) if there is a foliation of $M$ by complex hypersurfaces
$CP^{m-1}$

The purpose of the present paper is to prove that if $m\geq 3$ , then, it remains
true except some case where $M$ satisfies

(2) $g(R(AX,Y)(Z)-AR(X, Y)Z,$ $W$) $=0$

for any $X,$ $Y,$ $Z$ and $W$ in $\xi^{\perp}$ , i.e.,

Theorem. Let $M$ be a real hypersurface of $CP^{m},$ $m\geq 3$ . Then $M$ satisfies
(2) for any $X,$ $Y,$ $Z$ and $W$ in $\xi^{\perp}if$ and only if it is congruent to an open part of
a homogeneous real hypersurfaces of type $A_{1}$ and $A_{2}$ or a ruled real hypersurface.

2. Preliminaries

Let $X$ be a tangent vector field to $M$ . We write $ JX=\phi X+\eta(X)\nu$ , where
$\phi X$ is the tangent component of $JX$ and $\eta(X)=g(X,\xi)$ . As $J^{2}=-Id$ , where
$Id$ denotes the identity endomorphism on $TCP^{m}$ , we get

(3) $\phi^{2}X=-X+\eta(X)\xi$ , $\eta(\phi X)=,$ $\phi\xi=0$

for any $X$ tangent to $M$ . It is also easy to see that for any $X,$ $Y$ tangent to $M$

(4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$
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(5) $\nabla_{X}\xi=\emptyset 4\kappa$ .

Finally ffom the expression of the curvature tensor of $CP^{m}$ , we see that the
curvature tensor of $M$ is given by

(6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$,

(7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .
Now, we recall without proof the following results in order to prove our

theorem:

Theorem 1. (Kimura [3]) Let $M$ be a real hypersurface of $CP^{m}$ . Then $M$

has constant principal curvatures and $\xi$ is a pmncipal curvature vector if and
only if $M$ is locally congruent to a homogeneous real hypersurface.

Theorem 2. Okumura [7] Let $M$ be a real hypersurface of $CP^{m}$ . Then the
following are equivalent:
(i) $\phi A=A\phi$ .
(ii) $M$ is locally congruent to one of homogeneous real hypersurfaces of type $A_{1}$

and $A_{2}$ .

3. Proof of the theorem

Let $\{E_{1}, \ldots, E_{2m-2}\}$ be an orthonormal basis of $\xi^{\perp}$ at any point of $M$ . If in
(2) we take $X=E_{j},$ $Z=\phi E_{j}$ , from (6) and applying the formulas (3) we have
any $Y,$ $W\in\xi^{\perp}$

(8) $-g(AE_{j}, \phi E_{j})g(Y, X)+g(\phi Y, \phi E_{j})g(\phi(AE_{j}, W)$

$-g(\phi AE_{j}, \phi E_{j})g(\phi Y, W)-2g(\phi AE_{j}, Y)g(\phi^{2}E_{j}, W)$

$-g(A^{2}E_{j}, \phi E_{j})g(AY, W)$

$+g(E_{j}, \phi E_{j})g(AY, W)-g(\phi Y, \phi E_{j})g(A\phi E_{j}, W)$

$+g(\phi E_{j}, \phi E_{j})g(A\phi Y, W)+2g(\phi E_{j}, Y)g(A\phi^{2}E_{j}, W)$

$+g(AE_{j}, \phi E_{j})g(A^{2}Y, W)=0$

Taking summation of (8) on $j$ , we obtain

$g((2m-3)A\phi Y+\phi AY-(traceA-g(A\xi, \xi)\phi Y,$ $W$) $=0$ .

Hence we have

(9) $(2m-3)A\phi Y+\phi AY-(traceA-g(A\xi,\xi))\phi Y=(2m-3)g(A\phi Y,\xi)\xi$
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(10) $-(2m-3)\phi AY-A\phi Y+(traceA-g(A\xi, \xi))\phi Y=-g(A\phi Y, \xi)\xi$ .
Taking Y-component of (9) to get

(11) $2(m-2)g(A\phi Y,Y)=0$

If in (2) we take $Y=\phi E_{j},$ $Z=E_{j}$ and take summation on $j$ ; we obtain for
$Y\in\xi^{\perp}$

(12) 2$mA\phi Y-2m\phi AY-A\phi A^{2}Y+A^{2}\phi AY$

$=\{2mg(A\phi Y,\xi)-g(A\phi A^{2}Y, \xi)+g(A^{2}\phi AY, \xi)\}\xi$ .

Taking Y-component of (12) to get

(13) $2mg(A\phi Y, Y)+g(A^{2}\phi AY, Y)=0$ .

Combining (11) with (13), we have

(14) $g(A^{2}\phi AY, Y)=0$ ,

since $m\geq 3$ . Therefore putting $Y=E_{j}$ in (14) and taking summation on $j$ ,

(15) $g(A^{2}\phi A\xi,\xi)=0$ .

Now, define a cross section $U$ of $\xi^{\perp}$ and a smooth function $\alpha$ on $M$ by

$ A\xi=U+\alpha\zeta$ .

Then $\phi A\xi=\phi U$ and $ A^{2}\xi=AU+\alpha U+\alpha^{2}\zeta$ , so (15) implies

(16) $g(\phi U, AU)=0$ .

We also note

(17) $g(\phi U, A\xi)=0$ .

Thus $hom(16)$ and (17), we get the following by putting $X=U$ and $Z=\phi U$

in (2):

(18) $g(Y, U)g(\phi AU, W)-g(AU, U)g(\phi Y, W)$

$2g(\phi AU, Y)g(U, W)-g(A^{2}U, \phi U)g(AY, W)$

$-g(Y, U)g(A\phi U, W)+||U||^{2}g(A\phi Y, W)$

$-2g(\phi U,Y)g(AU, W)=0$ ,
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where $||U||^{2}=g(U, U)$ . From (18) we have

(19) $g(Y, U)\phi AU-g(AU, U)\phi Y+2g(\phi AU, Y)U$

$-g(A^{2}U, \phi U)AY-g(Y, U)A\phi U+||U||^{2}A\phi Y$

$-2g(\phi U,Y)AU=\{-2g(A^{2}U, \phi U)g(Y, U)$

$+||U||^{2}g(A\phi Y, \xi)-2g(\phi U, Y)g(AU,\xi)\}\xi$ .
Putting $Y=U$ in (9) and (10) and summing up those equations, we have

(20) $A\phi U-\phi AU=0$ ,

since $m\geq 3$ and (17). Putting $Y=U$ in (19), we obtain

(21) $-g(AU, U)\phi U+||U||^{2}A\phi U$

$=g(A^{2}U, \phi U)AU-g(A^{2}U, \phi U)||U||^{2}\xi$ .
From (20) we know that

(22) $g(A^{2}U, \phi U)=g(AU, A\phi U)=g(AU, \phi AU)=0$ .
Combining (21) with (22) we have

(23) $||U||^{2}A\phi U=g(AU, U)\phi U$.

Assume that $||U||^{2}\neq 0$ at a point, say $x$ . By (23) there exists a certain real
number $\lambda$ such that

(24) $A\phi U=\lambda\phi U$.
If $Y$ is perpendicular to all of $U,$ $\phi U$ and $\xi$ , from (19)

(25) $A\phi Y=\lambda\phi Y$.

Let $T_{x}M=V\oplus span\{U, \xi\}$ be the orthogonal decomposition. Then the above
argument implies

(26) $A|_{V}=\lambda I_{V}$ ,

where $I_{V}$ stands for the identity transformation of $V$ . Further we decompose $V$

orthogonally as $V=V^{\prime}\oplus span\{\phi U\}$ . Note that dim $V^{\prime}\geq 1$ by the assumption
$m\geq 3$ . Since $V^{\prime}$ is invariant by $\phi,$ (9) reduces to

$-(traceA-\alpha)\phi Y+(2m-2)\lambda\phi Y=0$ ,

for each $Y\in V^{\prime}$ . So we have

$traceA-(2m-2)\lambda-\alpha=0$ .
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On the other hand, (26) implies

traceA $=(2m-3)\lambda+g(AU, U)+\alpha$ .

Thus $ g(AU, U)=\lambda$ , which implies

(27) $ AU=\lambda U+||U||^{2}\xi$ .
Putting $Y=W=U$ and $Z=X$ in (2) and substituting (24), (26) and (27), we
obtain

$\lambda g(X, X)||U||^{4}=0$ .
Thus we know $\lambda=0$ . Then

$ A\xi=U+\alpha\xi$ , $ AU=||U||^{2}\zeta$ .
Now, it is proved by the same argument with the proof in [4] that a real hyper-
surface $M$ of $CP^{m}$ whose the second fundamental form $A$ satisfies

(28) $A\xi=\alpha\xi+U$, $ AU=||U||^{2}\xi$ , $AX=0$

for any vector $X$ orthogonal to $\xi$ and $U$ , is a ruled hypersurface of $CP^{m}$ , where
$\alpha$ is a smooth function on $M$ . Here we show that there is a foliation of $M$ by
complex hyperplane $CP^{m-1}$ . We have only to see that the distribution $T_{0}$ defined
by $T_{0}(x)=\{X\in T_{x}(M) : \eta(X)=0\}$ is integrable and totally geodesic in $M$ . We
consider the open set $M_{0}$ of $M$ defined by $||U||$ , say $\nu\neq 0$ . Let $T_{1}$ be a distribution
defined by $T_{1}(x)=\{X\in T_{x}(M) : \eta(X)=g(X, U)=g(X, \phi U)=0\}$ . Let
$X\in T_{1}$ . Then we have $AX=0$ and $\nabla_{X}\xi=0$ by (5) and (28). Using (7) and
(28), we have $(\nabla_{X}A)\xi-(\nabla_{\xi}A)X=-\phi X$ , and

$(\nabla_{X}A)\xi-(\nabla_{\zeta}A)X=\nabla_{X}(A\zeta)-A\nabla_{X}\xi-\nabla_{\xi}(AX)+A\nabla_{\xi}X$

$=\nabla_{X}(\nu V+\alpha\xi)+A\nabla_{\zeta}X$

$=(X\nu)V+\nu\nabla_{X}V+(X\alpha)\xi+A\nabla_{\xi}X$ ,

where $V=U/||U||$ . Hence we have $\phi X+(X\nu)V+\nu\nabla_{X}V+(X\alpha)\xi+A\nabla_{\zeta}X=0$ .
This equation yields $\phi X+\nu\nabla_{X}V=0,$ $s$ince all other terms are linear combina-
tions of $\xi$ and $V$ . Thus we get

(29) $\nabla_{X}V=-(1/\nu)\phi X$

on $M_{0}$ . This shows that $M=M_{0}$ , because if $\{x_{j}\}$ is a sequence of points in
$M_{0}$ such that it converges to some boundary point of $M_{0}$ [hence $\nu(x_{j})\rightarrow 0$ as
$j\rightarrow\infty]$ , then the sequence $\{||\nabla_{X}V||(x_{j})\}$ diverges. Moreover, we have

(30) $X\nu=0$ ,
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because $g(\nabla_{\xi}X, AV)=\nu g(\nabla_{\xi}X, \xi)=-\nu g(X, \nabla_{\xi}\xi)=-\nu g(X, \phi A\xi)=0$ , using
(28). Next, (7) also implies that $(\nabla_{X}A)V-(\nabla_{V}A)X=(\nabla_{X}A)\phi V-(\nabla_{\phi V}A)X=$

$0$ . By using (4), (28) $-(30)$ , we have

$(\nabla xA)V-(\nabla_{V}A)X=\nabla_{X}(AV)-A\nabla xV-\nabla_{V}(AX)+A\nabla vX$

$=\nabla_{X}(\nu\xi)+(1/\nu)A\phi X+A\nabla_{V}X$

$=\nu\nabla_{X}\xi+A\nabla_{V}X$ ,
$=A\nabla_{V}X$ ,

and

$(\nabla_{X}A)\phi V-(\nabla_{\phi V}A)X=\nabla_{X}(A\phi V)-A\nabla_{X}(\phi V)-\nabla_{\phi V}(AX)+A\nabla_{\phi V}X$

$=-A((\nabla_{X}\phi)V+\phi\nabla_{X}V)+A\nabla_{\phi V}X$

$=-A(\eta(V)AX-g(AX, V)\xi+(1/\nu)X)+A\nabla_{\phi V}X$

$=A\nabla_{\phi V}X$ .

Hence $\nabla_{V}X$ and $\nabla_{\phi V}X$ are orthogonal to $\xi$ and $V$ . On the other hand, the
Codazzi equation (7) implies that $(\nabla_{\xi}A)V-(\nabla_{V}A)\xi=\phi V$ , and we get

$(\nabla_{\xi}A)V-(\nabla_{V}A)\xi=\nabla_{\xi}(AV)-A\nabla_{\zeta}V-\nabla_{V}(A\zeta)+A\nabla_{V}\xi$

$=\nabla_{\xi}(\nu\xi)-A\nabla_{\zeta}V-\nabla_{V}(\nu V+\alpha\xi)$

$=(\xi\nu)\xi+\nu\phi A\xi-A\nabla_{\xi}V-(V\nu)V-\nu\nabla_{V}-V(V\alpha)\xi$

$=(\xi\nu-V\alpha)\xi+\nu^{2}\phi V-A\nabla_{\xi}V-(V\nu)V-\nu\nabla_{V}V$,

by using (28), (29) and $\nabla_{V}\xi=0$ . This implies that $ g(\nabla_{V}V, \phi V)=\nu-1/\nu$ .
Since $g(\nabla_{V}X, V)=0$ for $X\in T_{1}$ , we have

(31) $\nabla_{V}V=(\nu-1/\nu)\phi V$ and $\nabla_{V}(\phi V)=-(\nu-1/\nu)V$

using (4) and (28). Similarly, we obtain $(V_{\xi}A)\phi V-(\nabla_{\phi V}A\xi)=-V$ , and we
have

$(\nabla_{\xi}A)\phi V-(\nabla_{\phi V}A)\xi=\nabla_{\zeta}(A\phi V)-A\nabla_{\xi}(\phi V)-\nabla_{\phi V}(A\xi)+A\nabla_{\phi V}\xi$

$=-A((\nabla_{\xi}\phi)V+\phi\nabla_{\zeta}V)-\nabla_{\phi V}(\nu V+\alpha\xi)$

$=-A(\eta(V)A\xi-g(A\xi, V)\xi+\phi\nabla_{\xi}V)-(\phi V\nu)V$

$-\nu\nabla_{\phi V}V-(\phi V\alpha)\xi$

$=\nu A\xi-A\phi\nabla_{\xi}V-(\phi V\nu)V-\nu\nabla_{\phi V}V-(\phi V\alpha)\xi$ .

These equations yield

(32) $\nabla_{\phi V}V=0$ ,
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because $\nabla_{\phi V}V$ is orthogonal to $\xi$ and $V$ , and

(33) $\phi V\nu=\nu^{2}+1$ .

Then we have

(34) $\nabla_{\phi V}(\phi V)=0$ ,

by using (4) and (32). From these equations, we can easily show that if $X$ and $Y$

are contained in $T_{0}$ , then $\nabla_{X}Y\in T_{0}$ and [X, $Y$ ] $=\nabla_{X}Y-\nabla_{Y}X\in T_{0}$ . Hence $T_{0}$

is integrable and totally geodesic in $M$ . Moreover, (28) means that the integral
manifold of $T_{0}$ is a totally geodesic in $CP^{m}$ . Since $T_{0}$ is J-invariant, its integral
manifold is a complex hypersurface $CP^{m-1}$ . Conversely, assume that (28). Then
we know $M$ satisfies (2).

Next, assume that $\lambda\neq 0$ . It asserts $\phi A\xi=0$ , i.e., $\zeta$ is a principal vector.
Hence from (9) and (10) it holds $A\phi-\phi A=0$ on $M$ . Thus by virtue of Theorem
1 and 2, we can obtain Theorem.
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