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Abstract. In and [@] we showed a characterization of real hypersurfaces
of type A; and A; (see Introduction) among all real hypersurfaces of complex
projective space. In the present paper we will consider them under a weaker
condition.

1. Introduction

Let CP™, m > 2 be an m-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let M be a real
hypersurface CP™. Let v be a unit local normal vector field on M and E=-Jv,
where J denotes the complex structure of CP™. M has an almost contact metric
structure (¢,&,7, g) induced from J. We denote A and R the shape operator
and the curvature tensor of M, respectively. Many differential geometeres have
studied M (cf. [1], [3], [7] and [8]) by using the structure (¢, £, n, 9g)-

Typical examples of real hypersurfaces in CP™ are homogeneous ones. Tak-
agi (8] showed that all homogeneous real hypersurfaces in CP™ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or rank 2. Namely, he showed the following: Let M be a homogeneous real
hypersurface of CP™. Then M is a tube of radius r over one of the following
Kaehler submanifolds:

(A1) hyperplane CP™, where 0 < r < LT

(Az2) totally geodesic CP*¥ (1< k < m—2),

(B) complex quadric Q,,_;, where 0 < r < o

(C) CP! x CP™#*, where 0 < r < % and m(> 5) is odd,

(D) complex Grassmann CGs s, where 0 < r < Tand m=),

(E) Hermitian symmetric space SO(10)/U (5), where 0 < r < T and m = 15.
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Due to his classification, we find that the number of distinct constant principal
curvatures of a homogeneous real hypersurface is 2, 3, or 5. Here note that the
vector { of any homogeneous real hypersurface M (which is a tube of radius
r) is a principal curvature vector with principal curvature a = 2 cot 2r with
multiplicity 1 (See [I]) and that in the case of type A; M has two distinct
principal curvatures and in the case of type Az (resp. B) M has three distinct
principal curvatures ¢, —} and a =t — } (resp. it (=1 ~tanda=t-1).

Contrary to homogeneous real hypersurfa.ces of CP™, it is known that any
ruled real hypersurface of CP™ is not complete and its structure vector field ¢
is not principal ([4]).

In [2] Gotoh proved that if m > 3 and the shape operator A of a real hy-
persurface M satisfies (R(Y, Z)A)X = 0 for all tangent vectors X, Y, Z in &%,
then M is locally congruent to a geodesic hypersphere, where £1 denotes the
orthogonal complement of £ in TM. The author in [5] showed that if m > 2 and

(1) R(AX,Y)(Z) - AR(X,Y)Z =0

for any X, Y, Z tangent to TM, then M is congruent to an open part of a
homogeneous real hypersurfaces of type A; and A,. Also in @ he proved that
it remains true in the case where M satisfies (1) for any X, Y, Z in L. We
say that M is ruled ([4]) if there is a foliation of M by complex hypersurfaces
cpm- 1

‘The purpose of the present paper is to prove that if m > 3, then, it remains
true except some case where M satisfies

(2) 9(R(AX,Y)(Z2) - AR(X,Y)Z, W) =0
for any X,Y, Z and W in €%, ie.,
Theorem. Let M be a real hypersurface of CP™, m > 3. Then M satisfies

(2) forany X, Y, Z and W in £ if and only if it is congruent to an open part of
a homogeneous real hypersurfaces of type Ay and A, or a ruled real hypersurface.

2. Preliminaries

Let X be a tangent vector field to M. We write JX = ¢X + n(X)v, where
¢X is the tangent component of JX and n(X) = g(X,¢). As J? = —Id, where
Id denotes the identity endomorphism on TCP™, we get

(3) $’X = -X +n(X)E, n(¢X)=, ¢£=0
for any X tangent to M. It is also easy to see that for any X, Y tangent to M
(4) (Vx@)Y = n(Y)AX — g(AX,Y)¢
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(5) Vx& = ¢A4X.

Finally from the expression of the curvature tensor of CP™, we see that the
curvature tensor of M is given by

(6)  R(X,Y)Z =g(Y,2)X - g(X,2Z)Y + g(8Y, Z)6X — g(6X, Z)$Y
— 29($X,Y)$Z + g(AY, Z) AX — g(AX, Z)AY, :

(7) (VxA)Y = (VyA)X = n(X)¢Y ~ n(Y)$X — 29(¢X,Y)E.

Now, we recall without proof the following results in order to prove our
theorem:

Theorem 1. (Kimura [3]) Let M be a real hypersurface of CP™. Then M
has constant principal curvatures and & s a principal curvature vector if and
only if M is locally congruent to a homogeneous real hypersurface.

Theorem 2. Okumura [7] Let M be a real hypersurface of CP™. Then the
following are equivalent:
(i) A = A¢.
(i1) M is locally congruent to one of homogeneous real hypersurfaces of type A,
and A,.

3. Proof of the theorem

Let {E),..., E2y,—_3} be an orthonormal basis of &1 at any point of M. If in
(2) we take X = Ej, Z = ¢E;, from (6) and applying the formulas (3) we have
any Y, W e ¢+
(8) —9(AE;,¢E;)g(Y, X) + g(8Y, 6 E;)g(¢(AE;, W)

—9(6AE;, $E;)g(8Y, W) — 29($AE;,Y ) g(¢E;j, W)
—9(A’E;, $E;)g(AY, W)
+9(E;, 6E;)9(AY, W) — g(¢Y, 4 E;)g(ASE;, W)
+9(8E;, 6E;)9(APY, W) + 29(¢ E;,Y ) g(AS>E;, W)
+9(AE;, ¢E;)g(A’Y,W) = 0
Taking summation of (8) on j, we obtain
g((2m — 3)AQY + ¢AY — (traceA — g(AE, €)¢Y, W) = 0.

Hence we have

(9) (2m = 3)A4Y + $AY — (traceA — g(A¢,£))pY = (2m — 3)g(AQY, £)¢
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(10)  —(2m ~ 3)$AY — AgY + (traceA — g(A¢,£))@Y = —g(A¢Y, €)¢.
Taking Y -component of (9) to get

(11) 2(m — 2)g(A4Y,Y) = 0

If in (2) we take Y = ¢Ej;, Z = F; and take summation on j; we obtain for
Y e¢t

(12) 2mAGY — 2meAY — A¢A%Y + A26AY
= {2mg(A¢Y,§) — g(ApA?Y, €) + g(A?$AY, €)}¢.

Taking Y -component of (12) to get

(13) 2mg(A¢Y,Y) + g(A%¢AY,Y) = 0.
Combining with [13), we have
(14) 9(A%¢AY,Y) =0,

since m > 3. Therefore putting Y=E;in and taking summation on j, -
(15) 9(A2$AE,€) = 0.
Now, define a cross section U of £+ and a smooth function a on M by

A =U + .

Then ¢A{ = ¢U and A2¢ = AU + aU + a?¢, so implies

(16) 9(8U, AU) = 0.
We also note
(17) 9(eU, A€) = 0.

Thus from (16) and [(I7), we get the following by putting X = U and Z = ¢U
in (2):
(18) 9(Y,U)g($AU, W) — (AU, U)g(¢Y, W)
—9(Y,U)g(AdU, W) + ||U||*g(AgY, W)
—29(¢U,Y)g(AU, W) =0,
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where ||U||? = g(U,U). From we have
(19) 9(Y,U)pAU — g(AU,U)$Y + 29(¢AU,Y)U
~9(A’U,gU)AY — g(Y,U) AU + ||U||? ApY
—29(U,Y) AU = {-29(A’U, ¢U)g(Y,U)
+HI|U|?9(A8Y, €) — 29(8U,Y ) g(AU, €) } €.

Putting Y = U in (9) and (10) and summing up those equations, we have

(20) A¢U — $AU =0,
since m > 3 and [(17). Putting Y = U in (19), we obtain
(21) —9(AU, U)4U + V| A$T

= g(A%U,¢U)AU - g(A?U, ¢U)||U||%€.
From we know that

(22) 9(A’U, $U) = g(AU, ApU) = g(AU, $AU) = 0.
Combining with we have
(23) IUI?A¢U = ¢(AU,U)4U.

Assume that ||[U||> # 0 at a point, say z. By there exists a certain real
number A such that

(24) AU = AU.
IfY is perpendicular to all of U, ¢U and &, from
(25) AY = @Y.

Let T M = V & span{U, £} be the orthogonal decomposition. Then the above
argument implies

(26) Aly = Ay,

where Iy stands for the identity transformation of V. Further we decompose V
orthogonally as V = V' @ span{¢U}. Note that dim V' > 1 by the assumption
m 2 3. Since V' is invariant by ¢, (9) reduces to

—(traceA — a)@Y + (2m — 2)A¢Y =0,
for each Y € V'. So we have

traceA — (2m - 2)A —a = 0.
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On the other hand, implies

| traceA = (2m — 3)A + g(AU,U) + o.
Thus g(AU,U) = A, which implies
(27) AU = AU + ||U||%.
PuttingY =W =U and Z = X in (2) and substituting [[24), and [(27), we

obtain

Ag(X, X)|U||* = 0.
Thus we know A = 0. Then

AE=U+a€, AU =|U|?¢.

Now, it is proved by the same argument with the proof in [4] that a real hyper-
surface M of CP™ whose the second fundamental form A satisfies

(28) AE=a€+U, AU=|U|%, AX=0

for any vector X orthogonal to £ and U, is a ruled hypersurface of CP™, where
a is a smooth function on M. Here we show that there is a foliation of M by
complex hyperplane CP™~1. We have only to see that the distribution T, defined
by To(z) = {X € T=(M) : n(X) = 0} is integrable and totally geodesic in M. We
consider the open set My of M defined by ||U||, say v # 0. Let T} be a distribution
defined by Ti(z) = {X € T,(M) : 9(X) = ¢(X,U) = 9(X,9U) = 0}. Let
X € T1. Then we have AX = 0 and Vx& = 0 by (5) and [28). Using (7) and
(28), we have (VxA)¢ — (V¢A)X = —¢X, and |

(VxA)é — (VeA)X = Vx (AE) — AV xE — Ve(AX) + AV X
= Vx(VV+a‘£) +AV§X
= (Xv)V +vVxV + (Xa)f + AV X,

where V = U/||U||. Hence we have ¢X + (Xv)V +vVxV + (Xa)E+AVe X = 0.

. This equation yields ¢ X + vVxV = 0, since all other terms are linear combina-

tions of £ and V. Thus we get
(29) VxV =-(1/v)¢X

on M,. This shows that M = M,, because if {z;} is a sequence of points in
Mp such that it converges to some boundary point of My [hence v(zj) = 0 as
Jj = o], then the sequence {||VxV||(x;)} diverges. Moreover, we have

(30) Xv =0,
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because g(Ve X, AV) = vg(Ve X, €) = —vg(X, Vel) = —vg(X,9A€) = 0, using
(28). Next, (7) also implies that (Vx A)V —(Vy A)X = (Vx A)¢V —(Vey A)X =
0. By using (4), (28)—(30), we have

(VxA)V - (VvA)X = Vx(AV) - AVxV — Vv(AX) + AVy X
= Vxv€) + (1/v)A¢X + AVy X
=vVx€+ AVy X,
= AVy X,

and

(VxA)pV — (Vv A)X = Vx (A¢V) — AVx(¢V) — Ve (AX) + AVyv X
=—A((Vx9)V +¢VxV) + AVyy X
= —A(n(V)AX — g(AX,V)E+ (1/v)X) + AVyv X
= AVyv X.
Hence Vv X and V4y X are orthogonal to ¢ and V. On the other hand, the
Codazzi equation (7) implies that (VeA)V — (Vv A)é = ¢V, and we get
(VeA)V — (VvA)¢ = Ve(AV) — AVeV — Vy (A€) + AV E
= Ve(€) — AVeV = Vy (vV + af)
= (§v)€ + v9AE — AV, V — (VV)V —vVy — V(Va)é
= (fv = Va)l + 1v2¢V — AVV — (V)V = vV V,

by using [(28), and Vy€ = 0. This implies that g(VyV,4V) = v — 1/v.
Since g(Vy X,V) = 0 for X € T}, we have

(31) VvV =(v—-1/v)¢V and Vy(¢V)=—(v-1/v)V.
using (4) and [28). Similarly, we obtain (V¢A)¢V — (V4v AE) = —V, and we

have
(VeA)BV — (Vov A)E = Ve(ABV) — AV¢(8V) — Vv (A8) + AV v €
= —A((Ved)V + ¢VeV) — Vv (VV + af)
= —A(n(V)AE — g(AE, V)E+ 6VV) — ($VV)V
—vVevV — (¢V )€
= VAE — AGVV — ($Vv)V — vV sy V — (¢Va)E.

These equations yield

(32) VvV =0,
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because V4y V is orthogonal to £ and V, and

(33) Vv =202+ 1.
Then we have
(34) Vv (eV) =0,

Y. MATSUYAMA

by using (4) and . From these equations, we can easily show that if X and Y
are contained in Tp, then VxY € Ty and [X,Y] = VxY —Vy X € Tp. Hence T,
is integrable and totally geodesic in M. Moreover, means that the integral
manifold of Tj is a totally geodesic in CP™. Since T; is J-invariant, its integral
manifold is a complex hypersurface CP™~!, Conversely, assume that . Then
we know M satisfies (2).

Next, assume that A # 0. It asserts A€ = 0, i.e., € is a principal vector.
Hence from (9) and (10) it holds A¢ —¢A = 0 on M. Thus by virtue of
1 and 2, we can obtain

(1]
(2]
[3]
(4]
(5]
(6]
(7]
(8]
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