A CHARACTERIZATION OF REAL HYPERSURFACES OF COMPLEX PROJECTIVE SPACE III

By
Yoshio Matsuyama

(Received March 12, 1998; Revised September 25, 1998)

Abstract

In [5] and [6] we showed a characterization of real hypersurfaces of type A_{1} and A_{2} (see Introduction) among all real hypersurfaces of complex projective space. In the present paper we will consider them under a weaker condition.

1. Introduction

Let $C P^{m}, m \geq 2$ be an m-dimensional complex projective space with FubiniStudy metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface $C P^{m}$. Let ν be a unit local normal vector field on M and $\xi=-J \nu$, where J denotes the complex structure of $C P^{m}$. M has an almost contact metric structure (ϕ, ξ, η, g) induced from J. We denote A and R the shape operator and the curvature tensor of M, respectively. Many differential geometeres have studied M (cf. [1], [3], [7] and [8]) by using the structure (ϕ, ξ, η, g).

Typical examples of real hypersurfaces in $C P^{m}$ are homogeneous ones. Takagi [8] showed that all homogeneous real hypersurfaces in $C P^{m}$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following: Let M be a homogeneous real hypersurface of $C P^{m}$. Then M is a tube of radius r over one of the following Kaehler submanifolds:
$\left(A_{1}\right)$ hyperplane $C P^{m}$, where $0<r<\frac{\pi}{2}$,
$\left(A_{2}\right)$ totally geodesic $C P^{k}(1 \leq k \leq m-2)$,
(B) complex quadric Q_{m-1}, where $0<r<\frac{\pi}{4}$,
(C) $C P^{1} \times C P^{\frac{m-1}{2}}$, where $0<r<\frac{\pi}{4}$ and $m(\geq 5)$ is odd,
(D) complex Grassmann $C G_{2,5}$, where $0<r<\frac{\pi}{4}$ and $m=9$,
(E) Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $m=15$.

[^0]Due to his classification, we find that the number of distinct constant principal curvatures of a homogeneous real hypersurface is 2,3 , or 5 . Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha=2 \cot 2 r$ with multiplicity 1 (See [1]) and that in the case of type $A_{1} M$ has two distinct principal curvatures and in the case of type A_{2} (resp. B) M has three distinct principal curvatures $t,-\frac{1}{t}$ and $\alpha=t-\frac{1}{t}$ (resp. $\frac{1+t}{1-t}, \frac{t-1}{t+1}$ and $\alpha=t-\frac{1}{t}$).

Contrary to homogeneous real hypersurfaces of $C P^{m}$, it is known that any ruled real hypersurface of $C P^{m}$ is not complete and its structure vector field ξ is not principal ([4]).

In [2] Gotoh proved that if $m \geq 3$ and the shape operator A of a real hypersurface M satisfies $(R(Y, Z) A) X=0$ for all tangent vectors X, Y, Z in ξ^{\perp}, then M is locally congruent to a geodesic hypersphere, where ξ^{\perp} denotes the orthogonal complement of ξ in $T M$. The author in [5] showed that if $m \geq 2$ and

$$
\begin{equation*}
R(A X, Y)(Z)-A R(X, Y) Z=0 \tag{1}
\end{equation*}
$$

for any X, Y, Z tangent to $T M$, then M is congruent to an open part of a homogeneous real hypersurfaces of type A_{1} and A_{2}. Also in [6] he proved that it remains true in the case where M satisfies (1) for any X, Y, Z in ξ^{\perp}. We say that M is ruled ([4]) if there is a foliation of M by complex hypersurfaces $C P^{m-1}$

The purpose of the present paper is to prove that if $m \geq 3$, then, it remains true except some case where M satisfies

$$
\begin{equation*}
g(R(A X, Y)(Z)-A R(X, Y) Z, W)=0 \tag{2}
\end{equation*}
$$

for any X, Y, Z and W in ξ^{\perp}, i.e.,
Theorem. Let M be a real hypersurface of $C P^{m}, m \geq 3$. Then M satisfies (2) for any X, Y, Z and W in ξ^{\perp} if and only if it is congruent to an open part of a homogeneous real hypersurfaces of type A_{1} and A_{2} or a ruled real hypersurface.

2. Preliminaries

Let X be a tangent vector field to M. We write $J X=\phi X+\eta(X) \nu$, where ϕX is the tangent component of $J X$ and $\eta(X)=g(X, \xi)$. As $J^{2}=-I d$, where $I d$ denotes the identity endomorphism on $T C P^{m}$, we get

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\phi X)=, \phi \xi=0 \tag{3}
\end{equation*}
$$

for any X tangent to M. It is also easy to see that for any X, Y tangent to M

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{5}
\end{equation*}
$$

Finally from the expression of the curvature tensor of $C P^{m}$, we see that the curvature tensor of M is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{6}\\
& -2 g(\phi X, Y) \phi Z+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{7}
\end{equation*}
$$

Now, we recall without proof the following results in order to prove our theorem:

Theorem 1. (Kimura [3]) Let M be a real hypersurface of $C P^{m}$. Then M has constant principal curvatures and ξ is a principal curvature vector if and only if M is locally congruent to a homogeneous real hypersurface.

Theorem 2. Okumura [7] Let M be a real hypersurface of $C P^{m}$. Then the following are equivalent:
(i) $\phi A=A \phi$.
(ii) M is locally congruent to one of homogeneous real hypersurfaces of type A_{1} and A_{2}.

3. Proof of the theorem

Let $\left\{E_{1}, \ldots, E_{2 m-2}\right\}$ be an orthonormal basis of ξ^{\perp} at any point of M. If in (2) we take $X=E_{j}, Z=\phi E_{j}$, from (6) and applying the formulas (3) we have any $Y, W \in \xi^{\perp}$

$$
\begin{array}{r}
-g\left(A E_{j}, \phi E_{j}\right) g(Y, X)+g\left(\phi Y, \phi E_{j}\right) g\left(\phi\left(A E_{j}, W\right)\right. \tag{8}\\
-g\left(\phi A E_{j}, \phi E_{j}\right) g(\phi Y, W)-2 g\left(\phi A E_{j}, Y\right) g\left(\phi^{2} E_{j}, W\right) \\
-g\left(A^{2} E_{j}, \phi E_{j}\right) g(A Y, W) \\
+g\left(E_{j}, \phi E_{j}\right) g(A Y, W)-g\left(\phi Y, \phi E_{j}\right) g\left(A \phi E_{j}, W\right) \\
+g\left(\phi E_{j}, \phi E_{j}\right) g(A \phi Y, W)+2 g\left(\phi E_{j}, Y\right) g\left(A \phi^{2} E_{j}, W\right) \\
+g\left(A E_{j}, \phi E_{j}\right) g\left(A^{2} Y, W\right)=0
\end{array}
$$

Taking summation of (8) on j, we obtain

$$
g((2 m-3) A \phi Y+\phi A Y-(\operatorname{trace} A-g(A \xi, \xi) \phi Y, W)=0
$$

Hence we have

$$
\begin{equation*}
(2 m-3) A \phi Y+\phi A Y-(\operatorname{trace} A-g(A \xi, \xi)) \phi Y=(2 m-3) g(A \phi Y, \xi) \xi \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
-(2 m-3) \phi A Y-A \phi Y+(\operatorname{trace} A-g(A \xi, \xi)) \phi Y=-g(A \phi Y, \xi) \xi \tag{10}
\end{equation*}
$$

Taking Y-component of (9) to get

$$
\begin{equation*}
2(m-2) g(A \phi Y, Y)=0 \tag{11}
\end{equation*}
$$

If in (2) we take $Y=\phi E_{j}, Z=E_{j}$ and take summation on j; we obtain for $Y \in \xi^{\perp}$

$$
\begin{align*}
2 m A \phi Y & -2 m \phi A Y-A \phi A^{2} Y+A^{2} \phi A Y \tag{12}\\
& =\left\{2 m g(A \phi Y, \xi)-g\left(A \phi A^{2} Y, \xi\right)+g\left(A^{2} \phi A Y, \xi\right)\right\} \xi
\end{align*}
$$

Taking Y-component of (12) to get

$$
\begin{equation*}
2 m g(A \phi Y, Y)+g\left(A^{2} \phi A Y, Y\right)=0 \tag{13}
\end{equation*}
$$

Combining (11) with (13), we have

$$
\begin{equation*}
g\left(A^{2} \phi A Y, Y\right)=0 \tag{14}
\end{equation*}
$$

since $m \geq 3$. Therefore putting $Y=E_{j}$ in (14) and taking summation on j,

$$
\begin{equation*}
g\left(A^{2} \phi A \xi, \xi\right)=0 \tag{15}
\end{equation*}
$$

Now, define a cross section U of ξ^{\perp} and a smooth function α on M by

$$
A \xi=U+\alpha \xi
$$

Then $\phi A \xi=\phi U$ and $A^{2} \xi=A U+\alpha U+\alpha^{2} \xi$, so (15) implies

$$
\begin{equation*}
g(\phi U, A U)=0 \tag{16}
\end{equation*}
$$

We also note

$$
\begin{equation*}
g(\phi U, A \xi)=0 \tag{17}
\end{equation*}
$$

Thus from (16) and (17), we get the following by putting $X=U$ and $Z=\phi U$ in (2):

$$
\begin{array}{r}
g(Y, U) g(\phi A U, W)-g(A U, U) g(\phi Y, W) \tag{18}\\
2 g(\phi A U, Y) g(U, W)-g\left(A^{2} U, \phi U\right) g(A Y, W) \\
-g(Y, U) g(A \phi U, W)+\|U\|^{2} g(A \phi Y, W) \\
-2 g(\phi U, Y) g(A U, W)=0,
\end{array}
$$

where $\|U\|^{2}=g(U, U)$. From (18) we have

$$
\begin{array}{r}
g(Y, U) \phi A U-g(A U, U) \phi Y+2 g(\phi A U, Y) U \tag{19}\\
-g\left(A^{2} U, \phi U\right) A Y-g(Y, U) A \phi U+\|U\|^{2} A \phi Y \\
-2 g(\phi U, Y) A U=\left\{-2 g\left(A^{2} U, \phi U\right) g(Y, U)\right. \\
\left.+\|U\|^{2} g(A \phi Y, \xi)-2 g(\phi U, Y) g(A U, \xi)\right\} \xi
\end{array}
$$

Putting $Y=U$ in (9) and (10) and summing up those equations, we have

$$
\begin{equation*}
A \phi U-\phi A U=0 \tag{20}
\end{equation*}
$$

since $m \geq 3$ and (17). Putting $Y=U$ in (19), we obtain

$$
\begin{align*}
& -g(A U, U) \phi U+\|U\|^{2} A \phi U \tag{21}\\
& =g\left(A^{2} U, \phi U\right) A U-g\left(A^{2} U, \phi U\right)\|U\|^{2} \xi
\end{align*}
$$

From (20) we know that

$$
\begin{equation*}
g\left(A^{2} U, \phi U\right)=g(A U, A \phi U)=g(A U, \phi A U)=0 \tag{22}
\end{equation*}
$$

Combining (21) with (22) we have

$$
\begin{equation*}
\|U\|^{2} A \phi U=g(A U, U) \phi U . \tag{23}
\end{equation*}
$$

Assume that $\|U\|^{2} \neq 0$ at a point, say x. By (23) there exists a certain real number λ such that

$$
\begin{equation*}
A \phi U=\lambda \phi U . \tag{24}
\end{equation*}
$$

If Y is perpendicular to all of $U, \phi U$ and ξ, from (19)

$$
\begin{equation*}
A \phi Y=\lambda \phi Y \tag{25}
\end{equation*}
$$

Let $T_{x} M=V \oplus \operatorname{span}\{U, \xi\}$ be the orthogonal decomposition. Then the above argument implies

$$
\begin{equation*}
\left.A\right|_{V}=\lambda I_{V} \tag{26}
\end{equation*}
$$

where I_{V} stands for the identity transformation of V. Further we decompose V orthogonally as $V=V^{\prime} \oplus \operatorname{span}\{\phi U\}$. Note that $\operatorname{dim} V^{\prime} \geq 1$ by the assumption $m \geq 3$. Since V^{\prime} is invariant by ϕ, (9) reduces to

$$
-(\operatorname{trace} A-\alpha) \phi Y+(2 m-2) \lambda \phi Y=0
$$

for each $Y \in V^{\prime}$. So we have

$$
\operatorname{trace} A-(2 m-2) \lambda-\alpha=0
$$

On the other hand, (26) implies

$$
\operatorname{trace} A=(2 m-3) \lambda+g(A U, U)+\alpha
$$

Thus $g(A U, U)=\lambda$, which implies

$$
\begin{equation*}
A U=\lambda U+\|U\|^{2} \xi \tag{27}
\end{equation*}
$$

Putting $Y=W=U$ and $Z=X$ in (2) and substituting (24), (26) and (27), we obtain

$$
\lambda g(X, X)\|U\|^{4}=0
$$

Thus we know $\lambda=0$. Then

$$
A \xi=U+\alpha \xi, \quad A U=\|U\|^{2} \xi
$$

Now, it is proved by the same argument with the proof in [4] that a real hypersurface M of $C P^{m}$ whose the second fundamental form A satisfies

$$
\begin{equation*}
A \xi=\alpha \xi+U, \quad A U=\|U\|^{2} \xi, \quad A X=0 \tag{28}
\end{equation*}
$$

for any vector X orthogonal to ξ and U, is a ruled hypersurface of $C P^{m}$, where α is a smooth function on M. Here we show that there is a foliation of M by complex hyperplane $C P^{m-1}$. We have only to see that the distribution T_{0} defined by $T_{0}(x)=\left\{X \in T_{x}(M): \eta(X)=0\right\}$ is integrable and totally geodesic in M. We consider the open set M_{0} of M defined by $\|U\|$, say $\nu \neq 0$. Let T_{1} be a distribution defined by $T_{1}(x)=\left\{X \in T_{x}(M): \eta(X)=g(X, U)=g(X, \phi U)=0\right\}$. Let $X \in T_{1}$. Then we have $A X=0$ and $\nabla_{X} \xi=0$ by (5) and (28). Using (7) and (28), we have $\left(\nabla_{X} A\right) \xi-\left(\nabla_{\xi} A\right) X=-\phi X$, and

$$
\begin{aligned}
\left(\nabla_{X} A\right) \xi-\left(\nabla_{\xi} A\right) X & =\nabla_{X}(A \xi)-A \nabla_{X} \xi-\nabla_{\xi}(A X)+A \nabla_{\xi} X \\
& =\nabla_{X}(\nu V+\alpha \xi)+A \nabla_{\xi} X \\
& =(X \nu) V+\nu \nabla_{X} V+(X \alpha) \xi+A \nabla_{\xi} X
\end{aligned}
$$

where $V=U /\|U\|$. Hence we have $\phi X+(X \nu) V+\nu \nabla_{X} V+(X \alpha) \xi+A \nabla_{\xi} X=0$. This equation yields $\phi X+\nu \nabla_{X} V=0$, since all other terms are linear combinations of ξ and V. Thus we get

$$
\begin{equation*}
\nabla_{X} V=-(1 / \nu) \phi X \tag{29}
\end{equation*}
$$

on M_{0}. This shows that $M=M_{0}$, because if $\left\{x_{j}\right\}$ is a sequence of points in M_{0} such that it converges to some boundary point of M_{0} [hence $\nu\left(x_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$], then the sequence $\left\{\left\|\nabla_{X} V\right\|\left(x_{j}\right)\right\}$ diverges. Moreover, we have

$$
\begin{equation*}
X \nu=0 \tag{30}
\end{equation*}
$$

because $g\left(\nabla_{\xi} X, A V\right)=\nu g\left(\nabla_{\xi} X, \xi\right)=-\nu g\left(X, \nabla_{\xi} \xi\right)=-\nu g(X, \phi A \xi)=0$, using (28). Next, (7) also implies that $\left(\nabla_{X} A\right) V-\left(\nabla_{V} A\right) X=\left(\nabla_{X} A\right) \phi V-\left(\nabla_{\phi V} A\right) X=$ 0 . By using (4), (28)-(30), we have

$$
\begin{aligned}
\left(\nabla_{X} A\right) V-\left(\nabla_{V} A\right) X & =\nabla_{X}(A V)-A \nabla_{X} V-\nabla_{V}(A X)+A \nabla_{V} X \\
& =\nabla_{X}(\nu \xi)+(1 / \nu) A \phi X+A \nabla_{V} X \\
& =\nu \nabla_{X} \xi+A \nabla_{V} X, \\
& =A \nabla_{V} X,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla_{X} A\right) \phi V-\left(\nabla_{\phi V} A\right) X & =\nabla_{X}(A \phi V)-A \nabla_{X}(\phi V)-\nabla_{\phi V}(A X)+A \nabla_{\phi V} X \\
& =-A\left(\left(\nabla_{X} \phi\right) V+\phi \nabla_{X} V\right)+A \nabla_{\phi V} X \\
& =-A(\eta(V) A X-g(A X, V) \xi+(1 / \nu) X)+A \nabla_{\phi V} X \\
& =A \nabla_{\phi V} X
\end{aligned}
$$

Hence $\nabla_{V} X$ and $\nabla_{\phi V} X$ are orthogonal to ξ and V. On the other hand, the Codazzi equation (7) implies that $\left(\nabla_{\xi} A\right) V-\left(\nabla_{V} A\right) \xi=\phi V$, and we get

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) V-\left(\nabla_{V} A\right) \xi & =\nabla_{\xi}(A V)-A \nabla_{\xi} V-\nabla_{V}(A \xi)+A \nabla_{V} \xi \\
& =\nabla_{\xi}(\nu \xi)-A \nabla_{\xi} V-\nabla_{V}(\nu V+\alpha \xi) \\
& =(\xi \nu) \xi+\nu \phi A \xi-A \nabla_{\xi} V-(V \nu) V-\nu \nabla_{V}-V(V \alpha) \xi \\
& =(\xi \nu-V \alpha) \xi+\nu^{2} \phi V-A \nabla_{\xi} V-(V \nu) V-\nu \nabla_{V} V
\end{aligned}
$$

by using (28), (29) and $\nabla_{V} \xi=0$. This implies that $g\left(\nabla_{V} V, \phi V\right)=\nu-1 / \nu$. Since $g\left(\nabla_{V} X, V\right)=0$ for $X \in T_{1}$, we have

$$
\begin{equation*}
\nabla_{V} V=(\nu-1 / \nu) \phi V \quad \text { and } \quad \nabla_{V}(\phi V)=-(\nu-1 / \nu) V . \tag{31}
\end{equation*}
$$

using (4) and (28). Similarly, we obtain $\left(\nabla_{\xi} A\right) \phi V-\left(\nabla_{\phi V} A \xi\right)=-V$, and we have

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) \phi V-\left(\nabla_{\phi V} A\right) \xi= & \nabla_{\xi}(A \phi V)-A \nabla_{\xi}(\phi V)-\nabla_{\phi V}(A \xi)+A \nabla_{\phi V} \xi \\
= & -A\left(\left(\nabla_{\xi} \phi\right) V+\phi \nabla_{\xi} V\right)-\nabla_{\phi V}(\nu V+\alpha \xi) \\
= & -A\left(\eta(V) A \xi-g(A \xi, V) \xi+\phi \nabla_{\xi} V\right)-(\phi V \nu) V \\
& -\nu \nabla_{\phi V} V-(\phi V \alpha) \xi \\
= & \nu A \xi-A \phi \nabla_{\xi} V-(\phi V \nu) V-\nu \nabla_{\phi V} V-(\phi V \alpha) \xi .
\end{aligned}
$$

These equations yield

$$
\begin{equation*}
\nabla_{\phi V} V=0 \tag{32}
\end{equation*}
$$

because $\nabla_{\phi V} V$ is orthogonal to ξ and V, and

$$
\begin{equation*}
\phi V \nu=\nu^{2}+1 \tag{33}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\nabla_{\phi V}(\phi V)=0, \tag{34}
\end{equation*}
$$

by using (4) and (32). From these equations, we can easily show that if X and Y are contained in T_{0}, then $\nabla_{X} Y \in T_{0}$ and $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in T_{0}$. Hence T_{0} is integrable and totally geodesic in M. Moreover, (28) means that the integral manifold of T_{0} is a totally geodesic in $C P^{m}$. Since T_{0} is J-invariant, its integral manifold is a complex hypersurface $C P^{m-1}$. Conversely, assume that (28). Then we know M satisfies (2).

Next, assume that $\lambda \neq 0$. It asserts $\phi A \xi=0$, i.e., ξ is a principal vector. Hence from (9) and (10) it holds $A \phi-\phi A=0$ on M. Thus by virtue of Theorem 1 and 2 , we can obtain Theorem.

References

[1] T. Cecil and P. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-498.
[2] T. Gotoh, Geodesic hypersurfaces in complex projective space, Tsukuda J. Math. 18 (1994), 207-215.
[3] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[4] M. Kimura, Sectional curvatures of holomorphic planes of a real hypersurfaces in $P^{\boldsymbol{n}}(\mathbb{C})$, Math. Ann. 276 (1987), 487-497.
[5] Y. Matsuyama, A characterization of real hypersurfaces in complex projective space, J. Institute Sci. and Eng., Chuo Univ. 2 (1996), 11-13.
[6] Y. Matsuyama, A characterization of real hypersurfaces in complex projective space II, J. Institute Sci. and Eng., Chuo Univ. 3 (1997), 1-3.
[7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[8] R. Takagi, On real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 355-364.

Department of Mathematics Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, JAPAN

[^0]: 1991 Mathematics Subject Classification: 53B25, 53C40
 Key words and phrases: complex projective space real hypersurface, geodesic hypersphere, ruled hypersurface.

 Research partially supported by an individual grant of Chuo Univ, 1997-1998.

