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Abstract. In this paper, we study the order and growth of composite en-
tire functions f and g, and disscuss the behaviour as r — oo of the ratios:

loglog M(r,fo log log M(r, fo _ . - .
Toglog M5 7~ and Tog log M(H.g) * Where R = R(r) is an increasing real func-

tion.

1. Introduction

Let f be an entire function. We denote the order and lower order of J by
p(f) and A(f), respectively. A well known theorem of Polya [1] asserts: If f and
g are entire functions, then the composite function fog is of infinite order unless
(a) f is of finite order and g is a polynomial or (b) f is of order zero and g is
of finite order. Since then, many results related to this and some further results
(e.g. Clunie [2], [3], Edrei and Fuchs [4], Mori [5], Yang and Urabe [6], Yang
have been obtained. Especially, Song and Yang [8] proved that if f o g is of finite
lower order, then either f is of finite lower order and g is a polynomial, of f is
of zero lower order and g is of finite lower order. An interesting problem is that
if p(f) = O(A(f) = 0), what kind of conditions will ensure f o g to be of either
finite or infinite (lower) order.

It is well known that for any two transcendental entire functions f, g

. M(r,foyg) _ . M(r,fog) _
A ) = oo M(rg) — >

ST . ;. logM(r,fo log M(r,fo
Clunie disscussed the behaviour as r — 0o of the ratio g M(- 7 and —lg—s—jﬁ;%fl.

. 1 1 ,
| Song and Yang [8] studied W and %{—;?, and proved

Theorem A. Suppose that 0 < A\(f) < p(f) < co. Then

im loglog M (r, f o 9) _
ro loglog M(r,f)
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Theorem B. Suppose that f and g are transcendental entire functions such
that A(f) > 0 and p(g) < co. Then

lim loglog M(r,fog) _
r+o0 loglog M(r,g)

Singh and Baloria ‘ raised the question whether for sufficiently large R =
R(r)

) loglog M(r, f o g) . log log M (r, f o g)
lim oo, lim
h,j,'.fp log log M (R, f) <% 1r_>s°1:p loglog M (R, g)

< 00,

and proved [9] that if f and g are two transcendental entire functions of positive
lower orders and finite order, then for each positive constant A

. loglog M(r,fog) .. loglog M (r, f o g)
hmsup T T og M(rA, )~ 0 P Toglog M(rA, )

Lahiri and Sharma proved

Theorem C. Let f, g be two entire functions of finite orders and A(f) > 0.
Then for p > 0 and each o € (—00,0)

. {loglog M(r,f o g)}'** _
A%, “Toglog M(exp(?), ) 0

if p>(1+a)pe(9)

We study this question further and obtain that

. {loglog M (r, f o g)}'*° ) {loglog M (r, f o g)}!*°
hﬁs‘gp loglog M (R, f) and 11'1'1'_1’801:}) log log M (R, g)

are finite or infinite depending on what kind of sets of R = R(r). Finally we
study the comparative growths of the composition of the forms hok and fo g.
Some of results improve and extend earlier results, e.g. Singh and Baloria [9],
10], Lahiri and Sharma . We may assume that the reader is familiar with
the standard notation employed in Nevanlinna’s value-distribution theory. Now
we recall that the order p(F) and lower order A(F) of an entire function F are
defined as

log log M (r, F) A(F) = limsup loglog M (r, F)

plF) = l%s;}p log r—00 logr

Furthermore, if p(F) = 0, we define p*(F) and \*(F) as follows

log log M (r, F) | A*(F) = limsup loglog M(r, F)
log log 00 loglogr

p*(F) = limsup
7 —>00
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2. Lemmas

In order to prove our results we need several Lemmas as follow

Lemma 1. (Clunie [3]) If f and g are entire Junctions, then for all suffi-
ciently large values of r

M (5 (5.9) - 0O1.7) < M(r, 70 6) < MM (),

Lemma 2. (Song and Yang [8]) Let g be a transcendental entire function of
finite lower order. Then for any § > 0, we have

M(r'*?, f o g) > M(M(r,g), f)(r > r0)

Lemma 3. Let 0 < A(g) < p(g9) < oo, Then for every positive number A,
we have

. loglog M(r,fog) _ p(fog)
1 <
) P Toglog M(r4,g) < AXg)

.. loglogM(r,fog) p(fog)
(2) hrrgtrgf log log M (r4, g) = Ap(9)

. .. loglogM(r,fog) A(fog)
(3) hrlﬂgo}f loglog M (74, g) = AX(9)

Proof. When p(f o g) = oo, the inequality (1) is obvious. So we assume
p(f o g) < co. From the definition of order and lower order, we have for ¢ > 0
and sufficiently large r

(4) loglog M(r, fog) < (p(fog)+¢)logr
(5) loglog M(r, g) > (A(g) —¢€)logr

combining (4) and (5), and choosing € — 0 inequality (1) follow from that.
By an analogical argument, we can get (2) and (3)

Similarly, we have following Lemma.

Lemma 4. Let 0 < A(f) < p(f) < oo, Then for every positive number A,
we have

: .. loglogM(r,fog) _A(fog)
(6) A g log M A ) S AX(F)
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Lemma 5. Let f and g be two entire functions such that p(g) < oo. If
p(f o g) = oo, then for every positive number A

loglog M(r,fog) _

@) NmSuP Toglog M(rA )
If \(f o g) = 0o, then for every positive number A
(8) i loglog M(r, f o g) —

roo loglog M(r4,g)

Proof. Assume (7) does not hold. Then there exists a constant B > 0 such
that for all sufficiently large values of r

(9) loglog M(r, f o g) < Bloglog M(r*, g)

Again from the definition of p(g), it follows that

(10) loglog M(r4, g) < (p(g) + €)Alogr
From (9) and [(10), we have
(11) loglog M(r, f o g) < (p(g) + €)ABlogr

which implies p(f o g) < co. This is a contraction. We prove (7).
By an analogical argument, we can prove (8)

Remark 1. If we take p(f) < 00, the lemma remains valid with g replaced
by f in the denominator.

Lemma 6. (Bergweiler [12] If f is meromorphic and g is entire, then for all
sufficiently large values of r

T(r,fog) < {1+ o(l)}%frw(r, . f)

Lemma 7. (Bergweiler [13] Let f be meromorphic and g entire, and suppose
that 0 < p < p(g) < co. Then for a sequence of values of r tending to infinity

T(r, f o g) > T(exp(r"), f)
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3. Main Results

Theorem 1. Let f and g be two transcendental entire functions such that
P(f) =0, p(9) < oo. (1) If f and g satisfy either (a) p*(f) =00, A(g) > 0 or (b)
A*(£) = 00, p(g) > 0 then p(f o g) = 00. (2) If p*(f) < 00, then p(f o g) < 0.

Proof. The proof of part 1, we disscuss case (a) and (b) respectively.

case (a): By [Lemma 2, we have for A > 0

) loglog M(r,fog) . log log M (r+é f o g)
1 =
’flso‘.fp log log M (r4, g) hf.’lf;‘.fp log log M (rA(1+4) g)

> lim sup (28108 M(M(r, g), f) loglog M(r,g) _ loglog rA(1+4)
= r—poop log log M(T'x g) log log r log log M(rA(1+5) ’ y)

Pt (f)Mg) _ o
(12) > O

combining (1) and (12), it follow that p(f o g) = co.
case (b): It follows from A*(f) = oo and that

144
liming 8B M(r,fog) _ . loglog M(RI*,f 0 g)

T Joglog M(ri‘i‘x ,9) r—00 log log M (R, g)

.. ologlog M(M(R,g), f) .
13 > = =
(13) = hrlggolf loglog M (R, g) Y} =

which and (2) give p(f o g) = co. We complete the proof of part 1.
Proof of Part 2: Since p*(f) < oo, applying Lemma 1, we deduce that

. loglog M(r,fog) _ .. loglog M(M(r, g), f)
.hﬂsgp log log M (r, g) < hﬂi‘.}p log log M (r, g)

(14) =p"(f) < o0

From and [Lemma 5|, we get p(f o g) < 0co. Theorem is proved.

Remark 2. From (3) and [13), we can obtain that if A*(f) = co and Ag) >
0, then A(f o g) = co. This conclusion was proved by Yang and Urabe [6]

Theorem 2. Let f and g be two entire Junctions of order zero. If either
P*(f) = oo or p*(g) = oo, then p*(f o g) = oo. If p*(f) < o0 and p*(g) < oo,
then p*(f o g) < oo.
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Proof. If p*(f) = oo, from we have

loglog M (r!*% f o g)
log log r1+¢

loglog M(M(r,g),f) . . .loglog M(r,g)

p*(f o g) = limsup
r—00

> 1
. llﬂs;}p log log M (r, g) r—oo loglogr

(15) =p*(f)A*(g) =00 (6>0)

If p*(g) = 0o, we exchange “limsup” and “liminf” in inequality (15), we obtain

p*(fog)=oo.

Because we have

loglog M (r, f o g)
loglog r

: loglog M(M(r,9), f) \. log log M (r, g)
<
(16) = hfl,sﬁp log log M (7, g) hir_l,sol:p loglogr

p*(f o g) = limsup
r—o0

= p*(f)r*(9)

we get if p*(f) < oo and p*(g) < oo, then p*(fog) < co. The proof of Theorem
2 is completed.

Theorem 3. Let f and g be two transcendental entire functions. If 0 <
A(f) < p(f) < oo, then for every positive number A

(17) i [08logM(r, fog) _

rc0 Toglog M(r4, )
Further, if \(f) > 0, p(g) < oo, then for every positive number A

\ . loglogM(r,fog)
(18) A, loglog M(r4,g)

o0

Proof. Suppose that the equality does not hold. Then there exist a
constant B > 0 and a sequence of r, tending to infinity which satisfy that

(19) loglog M (rs, f 0 g) < Bloglog M (4, f)
So
(20) log M(rn, f 0 g) < rAB(s(f)+e)

On the other hand, we have for all sufficiently large values of r

r

(1) MG ro) 2 M (oM (5.) 5)
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Because g(z) is a transcendental entire function, we have

2 b (5.) 200

for K = AB(%‘%‘# + 1) and for all sufficiently large values of r. From Maximum
Modulus Principle, combining and (22}, it follows that

(23) log M(rs, f o g) > log M(rK, f) > rP)-9 g

Choosing € = &2& > 0 and combining and we get AB(p(f) + ﬂzﬁ) >
3‘12111{ » which contradicts with the choice of K. This complete the proof of
By an analogous argument, we can prove .

Remark 3. From Lemma 4 and (17), we get the conclusion that if f, g are
transcendental entire functions such that A(f) > 0, then A(f o g) = co. This
conclusion was proved by Song and Yang [8].

Remark 4. If we take p(f) > 0 instead of A(f), and remain true
with ‘lim’ replaced by ‘limsup’.

Remark 5. If we take A(g) > 0 instead of A(f) >0, remain true. But
and show that may not hold.

Theorem 4. Let f and g be two entire Junctions such that 0 < A(f) <
P(f) < oo and A(g) < p(g) < co. Then for each o € [0,00) and 0 < p <
(1+a)p(g)

) {loglog M (r, f 0 g)}1+=
4 =
(24) hﬂs;f log log M (exp(r?), f)

, {loglog M (r, f o g)}1*=
(25) h,l:n_,s;l,}p log log M (exp(r?),g) =

Proof. By [Lemma 1, we have for all sufficiently large values of r

M(r,fog) > M (‘116’” (5:9) ,f)

For any € > 0, there exists a sequence of Tn(rn — 00) such that

() 20 (3)°)
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So we have for sufficiently large r,

1 Tn
loglog M (ry,, f o g) > loglog M (EM (—2—,9) ,f)
1 Tn
> () - ) og { 51 (29) }
1 r,\ P(9)—€

(26) > (\(f) - ehlog = + (A(H) — ) (3)
On the other hand, we get for all sufficiently large values of r
(27) loglog M (exp(rf), f) < (p(f) + €)rF

Now we choose 0 < € < A(f) such that p < (1 + a){p(g) — €}, then we have
- L 4 (A(F) — €)(La)r(9)—¢
o) i (O = QloE + 00— (0]
r—oo (p(f) + €)rn
By combining [(25), (26) and [27), it follows that

{loglog M (r, f o g)}} = —

1+a

=

h,n_l,sol.fp log log M (exp(r?), f)

Replacing f with g in inequality [27), we can obtain [25).

Remark 6. If the condition 0 < p < (1 + a)p(g) is replaced with the con-
dition 0 < p < (1 + a)A(g), then ‘limsup’ in and can be changed to
‘lim’.

Theorem 5. Let f and g be two entire functions of finite order and A\(f) >
0, A(g) > 0. Ifo(g) < oo then

(29) lim sup loglog M(r, f © g)

TP Joglog M(exp(r?®), ) =
(30) lim sup loglog M(r, f < 9) < 00

r—o00 loglog M(exp(rr(9)), g) .
If o(g) = oo then

) loglog M(r,fog)
(31) M 8P 1 g log M (exp(r?®@), 1) — O

. loglog M(r,fog) _
(32) hir_l,sol:p log log M (exp(r?(9)), g) — >
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where o(g) is the type of g.

Proof. If o(g) < oo then by

: loglog M(r, f o g) loglog M (M (r,g), f)
hfr.r_l}s;}p log log M (exp(r#(9)), f) = s h?_l.,soop log log M (exp(r#(9)), f)
loglog M (M(r, g), f) .. log M(r, g)

<1
< hﬁ sup log M(r, 3) ll:ll Sup —— )

. log {exp(r#(9))}
lxrnl SLI:P log log M (exp(r*9)), f)

= p(f)a(f),\(f)

Similarly, we can get

loglog M (r, f o g)
li
l,I.I_l'Solip log log M(exp(rﬂ(g)) g

Thus, we prove [29) and [(30).

If 0(g) = oo then by we can get

log log M (r, f o g) ) loglog M (§sM (5, 9), f)
H2AP foglog M{exp(ro®), 7)) = URSUP Tog Tog M (exp(r?(@)), f)

1 r
> limin flOglOgM(mM(Z’g) f) hmsupgg_rﬂ_l_((zi_y)
e log{15M(%,9)} o (7

1yp(9) o(9)
iming (3@ log{exp(09))
r—+oo loglog M (exp(r/(9), f)

1
y S P9 3y < o

( ) 1 o(9)
= A(f)o(g ( ) =00
o
Replacing f with g in the denominator, we can get at once.

Singh and Baloria proved that if g, h, k are transcendental entire func-
tions of finite order such that A(k) > 0 and 0 < p(g) < p(k), then for every
transcendental entire function f of finite order

limsu T(r,ho k)
r—voop T(r f o g)

‘Lahiri and Sharma consider the case when h is meromorphic. We improve
their results and prove the following theorem.



106 L. LIAO AND C.C. YANG

Theorem 6. Let k, g be entire functions, and h meromorphic such that
0 < A(h), p(9) < p(k), then for every v(1 < v < %—%) and every meromorphic
function f of finite order, we have

. T(r,hok) =
(33) M TG F o g) log M(,9)

IFA(f) >0, v> 250 < p(g) < p(k) < o), then

T(r,hok)
(34) it o Fog) =

0

Proof. By [Lemma 7, we have for a sequence of values of r, tending to
infinity

T(rn,hok) > T(exp(rk),h)
where 0 < vp(g) < p < p(k). Noticing A(h) > 0, we get

(35) T(ra, ho k) > exp{(A(h) — 8)rk}

where we choose § > 0 such that A(h) —é > 0. From Lemma 6, we have that
T(r*, f o g)log M(r*, g) < {1+ o(D}T(+*, ) T(M(+*, ), f)

(36) < (1 + o(1))r(P@)+€) exp {(p(f) + e),.V(p(g)+c)}

choose € > 0 so that v(p(g) + €) < . Then follows [35) and (36).
Similarly, from we have for all sufficiently large r

T(rhok) < (1+ o(l))@%ﬂmr, K),h)
(37) < (1+ (1) Sgremsexp { (o(h) + rs1+)

On the other hand, from for a sequence of r,(r, = o)
(38)  T(rh,fo9) 2 T(expri@=9), f) > exp {(A(f) = i@~}

) follows from (37) and (38) because we can choose € > 0 such that v > : e
Thus we have proved this theorem.
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