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Abstract. Using an iterative method due to Stephen Watson, we shall construct
universal spaces for O-dimensional La\v{s}nev spaces. We can show that $Wat_{8}on$

method can be applied not only for all classes of large cardinalities, but also
to make their universal spaces homogeneous for certain classes. We also study
relationship between universal spaces made from complete metric spaces and
those made from $\sigma$-discrete metric spaces.

1. Introduction

a) Iterative constructions and Watson method. The purpose of this
paper is to show that a simple (but effective) pnnciple together with its itera-
tion yields universal spaces for some classes of O-dimensional La\v{s}nev spaces (i.e.
closed continuous images of some metric spaces). Namely, let $M$ be a fixed
O-dimensional metric space (we call this space a model space) with a certain
universality (e.g. O-dimensional Baire spaces in [13] or Medvedev’s universal
spaces for $\sigma$-discrete metric spaces in [9]). Then, we can show that there exists
a universal space for all O-dimensional closed images of $M$ .

One of the advantage $s$ of our construction is that we can show not only their
universality, but also their homogeneity (i.e. for every pair $x,$ $y$ of points in $X$

there exists an autohomeomorphism $h:X\rightarrow X$ such that $h(x)=y)$ in certain
cases.

Suppose that a clopen (i.e. simultaneously, closed and open) subset $G$ of a
model space $M$ is given. Then we adopt the following statement as a simple
principle:

Take a nowhere dense closed subset $A$ of $G$ , and devide the open set $G\backslash A$

into a collection $\mathcal{U}$ of mutually disjoint clopen subsets of $G$ , which satisfies the
following condition ( $\mathcal{U}$ is called a semi-canonical cover for the pair $(G, A)$ after
$\overline{1991}$Mathematics Subject Classification: 54F45
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D.M. Hyman [6]):
(SC) for each $a\in A$ and for each neighborhood $V$ of $a$ in $G$ , there exists a
neighborhood $W$ of $a$ in $G$ such that $st(W,\mathcal{U})=\{U\in \mathcal{U} : U\cap W\neq\emptyset\}\subset V$ .
Then, after iterating this principle infinitely many times (i.e. starting form $G=$

$M$ and applying the principle to each member of $\mathcal{U}$ , so on), the universal space
is the decomposition space defined on the set $M$ , and the set of its non-trivial
elements of the decomposition consists of all chosen closed nowhere dense subsets
$A’ s$ . The above construction of the universal space is called Watson construction,
since it is originated by Stephen Watson (see [17]). We call it Watson method
that is the whole mechanism of showing universality of the decomposition space
together with Watson construction. By Watson method we already proved its
universality for all closed images of rationals $Q[22]$ , and for all O-dimensional
closed images of irrationals $P[16]$ , using $A\approx M=Q$ , and $A\approx M=P$ ,
respectively.

In this paper we extend these results (together with an improvement of [18,
Theorem $0$]) for the following classes of (not necessarily separable) O-dimensional
La\v{s}nev spaces (see Theorems 1.1 and 1.2 for exact statements):

Definition 1.1. For every infinite cardinals $\kappa$ and $\lambda$ with $\omega_{1}\leq\lambda\leq\kappa^{+}$ ,
let $\mathcal{W}_{\kappa,\lambda}$ (respectively, $\mathcal{K}_{\kappa,\lambda}$ ) be the class of all spaces $Y$ for which there are $\sigma-$

discrete (respactively, complete) metric space $M$ of $ w(M)\leq\kappa$ and a closed onto
map $f$ : $M\rightarrow Y$ such that $\forall y\in Y[|f^{\leftarrow}(y)|<\lambda]$ (respactively, $[|w(f^{\leftarrow}(y))|<\lambda]$ ).

In particular, put
$\mathcal{W}_{\kappa}=\mathcal{W}_{\kappa,\kappa+}$ , and $\mathcal{K}_{\kappa}=\mathcal{K}_{\kappa,\kappa+}$ .

Note that every space in $\mathcal{W}_{\kappa,\lambda}$ (in this case we call it a Watson space) is
O-dimensional, while spaces in $\mathcal{K}_{\kappa,\lambda}$ (in this case we call it van Douwen-complete
space) need not be O-dimensional. Hence, let $D_{\kappa,\lambda}$ be the collection of all 0-
dimensional members of $\mathcal{K}_{\kappa,\lambda}$ .

We believe that our study in the realm of O-dimensional spaces will be a
prototype of universal spaces for higher dimensional La\v{s}nev spaces, since Watson
construction can be applied to any dimensional La\v{s}nev spaces, using locally finite
(instead of disjoint) semi-canonical cover for a pair $(G, A)$ , where $A$ is a closed
nowhere dense subset of a given open (instead of clopen) subset $G$ . In present,
however, we succeeded in showing its universalities only for certain classes of
finite-dimensional La\v{s}nev spaces in [7], which contain every finite-dimensional
upper semi-continuous decomposition spaces of open manifolds. In other words,
it reminds the author that Menger’s n-dimensional universal space and the Can-
tor set are provided by a unified iterative method (see Remark 1.1), and that
Watson method must be that kind of method for La\v{s}nev spaces, since it works
quite well in O-dimensional case. Hence, we also believe that it is important to
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improve Watson method in order to make the essential point clear for further
study of higher dimensional case.

This paper covers all the results in $[16, 20]$ , and is an extended revision of [21].
In particular, we publish here a proof of a homeomorphism extension theorem
3.1, which is a key to apply Watson method for non-separable La\v{s}nev space.

Remark 1.1. Iteration of a simple principle is one of the standard ways
to produce universal spaces (even in classical cases of separable metric spaces).
Let us review here some of them. For metric spaces, we adopt the following
statement as a simple principle:
Devide the model space into its contiguous closed copies, and exclude some of
them (see [3, Fig. 13] for details).
Then after iterating this principle infinitely many times and taking their inter-
section (in $s$tead of decomposition space) we can produce (1) the Cantor set, (2)
Sierpi\’{n}ski’s carpet, and (3) Menger sponge, when we use the closed interval $I$ ,
$I^{2}$ , and $I^{3}$ as a model space $M$ , respectively. In these cases we can show not
only their universality for certain subclasses of separable metric spaces, but also
their homogeneity in cases (1) and (3) (on the other hand, it is also known that
Sierpi\’{n}ski’s carpet in (2) is never homogeneous).

b) Homogeneity. As is observed in Remark 1.1 iterative constructions
for metric spaces sometimes yield nice universal spaces which are homogeneous.
Hence, we can ask the homogeneity in Watson method. Note that if there were a
homogeneous universal space, it must be nowhere first-countable in this case. On
the other hand, there is a space W. due to S. Watson in [22], which is nowhere
first-countable, and is a universal space for the class $\mathcal{W}_{\omega}$ of all closed images of
rationals. Moreover, there is a nowhere first-countable universal space $W_{\kappa}$ for
every class $\mathcal{W}_{\kappa}$ (see Remark 3 in [18]). Hence, we can reformulate our problem
as follows.

Problem 1. Can we make every $W_{\kappa}$ homogeneous by Watson method?

We can solve this problem affirmatively as follows (see also [18, Remark 8]).

Theorem 1.1. By using Watson method, for each $\mathcal{W}_{\kappa,\lambda}$ , there exists a uni-
versal space $W_{\kappa,\lambda}$ , which satisfies that each non-empty open subset is homeomor-
phic each other. Moreover, in case $\lambda=\kappa^{+}$ we can make our universal space $W_{\kappa}$

homogeneous.

We abbreviate the first property in this theorem as HO. To make a Wat-
son space homogeneous is closely related to the homogeneity of maximal non-
metrizable subspace of a universal space for van Douwen-complete spaces. Hence,
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for the $s$ake of completeness, we shall prove in this paper, the following theorem,
which was proved in [20] and was announced in [18, Theorem 1].

Theorem 1.2. For each $\mathcal{D}_{\kappa,\lambda}$ , there exists a universal space $D_{\kappa,\lambda}$ , which

satisfies $HO$ .

Using this theorem, we can strengthen our universality to its closed embed-
dability (i.e. embedding to a closed subset of our universal spaces) in Theorem
4.1.

c) Comparison between earlier results and our new ones. Using
semi-canonical ( $s$ . $c$ . for short) covers to investigate La\v{s}nev spaces is not new
(e.g. [6]), but it is no doubt to believe that it is effective (e.g. see Lemma 4.3).
In [18] and [22] we did not specify $s$ . $c$ . covers, which were used to construct
universal spaces, so that we showed only their universality. Hence, we could not
even show that whether or not given two universal spaces are homeomorphic,
where they are produced by the method presented there. Therefore, we must
restrict their flexibility to obtain some usefijl topological information about them
(e.g. their homogeneity and property HO).
One of the strategies for that purpose (and that to produce homogeneous spaces)
is the use of standard’s. $c$ . covers defined in \S 3 and a homeomorphism extension
theorem 3.1, which produces a standard $s$ . $c$ . covers-preserving homeomorphism.
By this theorem we can show the universality of our decomposition spaces, also.
We believe that our restriction on the class of $s$ . $c$ . covers is moderate, since we can
show by our method that the important La\v{s}nev space $L$ in [8] is homogeneous.
Its original definition (see Example 2.3) is rather rigid (here we do not mean the
rigidity defined in d) below). Namely, its definition needs non-topological terms
(e.g. binary rational points and its rank) essentially. Hence, it seems that it is
not easy to see its homogeneity by its definition. The author also believes that
it is hard to see that $L$ has the property HO directly (see Proposition 4.2).

d) Relationships between universal spaces. For any class $\mathcal{D}_{\kappa,\lambda}$ there
cannot be a homogeneous universal space, since every $X\in \mathcal{D}_{\kappa,\lambda}$ has a non-empty
metrizable subspace, at which every point is first-countable by [6, Theorems 2
and 4]. We will construct in this paper, however, a universal space $\mathcal{D}_{\kappa}$ for each
class $\mathcal{D}_{\kappa}$ , whose maximal non-metrizable subset $Z_{\kappa}$ is nowhere first-countable,
and homogeneous.

On the other hand, the space $P$ of irrational numbers not only is a universal
space for separable O-dimensional complete metric spaces, but also contains a
copy of the space $Q$ of rational numbers which is a universal space for countable
metric spaces. Hence, the second problem is:
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Problem 2. Are there any universal space for $\mathcal{W}_{\omega}$ , which can be embedded
in some universal space for $\mathcal{D}_{\omega}$ ? In particular, can we embed a Watson space
$W_{\omega}$ into $Z_{\omega}$ ?

We shall answer this problem negatively as follows:

Theorem 1.3. There is a space in $\mathcal{W}_{\grave{\omega}}$ which cannot be embedded in any
van Douwen-complete space.

Corollary 1.1. There is no universal space for $\mathcal{W}_{\omega}$ , which can be embedded
in some van Douwen-complete space.

It is La\v{s}nev [8] who showed earlier that there exists a countable, nowhere
first-countable La\v{s}nev space $L$ . For his space we have the following:

Theorem 1.4. The space $L$ can be embedded in a space $\tilde{L}$ in $\mathcal{D}_{v}$ . On the
other hand, $L$ cannot be embedded in any space in $\mathcal{W}_{\kappa,\lambda}$ . Hence, the space $L$

cannot be a universal space for $\mathcal{W}_{\omega}$ .

Moreover we can show the following theorem (its proof is given in \S 4), using
a characterization theorem (Theorem 4.3) of our universal space $D_{\omega}$ :

Theorem 1.5. The space $\tilde{L}$ in Theorem 1.4 is homeomorphic to $D_{\omega}$ , and
hence, $L$ is homeomorphic to $Z_{\omega}$ , and is homogeneous.

On the other hand, we can show the following theorem (we call a space rigid
when it satisfies that its identity map is the only its autohomeomorphism):

Theorem 1.6. By using Watson method, for every uncountable cardinal $\alpha$ ,
there exists $\beta\geq\alpha$ such that there exists a La\v{s}nev space $W_{\beta}$ in $\mathcal{W}_{\beta}$ , which is
ngid.

All spaces in this paper are assumed to be Tychonoff, and all maps are
assumed to be continuous. For a space $X$ its dimension dim $X$ means the covering
dimension. In particular, we call space $X$ strongly O-dimensional when it holds
that dim $X=0$ . See $[3, 4]$ for undefined terminologies.

2. Watson spaces versus van Douwen-complete spaces

We state here two fundamental results which will be used frequently.
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Fact 2.1. ([8, Theorem 4]). For any closed map $f$ : $X\rightarrow Y$ from a para-
compact space $X$ onto a Fr\’echet- Urysohn space $Y$ , there exists a closed subset $Z$

of $X$ such that $f|Z$ : $Z\rightarrow Y$ is irreducible.

Fact 2.2. ([4, Theorem 2.4.13]). If $M$ is a closed subset of $X$ and $\mathcal{E}$ is an
upper semicontinuous decomposition of $M$ , then the decomposition of $X$ into
elements of $\mathcal{E}$ and one-point sets $\{x\}$ with $x\in X\backslash M$ is upper simicontinuous.

At first, we propose the following notion of mappings, which is useful for
distinguishing two given La\v{s}nev spaces.

Definition 2.1. A closed onto map $f$ : $X\rightarrow Y$ is called an EE-map when
it satisfies that the set $x_{f}$ of all poionts in $X$ , where $f$ is one to one, is dense in
X.

Note that every EE-map is irreducible [3, Exercise 3. $1.C(c)$]. On the other
hand every closed irreducible map with complete metric domain $X$ is an EE-map
$[14, 23]$ . The following proposition, where we do not assume any completeness
of the domains of irreducible maps, is a refinement of [19, Theorem 1]. We leave
its parallel proof to the reader.

Proposition 2.1. Let $h$ : $X\rightarrow Y$ be an arbitrary closed irreducible onto
map. Suppose that both of $M$ and $X$ are metric spaces, and that $f$ : $M\rightarrow Y$ is
an EE-map. Then, there exists a metnc space $Z$ and two perfect onto mappings
$\alpha$ : $Z\rightarrow M$ and $\beta$ : $Z\rightarrow X$ such that $ f\alpha=h\beta$ .

Example 2.1. We present here an example, which shows that the above
proposition is effective. Let $M$ be a copy of the irrationals $P$ and let $A$ be its
closed nowhere dense subset also homeomorphic to $P$ . Then, let $Y$ be the La\v{s}nev
space, which is obtained from $M$ by collapsing the set $A$ to a point (say, $y_{0}$ ).
Take a subset $B$ of $A$ , which is homeomorphic to rationals $Q$ , and put

$X=M\backslash (A\backslash B)$ .

Note that $B$ is closed nowhere dense in $X$ , and hence $X$ is not completely
metrizable. Let $W$ be the La\v{s}nev space, which is obtained from $X$ by collapsing
$B$ to a point (say, $w_{0}$ ). Then, we may ask the question whether or not $Y$ is
homeomorphic to $W$ . For example, the use of cardinal invariants seems not to
be effective in this case, since $Y\backslash \{y_{0}\}\approx W\backslash \{w_{0}\}\approx P$ and $\chi(y_{0}, Y)=\chi(w_{0}, W)$

by [1, Theorem 8.13 $(c)$ ] (note that both of $A$ and $B$ are $F_{\sigma}$ in $M$ and $X$ ,
respectively).

On the other hand, it is ready to see that both of the natural quotient maps $f$ :
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$M\rightarrow Y$ and $h$ : $X\rightarrow W$ are EE-maps. Hence, $X$ must be completely metrizable
by the above proposition if we assume that $Y$ and $W$ are homeomorphic (see
also [19, Theorem 1]). This is a contradiction. Hence, $Y$ is not homeomorphic
to $W$ .

We shall discuss one more example of EE-map, which plays the key r\^ole to
prove Theorems 1.3 and 1.4.

Example 2.2. Take a closed nowhere dense subset $A$ of a metric space $X$

with dim $X=0$ , and fix a disjoint clopen $s$ . $c$ , cover $\mathcal{U}$ for the pair (X, $A$). Take
a point $p_{U}$ for every $U\in \mathcal{U}$ . Put

$P_{A}=\{p_{U} : U\in \mathcal{U}\}$ and $Y_{A}=A\cup P_{A}$ .

Then, note that $P_{A}$ is an open dense discrete subset in $Y_{A}$ . Take a point $p_{A}\not\in P_{\mathcal{A}}$ ,
and let

$X_{A}=\{p_{A}\}\cup P_{A}$ .

Define a function $\varphi_{A}$ : $Y_{A}\rightarrow X_{A}$ as

$\varphi_{A}(A)=p_{A}$ and $\varphi_{A}(p)=p$ for every $p\in P_{A}$ .

We topologize the set $X_{A}$ as

$U$ is open in $X_{A}$ if $\varphi_{A}^{\leftarrow}(U)$ is open in $Y_{A}$ .

Then by Definition 2.1 and the condition (SC), it holds that $\varphi_{A}$ is an EE-map
for any nowhere dense closed subset $A$ of $X$ .

Proof of Theorem 1.3. Let $A$ be a closed nowhere dense subset of $X$ ,
where both $X$ and $A$ are homeomorphic to $Q$ . Take a clopen disjoint $s$ . $c$ . cover
$\mathcal{U}$ for (X, $A$), and consider the space $X_{A}$ in Example 2.2. We shall show that
$X_{A}$ cannot be embedded in any space of $\mathcal{K}_{\kappa,\lambda}$ . Assume contrary, and suppose
that $X_{A}\subset Y\in \mathcal{K}_{\kappa,\lambda}$ , and let $q:M\rightarrow Y$ be a closed onto map from a complete
metric space $M$ . For the closed map $q|S$ : $S\rightarrow X_{A}$ , where $S=q^{\leftarrow}(X_{A})$ , there
exists a closed subset $T$ in $S$ such that $h=q|T:T\rightarrow X_{A}$ is irreducible by Fact
2.1. Note that $h^{\leftarrow}(p_{A})$ is completely metrizable, since it is a closed subset of
$q^{\leftarrow}(p_{A})$ . Therefore, we can apply Proposition 2.1 to $f=\varphi_{A}$ and $h$ so that it
holds that

$K=\alpha^{\leftarrow}\varphi_{A}^{\leftarrow}(p_{A})=\beta^{\leftarrow}h^{\leftarrow}(p_{A})$ .
Note that $K$ is completely metrizable, since $h^{\leftarrow}(p_{A})$ is completely metriz-

able and $\beta$ is perfect. Hence, $A=\alpha(K)$ must be also completely metrizable.
This contradicts the fact that the set $\varphi^{\leftarrow}(p_{A})=A\approx Q$ cannot be completely
metrizable. $\square $
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In this place we review the construction of the space $L$ due to $N$ . La\v{s}nev [8] for
the sake of completeness.

Example 2.3. ([8, \S 3. Example 2]). Let $P_{0}$ and $Q_{2}$ be the set of all irra-
tionals and that of all binary rational points, respectively, in the unit interval
$(0,1)$ . We consider the following decomposition of the product space $Q_{2}\times P_{0}$ .
For every $x\in Q_{2}$ we say that $x$ has rank $n$ if it is represented in a unique manner
in the form $m/2^{n}$ , where $m$ is odd. Then, the set of all the points $x\in Q_{2}$ of
rank $\leq n$ partitions the set $P_{0}$ into $2^{n}$ pairwise disjoint sets $\Delta_{1}^{n},$ $\Delta_{2}^{n},$

$\ldots,$
$\Delta_{2n}^{n}$ ,

where each $\Delta_{i}^{n}$ is the set of all irrationals lying between $(i-1)/2^{n}$ and $i/2^{n}$ .
Hence we have the final decomposition of $Q_{2}\times P_{0}$ consisting of the disjoint closed
sets $\{\Delta_{i,j}^{n} : n=1,2, \ldots ; 1\leq i\leq 2^{n} : 1\leq j\leq 2^{n-1}\}$ , where $\Delta_{i1j}^{n}=\{j/2^{n}\}\times\Delta_{\dot{*}}^{n}$ .

Let $L$ be the decomposition space with respect to this collection. Then, it is
known that the natural quotient map $f_{L}$ : $Q_{2}\times P_{0}\rightarrow L$ is closed [8].

Proof of Theorem 1.4. We note that we can extend the decomposition
in the above example to a trivial extension given by Fact 2.2 on the product
$M=(P_{0}\cup Q_{2})\times P_{0}$ so that the natural quotient map $\tilde{f}$ : $M\rightarrow\tilde{L}$ , satisfying
that every fiber $\tilde{f}^{\leftarrow}(y)$ is one point for $y\in M\backslash Q_{2}\times P_{0}$ , is also a closed map (see
$1|4.14$ and its proof in \S 4).

We also note that $M$ is homeomorphic to $P$ and that there exists a disjoint
clopen $s$ . $c$ . cover $\mathcal{U}$ for the pair $(M, A)$ , where $A=\Delta_{1,1}^{1}$ , which is f-saturated
(i.e. there exists a disjoint clopen $s$ . $c$ . cover $\mathcal{V}$ for the pair $(\tilde{L},\tilde{f}(A))$ such that

$\mathcal{U}=\tilde{f}^{\leftarrow}(\mathcal{V})$ , and see $1|4.15$ and Lemma 4.6 for the details). The map $\tilde{f}$ is an
EE-map, since the set $M\backslash (Q_{2}\times P_{0})$ is dense in $M$ .

It holds that dim $\tilde{L}=0$ , since ind $\tilde{L}=0$ and $\tilde{L}$ is Lindel\"off. This shows that
the first half of the statement in our theorem is valid.

For each $U\in \mathcal{U}$ in Example 2.2, where we put $X=M$ and $A=\Delta_{1,1}^{1}$ , we can
take a point

$p_{U}\in\Delta_{\dot{\iota},j}^{n}\subset U$ for some $n,$ $i,j$ ,

since $L$ is dense in $\tilde{L}$ and $\mathcal{U}$ is $\tilde{f}$-saturated. Then, consider the spaces $X_{A}$ and $Y_{A}$

in Example 2.2. Note that $A\approx P$ , and that $\varphi_{A}=f|Y_{A}=\tilde{f}|Y_{A}$ . Now, assume
that $L$ can be embedded in some space $W\in \mathcal{W}_{\kappa,\lambda}$ so that $X_{A}$ embeds in $W$ ,
since $X_{A}\subset L$ .

Let $q$ : $Q_{\kappa}\rightarrow W$ be a closed map, and let $X_{A}^{*}\subset W$ be a copy of $X_{A}$ .
For the closed map $q|S$ : $S\rightarrow X_{A}^{*}$ , where $S=q^{\leftarrow}(X_{A}^{*})$ , there exists a closed
subset $T$ in $S$ such that $h=q|T$ : $T\rightarrow X_{A}^{*}$ is irreducible by Fact 2.1. Since
the set $P_{A}^{*}=X_{A}^{*}\backslash \{p_{A}^{*}\}$ is discrete and $h$ is irreducible and closed, it holds that
each $h^{\leftarrow}(y)$ is one point, where $y\in P_{A}^{*}$ . Hence, $h$ is also an EE-map and $T$ is
separable. Therefore, we can apply Proposition 2.1 to $f=\varphi_{A}$ and $h$ so that it
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holds that
$K=\alpha^{\leftarrow}f^{\leftarrow}(p_{A}^{*})=\beta^{\leftarrow}h^{\leftarrow}(p_{A}^{*})$ .

Note that $K$ is $\sigma$-compact, since $h^{\leftarrow}(p_{A}^{*})\subset Q_{\kappa}$ is $\sigma$-discrete (hence count-
able in $T$) and $\beta$ is perfect. Hence, $A=\alpha(K)$ must be also $\sigma$-compact. This
contradicts the fact that $P$ cannot be $\sigma$-compact. $\square $

3. Semi-cononical covers and a homeomorphism extension theo-
rem

a) Some properties of $s$ . $c$ . covers. It is known [6, Lemma 1] that every
pair (X, $A$), where $A$ is a closed subset of a metric space $X$ , has a $s$ . $c$ , cover.
Moreover, it holds that

Fact 3.1. ([6, Lemma 3]). Let $f$ : $X\rightarrow Y$ be a closed surjection, and $\sup-$

pose that $B$ is a closed subset of Y. Let $\mathcal{V}$ be a $s$ . $c$ . cover for (X, $f^{\leftarrow}B$ ), and
for each $y\in Y\backslash B$ , let $\mathcal{G}_{y}$ be a f-saturated open neighborhood of $f^{\leftarrow}(y)(i,e$ ,

$G_{y}=f^{\leftarrow}f(G_{y}))$ such that $G_{y}\subset st(f^{\leftarrow}(y), \mathcal{V})$ . Then $\mathcal{G}=\{f(G_{y}) : y\in Y\}$ is a
$s,$ $c$ . cover for $(Y, B)$ .

Fact 3.2. $Let\mathcal{U}$ be a $s$ . $c$ , cover for (X, $A$), where $X$ is a metric space, and
for a neighborhood $G$ of $A$ in $X$ , put

$\mathcal{U}_{<G>}=\{U\in \mathcal{U} : U\cap G\neq\emptyset\}$ .

Then, for any given $\epsilon>0$ , there exists a neighborhood $G$ of $A$ in $X$ such that
the mesh of $\mathcal{U}<G><\epsilon$ .

Fact 3.3. Suppose that $\mathcal{U}$ is a $s$ . $c$ . cover for the pair (X, $A$) $f$ and for any
subset $Y$ of $X$ , put

$\mathcal{U}|Y=\{U\cap Y : U\in \mathcal{U}\}$ .
Then, $\mathcal{U}|Y$ is a $s$ . $c$ . cover for the pair $(Y, A\cap Y)$ .

Fact 3.4. ([18, Lemma 1]). Let $\mathcal{U}$ be a clopen disjoint $s$ . $c$ , cover for (X, $A$),
and suppose that, for each $U\in \mathcal{U}$ , a non-empty clopen set $O_{U}\subset U$ are given.
Then, the collection $\mathcal{O}=\{O_{U} : U\in \mathcal{U}\}$ satisfies that, for each neighborhood $V$

$ofA$ in $S_{A}$ , there exists a neighborhood $W$ of $A$ in $S_{A}$ such that $st(W, \mathcal{O})\subset V$ ,
where $S_{A}=A\cup(\cup \mathcal{O})$ .

b) Standard $s$ . $c$ . covers. Let (X, $\rho$) be a metric space with a bounded
metric $\rho\leq 1$ , and suppose that $A$ is its nowhere dense closed subset. Assume



38 K. TSUDA

that dim $X=0$ and $X$ has no isolated points. Let $\mathcal{F}$ be a collection of non-empty
clopen subsets of $A$ , satisfying that

1I 3.1. $\mathcal{F}=\bigcup_{i\geq 0}\mathcal{F}_{1},$ $\{\mathcal{F}_{1}\}$ is a refining sequence (i.e. $\mathcal{F}_{i}$ refines $\mathcal{F}_{i-1}$ for each $i$),
and each $\mathcal{F}_{i}$ is a discrete clopen covering of $A$ with its mesh $\leq 1/2^{i}$ with respect
to $\rho$ .

Since dim $X=0$ and each $\mathcal{F}$: is discrete, we can expand it to a discrete clopen
collection $\mathcal{W}_{i}$ of $X$ satisfying the following condition.

lf 3.2. For each $F\in \mathcal{F}_{1}$ , there exists $W\in \mathcal{W}_{i}$ such that $F=W\cap A$ , and mesh
$\mathcal{W}_{i}\leq 1/2^{i-1}$ with respect to $\rho$ .

By the assumptions that no points are isolated and $A$ is nowhere dense in $X$ ,
we can assume that

113.3. $\{\mathcal{W}_{i}\}$ is a refining sequence with $X=\cup \mathcal{W}_{0}$ and that for each $i\geq 0$ and
every $W\in \mathcal{W}_{i}$ it holds that $ W\cap A\neq\emptyset$ , and that $ W\backslash \cup \mathcal{W}_{i+1}\neq\emptyset$ .

Put

1I 3.4. $\mathcal{U}=\bigcup_{i\geq 0}\mathcal{U}_{1}$ , where $u=\{W\backslash \cup \mathcal{W}_{i+1} : W.\in \mathcal{W}_{i}\}$ .

Then it is not dfficult to see that $\mathcal{U}$ is a disjoint clopen $s$ . $c$ . cover for (X, $A$).
Therefore,

Lemma 3.1. Under the above assumptions of $X$ and $A$ in this section, for
any given $\mathcal{F}$ , which satisfies $1|3.1$ , there exists a disjoint clopen $s$ . $c$ . cover $\mathcal{U}$ for
(X, $A$) satishing $1|3.2-1|3.4$ with suitable collecions $\mathcal{W}:$ .

We call $\mathcal{U}$ a standard $s$ . $c$ . cover (with respecto to $\mathcal{F}$) for (X, $A$ ) that is
provided by this lemma. We need the following property of standard $s$ . $c$ . covers
in the next section (see the proof of Theorem 1.2). See Remark 3.1 for an example
of $s$ . $c$ . cover which is not standard.

Proposition 3.1. Let $\mathcal{U}$ be a standard $s$ . $c$ . cover for a pair (X, $A$), and
suppose that $G$ is a clopen neighborhood of $A$ such that $G=A\cup(W<G>)$ where
$\mathcal{U}_{<G>}$ is defined in Fact 3.2. Then, $\mathcal{U}<G>$ is a standard $s$ . $c$ , cover for the pair
$(G,A)$ .

Proof. Let $\{\mathcal{W}_{i}\}$ be a sequence of discrete collection used in $1|3.2$ . For each
$W\in \mathcal{W}_{i}$ let

$U(W)=W\backslash \cup \mathcal{W}_{i+1}\in \mathcal{U}$ .
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Then, we shall show that we can rearrange $\mathcal{W}c$ so that the collection $\mathcal{F}_{G}=$

$\{W\cap A : W\in \mathcal{W}_{G}\}$ constitutes a refining sequence for $A$ . At first, we shall
show:

Assertion 1. For each $W\in \mathcal{W}_{i}$ theoe exists a collection $\mathcal{W}w\subset \mathcal{W}c\cap$

$(\bigcup_{j>i}\mathcal{W}_{j})$ such that $\mathcal{F}_{W}=\{W\cap A : W\in \mathcal{W}_{W}\}$ is a disjoint clopen cover of
$W\cap A$ .

For any $x\in W\cap A$ there exists a $W^{\prime}\in \mathcal{W}_{j}$ , for some $j>i$ , such that
$x\in W^{\prime}\subset G$ , since $G$ is a neighborhood of $A$ and $\{W\in\cup:\mathcal{W}_{i} : x\in W\}$ is an
open base of $x$ by $1|3.2$ . Then, $W\subset W$ , since $\mathcal{W}_{j}$ refines $\mathcal{W}_{i}$ , and $U(W$‘

$)$ $\subset G$

by the definition of $U(W^{\prime})$ . Hence,

$\mathcal{W}^{*}=\{W^{\prime}\in\bigcup_{j>i}\mathcal{W}_{j} : U(W^{\prime})\subset G, W^{\prime}\subset W\}$

is a covering of $W$ . Let

$\mathcal{W}_{W}=St(\mathcal{W}^{*})=\{st(W^{\prime}, \mathcal{W}^{*}) : W^{\prime}\in \mathcal{W}^{*}\}$ .

Then, $\mathcal{W}_{W}$ satisfies the required property, since it holds that $W^{\prime}\subset W^{\prime\prime}$ or
$W^{\prime}\supset W^{\prime\prime}$ if $ W^{\prime}\cap W^{\prime\prime}\neq\emptyset$ for $W^{\prime},$ $W^{\prime\prime}\in \mathcal{W}^{*}$ so that $st(W^{\prime}, \mathcal{W}^{*})\in \mathcal{W}^{*}$ . Let $\rho_{G}$

be the same metric of $X$ and put

$\mathcal{W}_{G,0}=\bigcup_{W\in \mathcal{W}_{0}}\mathcal{W}_{W}$ and $\mathcal{F}_{G,0}=\bigcup_{W\in \mathcal{W}_{0}}\mathcal{F}_{W}$ .

Then, $\mathcal{F}_{G,0}$ is.a disjoint clopen cover of $A$ with its mesh $\leq 1$ . For each $ i\geq$ llet

$\mathcal{W}_{G,i}=\bigcup_{W\in \mathcal{W}_{G,i-1}}\mathcal{W}_{W}$ and $\mathcal{F}_{G,i}=\bigcup_{W\in \mathcal{W}_{G.i-1}}\mathcal{F}_{W}$ .

Then, the mesh $\mathcal{W}_{G,i}\leq 1/2^{i-1}$ and the mesh $\mathcal{F}_{G,i}\leq 1/2^{i}$ . By their constructions
we see that

$\mathcal{W}_{G}=\bigcup_{i\geq 0}\mathcal{W}_{G,i}$ and $\mathcal{U}<G>=\{U(W) : W\in\bigcup_{i\geq 0}\mathcal{W}_{G,i}\}$ .

Hence two collections $\{\mathcal{F}_{G,i}\}$ and $\{\mathcal{W}_{G,i}\}$ satisfy 13.2 and $1|3.3$ , and $\mathcal{U}<G>$ is a
standard $s$ . $c$ . cover for the pair $(G, A)\square $

c) A homeomorphism extension theorem and applications to
strongly homogeneous spaces.

Definition 3.1. Assume that $\mathcal{U}$ and $\mathcal{V}$ are $s$ . $c$ . covers for (X, $A$) and (X, $B$ ),
respectively. Then, a $(\mathcal{U}, \mathcal{V})-$ preserving homeomorphism $h$ : (X, $A$ ) $\rightarrow(Y, B)$

is providend when $h(A)=B$ and $h$ induces a bijection $h^{*}$ : $\mathcal{U}\rightarrow \mathcal{V}$ , defined by
$h^{*}(U)=h(U)$ for every $U\in \mathcal{U}$ .
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On the other hand, a bijection $\varphi$ : $\mathcal{U}\rightarrow \mathcal{V}$ is called piecewise homeomorphic
($p.h$ . for short) when it holds that $U\approx\varphi(U)$ for each $U\in \mathcal{U}$ . A $p.h$ . bijection
$\varphi$ : $\mathcal{U}\rightarrow \mathcal{V}$ is realized by a homeomorphism $\tilde{h}$ : $X\rightarrow Y$ when it holds that $\varphi=\tilde{h}^{*}$ .

Example 3.1. Let $A$ be a one point set $\{a\}$ in $X=P$ , and suppose that
$\{W_{i}\}_{t\geq 0}$ is its countable decreasing neighborhood base of $a$ with $W_{0}=X$ . Then,
the collection $\mathcal{U}=\{U_{i}=W_{i}\backslash W_{i+1}\}$ is a standard $s$ . $c$ . cover for (X, $A$). On the
other hand, let $\mathcal{V}=\bigcup_{i\geq 0}\mathcal{V}_{i}$ , where each $\mathcal{V}_{i}$ is a countable infinite discrete clopen
cover of $U;$ . Then, $\mathcal{V}$ is a $s$ . $c$ , cover for (X, $A$), which is not standard, and it
holds that there are no $(\mathcal{U}, \mathcal{V})$ -preserving autohomeomorphisms of (X, $A$).

We need one more fundamental lemma to state our homeomorphism exten-
sion theorem.

Lemma 3.2. Let $h$ : $G\rightarrow H$ be a homeomorphism between two closed sub-
sets $G$ and $H$ of metric spaces $X$ and $Y$ , respectively. Then there exist two
compatible bounded metrics $\rho_{G}\leq 1$ and $\rho_{H}\leq 1$ of $X$ and $Y$ , respectively, such
that $h:(G, \rho_{G})\rightarrow(H, \rho_{H})$ is an isometnc mapping.

Proof. It is obvious from the fact that $mim\{\rho, 1\}$ is always a metric for
every metric $\rho$ , and from a theorem of Hausdorff [3, Problem $4.5.21.(c)$ ] . $\square $

Now, we can state our homeomorphism extension theorem:

Theorem 3.1. Let $X$ and $Y$ be strvngly O-dimensional metric spaces without
isolated points, and let $G$ and $H$ be their closed nowhere dense subsets, respec-
tively. Suppose that $\rho_{G}$ and $\rho_{H}$ are two compatible metrics of $X$ and $Y$ , and
$h$ : $(G, \rho_{G})\rightarrow(H, \rho_{H})$ is an isometric homeomorphism. Assume that $\mathcal{F}$ is a
refining sequence satisfying $1|3.1$ for $A=G$ with respect to $\rho c$ . Let $\mathcal{U}$ and $\mathcal{V}$ be
two standard $s$ . $c$ . covers with respect to $\mathcal{F}$ and $h(\mathcal{F})$ for the pairs (X, $G,\rho_{G}$ ) and
$(Y, H,\rho_{H})$ , respectively. Then there exits a bijection $\varphi$ : $\mathcal{U}\rightarrow \mathcal{V}$ with the follow-
ing property: if $\varphi$ is $p.h$ . , then $\varphi$ is realized by a homeomorphism $h$ : $X\rightarrow,Y$

which is an extension of $h$ .

d) Navigations sets. We begin with the following notion of navigating
sets, which is shown effective to prove our homeomorphism extension theorem.

Definition 3.2. Let $\{\mathcal{F}_{2}\}_{t\geq 0}$ be a refining sequence of a space $X$ . Then a
set $\{p_{F} : F\in \mathcal{F}=\bigcup_{i\geq 0}\mathcal{F}_{i}\}$ is called a navigating set for $\mathcal{F}$ when it satisfies that
$p_{F}=p_{K}$ if $F\in \mathcal{F}_{1+1},$ $K\in \mathcal{F}_{i}$ for some $i$ , and $p_{K}\in F\subset K$ .
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Remark 3.1. Note that there always exists a navigating set for a given
refining sequence $\{F_{i}\}$ by defining $p_{F}$ inductively (with respect to i) as far as all
the elements of every $\mathcal{F}_{1}$ are non-empty.

We show here one simple application of navigating sets and standard $s$ . $c$ .
covers.

Lemma 3.3. Assume that $A$ is nowhere dense in $X$ , where the metnc space
$X$ has no isolated points and dim $X=0$ . Then, for any closed subset $B\subset A$ ,
there exists a closed subset $T_{B}$ of $X$ and a subcollection $\mathcal{U}_{B}of\mathcal{U}$ such that $\mathcal{U}_{B}$

is a $s$ . $c$ . cover for $(T_{B}, B)$ , where $T_{B}=B\cup(\cup \mathcal{U}_{B})$ and $\mathcal{U}$ is any given disjoint
clopen standard $s$ . $c$ . cover for (X, $A$).

Proof. Let $\mathcal{F}$ be a refining sequence with which $\mathcal{U}$ is standard. Take a
navigating set $\{p_{F} : F\in \mathcal{F}\}$ , satisfying that $p_{F}\in B$ whenever $ F\cap B\neq\emptyset$ . Then,
define $r_{A}^{B}$ : $X\rightarrow A$ as follows:

$r_{A}^{B}(x)=x$ for every $x\in A$

$=p_{F}$ for every $x\in W\backslash \cup \mathcal{W}_{i+1}\in \mathcal{U}_{i}$ and $F=W\cap A$ .

It is easy to see that $r_{A}^{B}$ : $X\rightarrow A$ is a continuous retraction (cf. [3, Problem
4. $1.G(a)$ ]). Put

$\mathcal{U}_{B}=\{U\in \mathcal{U} : U\cap r_{A}^{B^{\leftarrow}}(B)\neq\emptyset\}$ .

Then, it is not difficult to see that $\mathcal{U}_{B}$ satisfies the required properties by the
condition (SC) and the definition of navigating sets. $\square $

Remark 3.2. Lemma 3.3 is valid for arbitra $rys$ . $c$ . cover if we restrict our
case when the space $X$ is either $B_{\kappa}$ or $Q_{\kappa}$ , though in this case we need some
characterization of $X$ and another homeomorphism extension theorem (see [18,
Lemma $0$]).

e) Proof of Theorem 3.1.

Proof. We consider two clopen collections

$\mathcal{G}=\bigcup_{i\geq 0}\mathcal{G}_{i}$ , and $\mathcal{H}=\bigcup_{i\geq 0}\mathcal{H}_{i}$

of $X$ and $Y$ for the refining sequence $\{\mathcal{F}_{i}\}$ of$A=G$ , and for the refining sequence
$\{h(\mathcal{F}_{i})\}$ of $A=H$ , which satisfies $1|3.2-1|3.4$ for $\mathcal{W}=\mathcal{G}$ of $\mathcal{H}$ , respectively. Put,
for each $S\in \mathcal{G}_{i}$ and $T\in \mathcal{H};$ ,

$U(S)=S\backslash \cup \mathcal{G}_{t+1}$ and $V(T)=\tau\backslash \cup \mathcal{H}_{t+1}$ .
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Then, by $1|3.4$ it holds that $\mathcal{U}=\bigcup_{i\geq 0}u$ and $\mathcal{V}=\bigcup_{i\geq 0}\mathcal{V}_{i}$ , where $\mathcal{U}_{i}=\{U(S)$ :
$S\in \mathcal{G}_{i}\}$ and $\mathcal{V};=\{V(T) : T\in \mathcal{H}_{i}\}$ .
Take an arbitrary navigating set $N(\mathcal{F})=\{p_{F} : F\in \mathcal{F}\}$ for $\mathcal{F}$ . Then, note that
$h(N(\mathcal{F}))$ is a navigating set for $\{f(\mathcal{F}_{i})\}$ by the Definition 3.1 and the fact that
$h$ is one to one. Note also that since each $\mathcal{F}_{i}$ is a covering of $G$ , we have:

1I 3.5. For each $p=p_{F}$ that set $I(p)=I(h(p))=\{j$ : $p_{F}=p_{K}$ for some $ K\in$

$\mathcal{F}_{i}\}$ is just the set $\{j : j\geq j_{p}\}$ for some integer $j_{p}$ .

Hence, for each $p=p_{F}$ put

$\mathcal{G}(p)=\{S:p\in S\in \mathcal{G}_{j},j\geq j_{p}\}$ and $\mathcal{H}(h(p))=\{T:h(p)\in T\in \mathcal{H}_{j},j\geq j_{p}\}$ .
For every $j\geq j_{p}$ let $S_{j}$ and $T_{j}$ be the unique elements of the collections $\mathcal{G}_{j}\cap \mathcal{G}(p)$

and $\mathcal{H};\cap \mathcal{H}(h(p))$ , respectively. Let $\phi_{p}$ : $\mathcal{G}(p)\rightarrow \mathcal{H}(h(p))$ be the bijection defined
by $\phi_{p}(S_{j})=T_{j}$ .
Note that

lt 3.6. $\phi_{p}$ induces a level preserving bijection (i.e. it induces a bijection between
$\mathcal{G}_{i}$ and $\mathcal{H}_{j}$ for each i) by its definition and the facts that

$\mathcal{G}=\bigcup_{F\in \mathcal{F}}\mathcal{G}(p_{F}),$ $\mathcal{H}=\bigcup_{F\in \mathcal{F}}\mathcal{H}(h(p_{F}))$ ,

and $\mathcal{G}(p_{F})\cap \mathcal{G}(p_{K})=\emptyset,$ $\mathcal{H}(h(p_{F}))\cap \mathcal{H}(h(p_{K}))=\emptyset$ if $p_{F}\neq p_{K}$ .

By 13.6 we see that $\phi$ : $\mathcal{G}\rightarrow \mathcal{H}$ defined by $\phi(S)=\phi_{p}(S)$ for each $S\in \mathcal{G}(p)$ ,
is a bijection. Define $\varphi$ : $\mathcal{U}\rightarrow \mathcal{V}$ by

$\varphi(U(S))=V(\phi(S))$ .

Let us show that if $\varphi$ is $p.h$ . , then it is realized by a homeomorphism $\tilde{h}$ : $X\rightarrow Y$ .
Let us define $\tilde{h}$ : $X\rightarrow Y$ as follows.
(a) Put $\tilde{h}|G=h$ .
(b) For each $U\in \mathcal{U}_{j}$ , let $\tilde{h}|U$ be an arbitrary homeomorphism between $U$ and
$V$ , where $V=\varphi(U)$ , given by the assumption that $\varphi$ is $p$ . $h$ .
Then it is evident that $ h^{*}=\varphi$ (hence, $\tilde{h}$ is $(\mathcal{U},$ $\mathcal{V})$ -preserving).

(i) Continuity of $\tilde{h}$ . It suffices to show that $\tilde{h}$ is continuous for every point
$x\in G$ . Assume that a sequence $\{x_{n}\in X\backslash G\}$ converges to $x$ . For any $\epsilon-$

neighborhood of $h(x)=\tilde{h}(x)$ with respect to the metric $\rho_{H}$ take a sufficiently
large integer $i$ such that $ 1/2^{i-3}<\epsilon$ . Since $\{x_{n}\}$ converges to $x$ , there exists $n_{0}$

such that $x_{n}\in S$ for every $n\geq n_{0}$ , where $S$ is the unique element of $\mathcal{G}_{i}$ which
contains $x$ . Then by the definition of $\tilde{h}(x_{n})$ , for each $n\geq n_{0}$ , there exist unique
$F_{n}\in \mathcal{F},$ $p_{n}=p_{F_{n}}$ , and $j_{n}\geq j_{p_{n}}$ such that

$x_{n}\in U(S_{j_{n}})$ , and $S_{j_{n}}\in \mathcal{G}(p_{n})$ .
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Note that the following $1|3.7$ holds, by $1|3.6$ , the fact that $x_{n}\in S\in \mathcal{G}_{i}$ , and the
part (b) of the definition of $\tilde{h}$ .

1I 3.7. $j_{n}\geq i$ and $h(p_{n}),\tilde{h}(x_{n})\in T_{j_{n}}$ for some $T_{j_{n}}\in \mathcal{H}_{j_{n}}$ , and hence
$\rho_{H}(\tilde{h}(x_{n}), h(p_{n}))\leq 1/2^{j_{n}-1}$ .

On the other hand,

$\rho_{G}(x,p_{n})\leq\rho_{G}(x, x_{n})+\rho_{G}(x_{n},p_{n})\leq 1/2^{i-1}+1/2^{j_{\hslash}-1}\leq 1/2^{i-2}$ .

Since 13.7 holds and $\rho_{G}(x,p_{n})=\rho_{H}(h(x), h(p_{n}))$ by the assumption, we have

$\rho_{H}(h(x),\tilde{h}(x_{n}))\leq\rho_{H}(h(x), h(p_{n}))+\rho_{H}(h(p_{n}),\tilde{h}(x_{n}))$

$\leq 1/2^{i-2}+1/2^{j_{n}-1}\leq 1/2^{i-3}<\epsilon$ .

(ii) Continuity of $\tilde{h}^{\leftarrow}$ . It can be seen without difficulties by a parallel argument
given above, using $1|3.2$ and the assumption that $h$ is isometric. $\square $

We have the following applications of this theorem (we call a metric space strvngly
homogeneous (abbr. $s.h$ . ) when all its non-empty clopen subspaces are homeo-
morphic [10] (see also Remark $3.4(a)$ ):

Corollary 3.1. Let $X$ be $s.h$ . strongly O-demensional matric space and let
$G$ and $H$ be its closed nowhere dense subsets. If $h$ : $G\rightarrow H$ is a homeomorphism
then $h$ can be extended to an autohomeomorphism $\tilde{h}$ of $X$ .

Corollary 3.2. ([12, Lemma 1]) Let $G$ and $H$ be closed nowhere dense sub-
sets of strongly O-dimensional metric spaces $X$ and $Y$ , respectively. Assume
that $X\backslash G$ and $Y\backslash H$ are homeomorphic $s.h$ . spaces. Then, any homeomorphism
$h:G\rightarrow H$ can be extended to a homeomorphism $\tilde{h}$ : $X\rightarrow Y$ .

Simultaneous prrof of Corollaries 3.1 and 3.2. By Lemmas 3.1 and 3.2
we have two compatible bounded metrics $\rho_{G}\leq 1$ and $\rho_{H}\leq 1$ such that $h$ is an
isometric mapping and two standard $s$ . $c$ . covers $\mathcal{U}$ and $\mathcal{V}$ with respect to them.
Then, we can apply Theorem 3.1 to get a bijection $\varphi$ such that it is realized
by an autohomeomorphism $\tilde{h}$ , which is an extension of $h$ , since $h$ is $p.h$ . by the
strong homogeneity of the assumptions. $\square $

Remark 3.3. (a) Cantor set $C$ , the space of irrationals $P$ (moreover, every
O-dimentional Baire sapce $B_{\kappa}$ of weight $\kappa$ ), and that of rationals $Q$ (moreover,
the universal $\sigma$-discrete space $Q_{\kappa}$ of weight $\kappa$ in [9]) are all $s.h$ . spaces. On the
other hand, the space $C^{*}=C\backslash \{p\}$ for any $p\in C$ is no longer $s.h$ . (hence, Corol-
lary 3.1 does not follow from Corollary 3.2), but it still has the homeomorphism
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extension property guaranteed in Theorem 3.1 as follows. Since every closed
nowhere dense subset of $C^{*}$ has a standard $s$ . $c$ . cover $\mathcal{U}$ , consisting of clopen
disjoint subsets of $C^{*}$ suth that each $U\in \mathcal{U}$ is homeomorphic to $C$ . Hence every
homeomorphism between them can be extended to an autohomeomorphism of
$c*$ .
(b) Corollary 3.1 generalized [10, Theorem 3.1] to non-separable metric space.
The $s$ . $c$ . cover preserving property of $\tilde{h}$ in our theorem is important, because
we shall use it to construct an embedding between $u.s.c$ . decompositions with
respect to given $s$ . $c$ . covers (see also Theorem 4.3).
(c) For dense subsets of complete metric spaces we can prove the following theo-
rem, which is a generalization of [3, Problem 1.3 $H(b),$ $(c)$ ] (we reserve its proof
ot \S 5):

Theorem 3.2. Let $D$ and $E$ be two $\sigma$ -discrete dense subsets of a $s.h.$ com-
plete metric space $X$ of dim $X=0$ . Then there exists an autohomeomorphism
$h:X\rightarrow X$ suth that $h(D)=E$ .

Remark 3.4. (a) The assumption of completeness in Theorem 3.2 is essen-
tial, since every dense subset of $Q$ is homeomorphic to $Q$ by [3, Problem 1.3
$H(d)]$ (e.g. there are no autohomeomorphism $h$ of $Q$ such that $h(D)=E$ , if $D$

and $E$ are chosen to satisfy that $|Q\backslash D|=1$ and $|Q\backslash E|=2$).
(b) The strong homogeneity relates with self similarity of fractals as follows (see
[5] for its definition and its topological properties). We propose to say that a
space $X$ is topologically self similar (abbr. $t$ . $s$ . $s$ . ) if every non-empty open
subset contains a topological copy of $X$ , which is a closed subset of $X$ . Then,
it is evident that every $s.h$ . space $X$ is $t$ . $s.s$ . when dim $X=0$ . By well-known
classical characterization theorems of $C,$ $P,$ $Q,$ $B_{\kappa}$ , and $Q_{\kappa}$ we have the follow-
ing theorem, which says that $s.h$ . spaces are rather restrictive when dim $X=0$
(hence, a complete metric space $X$ in Theorem 3.2 is homeomorphic to either $C$

or $B_{\kappa}$ , where $\kappa=w(X))$ :

Theorem 3.3. Every $t$ . $s$ . $s$ . complete metric space $X$ ofdim $X=0$ is home-
omorphic to either $C$ (when $X$ is compact), or $B_{\kappa}$ (when $X$ is non-compact).
Every $t.s.s$ . $\sigma$ -discrete metric space is homeomorphic to $Q_{\kappa}$ . In particular, every
countable $t.s$ . $s$ . metric space is homeomorphic to $Q$ .

We conclude this section with the following proposition, which is one more appli-
cation of Theorem 3.1 and will be used to prove Theorem 4.2 (b) and Corollary
4.1.

Proposition 3.2. $Let\mathcal{U}$ be a standard $s$ . $c$ . cover for a pair (X, $A$) in The-
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orem 3.1, and suppose that $G$ is a dense subset of $X_{\rangle}$ containing A. Then,
$\mathcal{U}|G=\{U\cap G : U\in \mathcal{U}\}$ is a standa $rds$ . $c$ , cover for the pair $(G, A)$ , and the
bijection $\varphi$ : $\dot{\mathcal{U}}\rightarrow \mathcal{U}|G$ , defined by $\varphi(U)=U\cap G$ for each $U\in \mathcal{U}$ , satisfies all the
conditions of Theorem 3.1.

Proof. Indeed, since $G$ is dense and $X$ has no isolated point by the assump-
tion, it holds that $G$ has no isolated points, $ U\cup G\neq\emptyset$ for each $U\in \mathcal{U}$ , and 13.2-
$1|3.4$ hold for $\mathcal{U}$ }$G$ . Hence, $\mathcal{U}|G$ is a standard $s$ . $c$ . cover for the pair $(G, A)$ . Let-
ting $h=id_{A}$ and $\rho_{G}=\rho x$ , we see that $\varphi$ satisfies all the conditions of Theorem
3.1. $\square $

4. Universal spaces for 0-dimensional van Douwen-complete spaces

a) Preliminaries. In this section we shall show the following theorem,
which is a refinement of a theorem in [16]. We remind that a (not necessarily first
countable) space is called h-homogeneous when any non-empty clopen subsets
are homeomorphic (e.g. [9]).

Theorem 4.1. For each $\mathcal{D}_{\kappa}$ , there exists a space $D_{\kappa}$ , which is h-homo-
geneous, such that every $X\in \mathcal{D}_{\kappa}$ can be embedded in $D_{\kappa}$ as a closed subset.
Moreover, it is also $HO$ , and the subset $Z_{\kappa}$ , consisting of all non-first-countable
points in $D_{\kappa}$ , is homogeneous.

Recall that $B_{\kappa}$ is the Baire’s O-dimensional space of a given weight $\kappa\geq\omega$

(i.e. $ B_{\kappa}=^{\omega}\kappa$ the countable Cartesian product of a discrete space of size $\kappa$ ).
The following facts are well-known.

Fact 4.1. (a characterization theorem of $B_{\kappa}[13$ , Theorem 1]). Let $X$

be a complete metric space of dim$X=0$ . If it has a dense set of cardinality
$\kappa$ , and if any non-empty open subset contains a discrete subset of cardinality $\kappa$ ,
then $X$ is homeomorphic to $B_{\kappa}$ . Hence, every dense $G_{\delta}$ (respectively, non-empty
open) subset of $B_{\kappa}$ is homeomorphic to $B_{\kappa}$ .

Fact 4.2. ([13]). Every completely metrizable space $X$ of $ w(X)\leq\kappa$ can be
embedded in $B_{\kappa}$ as a nowhere dense closed subset.

Definition 4.1. We call a refining sequence $\{\mathcal{B}_{i}\}_{t\geq 0}$ of a space $ X\kappa$ -complete
for an infinite cardinal number $\kappa$ when it satisfies the following conditions $1|4.1$

and 14.2.
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1I 4.1. Each $\mathcal{B}$; is a clopen disjoint cover of $X$ with the property that, for every
decreasing collection $\{B_{i}\}$ , where $B_{i}\in \mathcal{B}_{i}$ , there exists a point $x\in X$ such that
$\{B_{1}\}$ is a neighborhood base of $x$ .

lt 4.2. Each element of $\mathcal{B}$; is non-empty, and $\mathcal{B}_{i}$ can be indexed by

$\mathcal{B}_{i}\{B(\alpha_{0}, \ldots, \alpha_{i}) : \alpha_{0}, \ldots, \alpha_{i}<\kappa\}$ and $B(\alpha_{0}, \ldots , \alpha_{i})=\bigcup_{\beta<\kappa}B(\alpha_{0}, \ldots , \alpha_{i},\beta)$ .

For a given $\kappa$-complete refining sequence $\{\mathcal{B}_{i}\}_{t\geq 0}$ we shall use its induced
metric $\rho(x, y)=1/2^{i}$ , where $i=\min\{j$ : there exists $B\in \mathcal{B}_{j}$ such that $x\in B$

but $y\not\in B$ }. By Definition 4.1 it holds that:

II 4.3. For any $x\in X$ , there exists unique sequence of indexes $\alpha(x)=\{\alpha_{i}\}_{i\geq 0}$

such that $\{x\}=\bigcap_{i}B(\alpha_{0}, \ldots, \alpha_{i})$ .

For two given $\kappa$-complete refining sequences $\mathcal{B}$ and $\mathcal{B}^{\prime}$ of spaces $G$ and $H$

respectively, we can define their induced homeomorphism $h:G\rightarrow H$ as follows.

1I 4.4. $h(x)=\cap;B^{\prime}(\alpha_{0}, \ldots, \alpha_{i})$ , where $\alpha(x)=\{\alpha_{i}\}_{i\geq 0}$ satisfies $1|4.3$ .

Note that $h$ satisfies a refining sequence preserving property that $\mathcal{B}^{\prime}=h(\mathcal{B})=$

$\{h(B) : B\in \mathcal{B}\}$ .

Remark 4.1. By $1|4.1-4.2$ we see that the existence of a $\kappa$-complete refining
sequence characterizes the Baire’s O-dimensional space $B_{\kappa}$ (i.e. $X\approx B_{\kappa}$ ). This
simple fact is closely related to the HO property of our universal space $D_{\kappa}$ and
the homogeneity of its non-first countable subset $Z_{\kappa}$ . On the other hand, we do
not have any characterization, using only its refining sequences, for the universal
$\sigma$-discrete space $Q_{\kappa}$ of weight $\kappa$ in [9]. Hence, we shall prove the homogeneity of
our universal space $W_{\kappa}$ by using restrictions of the following $\mathcal{P}_{\kappa}$ -s. $c$ . covers of
$B_{\kappa}$ to $\sigma$-discrete pairs (see \S 5).

Definition 4.2. Let $\mathcal{P}_{\kappa}$ be the class of all the pairs (X, $A$), where $A$ is a
nowhere dense closed subset of $X$ and $A\approx X\approx B_{\kappa}$ . Then, for each pair
(X, $A$) $\in \mathcal{P}_{\kappa}$ , take a $\kappa$-complete refining sequence $\mathcal{B}_{A}$ of $A$ . A standard $s$ . $c$ .
cover with respect to $\mathcal{B}_{A}$ is called a $\mathcal{P}_{\kappa}-s$ . $c$ . cover for the pair (X, $A$).

The following theorem is one of main tools to prove Theorem 4.1.

Theorem 4.2. Every $\mathcal{P}_{\kappa}- s$ . $c$ . cover has the following properties:
(a) For each (X, $A$), and $(Y, B)\in \mathcal{P}_{\kappa}$ , there exists a $(\mathcal{U}, \mathcal{V})-$ preserving home-
omorphism $h$ : (X, $A$) $\rightarrow(Y, B)$ , where $\mathcal{U}$ and $\mathcal{V}$ are any given $\mathcal{P}_{\kappa}$ -s. $c$ . covers
for (X, $A$) and $(Y, B)$ , respectively.
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(b) Suppose that $\mathcal{U}$ is a $\mathcal{P}_{\kappa}$ cover for (X, $A$), and assume that $G$ is a $G_{\delta}$ dense
subset $ofX$ , containing A. Then, $\mathcal{U}|G$ defined in Fact 3.3 is a $\mathcal{P}_{\kappa}$ -s. $c$ . cover
for the pair $(G, A)$ , and the bijection $\varphi$ : $\mathcal{U}\rightarrow \mathcal{U}\backslash G$ , defined by $\varphi(U)=U\cap G$

for each $U\in \mathcal{U}$ , is realized by a homeomorphism $h:(X, A)\rightarrow(G, A)$ .

(c) Suppose that $\mathcal{U}$ is a $\mathcal{P}_{\kappa}$ cover for (X, $A$), and assume that $G$ is a clopen
neighborhood of $A$ such that $G=A\cup(\cup \mathcal{U}<G>)$ , where $\mathcal{U}<c>is$ defined in Fact
3.2. Then, $\mathcal{U}<G>is$ a $\mathcal{P}_{\kappa}$ -s. $c$ . cover for the pair $(G, A)$ .

Proof. (a) It is a direct consequence of Theorem 3.1, using the induced
homeomorphism defined in $1|4.4$ and the induced metric defined after $1|4.2$ .
(b) follows from Proposition 3.2, since it holds that $U\approx\varphi(U)$ for each $U\in \mathcal{U}_{A}$

by Fact 4.1.
(c) We can apply Proposition 3.1 to get a refining sequence $\mathcal{F}$ of $A$ . Note that
in this case $\mathcal{F}$ satisfies $1|4.1$ and 14.2, $s$ince $|\mathcal{F}_{W}|=\kappa$ for each $W\in \mathcal{W}_{1}$ by the
fact that $\mathcal{F}_{W}\subset\bigcup_{j>i}\mathcal{W}_{i}$ . Hence, $\mathcal{F}$ is a $\kappa$-complete refining sequence of $A$ and
$\mathcal{U}_{G}$ is a $\mathcal{P}_{\kappa}-s$ . $c$ . cover for the pair $(G, A)\square $

b) Watson construction. We shall perform the construction for the space
$B_{\kappa}$ , where it is used as a model space $M$ in the introduction. Let $\mathcal{V}_{0}$ be a clopen
disjoint cover of $B_{\kappa}$ with $|\mathcal{V}_{0}|=\kappa$ , and the mesh $\mathcal{V}_{0}\leq 1$ with respect to some
complete metric of $B_{\kappa}$ . Then by Fact 4.2, for each $V\in \mathcal{V}_{0}$ , take a nowhere dense
closed subset $F_{V}\approx B_{\kappa}$ of $V$ . Put $\mathcal{F}_{0}=\{F_{V} : V\in \mathcal{V}_{0}\}$ .
By recursion we shall construct two collections $\mathcal{F}_{i}$ and $\mathcal{V}_{i}$ for each $i$ , satisfying
the following $1|4.5-1|4.6$ .

1I 4.5. $\mathcal{V}_{i}$ is a clopen disjoint collection with $|\mathcal{V}_{i}|=\kappa$ and $\mathcal{F}:=\{F_{V}$ : $V\in \mathcal{V}:1$

where $F_{V}$ is a closed nowhere dense subset of $V$ , and is homeomorphic to $B_{\kappa}$ .

1I 4.6. The mesh $\mathcal{V}_{i}\leq 1/2^{i}$ with respect to some complete metric of $B_{\kappa}$ , and
$\mathcal{V}_{1}=\bigcup_{U\in \mathcal{V}_{i-1}}\mathcal{V}_{U}$ , where $\mathcal{V}_{U}$ is a $\mathcal{P}_{\kappa}- s$ . $c$ . cover for the pair $(U, F_{U})$ .

Put also
$C_{\infty}=\bigcup_{j\geq 0}C_{j}$ , for $C=\mathcal{F}$ , or $\mathcal{V},$ $M_{0}=B_{\kappa}\backslash \cup \mathcal{F}_{\infty}$ , and $E;=\bigcup_{j\leq i}F_{j}$ , where
$F_{i}=\cup \mathcal{F}_{1}$ .
Note that:

1I 4.7. The collection $\mathcal{V}_{i}$ refines $\mathcal{V}_{1-1}$ , each $E$; is nowhere dense closed in the
space $B_{\kappa},$ $\mathcal{V}_{i}$ is a $s$ . $c$ . cover for $(B_{\kappa}, E_{i})$ , hence $\mathcal{V}_{\infty}$ is a $\pi-$ base (i.e. any non-
empty open set contains some element of $\mathcal{V}_{\infty}$ ), and $M_{0}$ is dense in $B_{\kappa}$ .

For each $F_{V}$ , where $V\in \mathcal{V}_{i}$ , let $\mathcal{B}_{V}$ be the collection of all clopen subsets $B$
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in $V$ such that, for each $B\in \mathcal{B}_{V}$ , there exists a subcollection $\mathcal{V}_{B}\subset \mathcal{V}_{V}\subset \mathcal{V}_{i+1}$

satisfying that $B=\cup \mathcal{V}_{B}\cup F_{V}$ . Then one can show the following lemma without
difficulties by the property (SC) of $s$ . $c$ . covers and our construction.

Lemma 4.1. The collection $\mathcal{B}v$ is a clopen neighborhood base of $F_{V}$ in $V$

(hence in $B_{\kappa}$ ).

Now, let $D_{\kappa,\mathcal{F}_{\infty}}$ be the decomposition space defined by the following identi-
fication on $B_{\kappa}$ :

we identify $r,$
$s\in B_{\kappa}$ if $r,$ $s\in F\in \mathcal{F}_{1}$ for some $i$ .

From our construction this definition of identffication makes sense, and let $q$ :
$B_{\kappa}\rightarrow D_{\kappa,\mathcal{F}_{\infty}}$ be the natural quotient map. Put $\mathcal{W}(x)=\{q(B) : B\in \mathcal{B}_{V}\}$ for
$x=q(F_{V})$ , where $V\in \mathcal{V}_{i}$ ,
and put
$\mathcal{W}(x)=\{q(V) : q^{\leftarrow}(x)\in V\in v_{:}, i\in\omega\}$ for $x\in D_{\kappa,\mathcal{F}_{\infty}}$ such that $q^{\leftarrow}(x)\in M_{0}$ .
Then, we have the following fundamental property of our quotient topology (see
[22, Lemmas 2 and 3]).

Lemma 4.2. For each $x\in D_{\kappa,\mathcal{F}_{\infty}}$ the collection $\mathcal{W}(x)$ is its clopen neigh-
borhood base.

By this lemma we know that each point $x$ , where $q^{\leftarrow}(x)\not\in \mathcal{F}_{\infty}$ , has a count-
able neighborhood base, and has a $s$ . $c$ . cover for the pair $(D_{\kappa,\mathcal{F}_{\infty}}, \{x\})$ . On the
other hand, each pair $(B_{\kappa}, q^{\leftarrow}(x))$ , where $q^{\leftarrow}(x)\in \mathcal{F}_{\infty}$ , has a q-saturated $s$ . $c$ .
cover by $1|4.6$ since $V$ is clopen. Hence, by virtue of the following lemma it holds
that $q$ is a closed map.

Lemma 4.3. Let $p$ : $X\rightarrow Y$ be a quotient map, where $X$ is normal, and
suppose that every $y\in Y$ has an open collection $\mathcal{W}$ such that $p^{\leftarrow}\mathcal{W}$ is a $s$ . $c$ .
cover for the pair (X, $p^{\leftarrow}(y)$ ). Then, $p$ is a closed map.

Proof. Let $F$ be an arbitrary closed subset of $X$ , and suppose that $ F\cap$

$ p^{\leftarrow}(y)=\emptyset$ . Take disjoint neighborhoods $U$ and $V$ of $F$ and $p^{\leftarrow}(y)$ , respectively.
Since $p^{\leftarrow}\mathcal{W}$ is a $s$ . $c$ . cover for the pair (X, $p^{\leftarrow}(y)$ ), there exists a subcollection
$\mathcal{W}_{V}$ of $\mathcal{W}$ such that $G=p^{\leftarrow}(y)\cup p^{\leftarrow}(\cup \mathcal{W}v)$ is a neighborhood of $p^{\leftarrow}(y)$ , satisfying
$G\subset V$ . Then, $p(G)$ is a neighborhood of $y$ , since $p$ is quotient. Hence, $p(F)$ is
a closed set, since $ p(G)\cap p(F)=\emptyset$ . $\square $

Lemma 4.4. The quotient map $q:B_{\kappa}\rightarrow D_{\kappa,\mathcal{F}_{\infty}}$ is an EE-map. Hence, the
decomposition space $D_{\kappa,\mathcal{F}_{\infty}}$ is a member of $\mathcal{K}_{\kappa}$ .
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Proof. By Lemmas 4.1 $-4.3$ it holds that $q$ is closed. The map $q$ is an
EE-map, since $M_{0}$ is dense by $1|4.7$ , and $q|M_{0}$ is a homeomorphism. $\square $

The next lemma shows that the space $D_{\kappa,\mathcal{F}_{\infty}}$ is actually a member of $\mathcal{D}_{\kappa}$ .

Lemma 4.5. Every non-empty open subset of $D_{\kappa,\mathcal{F}_{\infty}}$ is a countable union
of its clopen subsets, and hence dim $D_{\kappa,\mathcal{F}_{\infty}}=0$ ,

Proof. Let $O$ be its arbitrary non-empty open subset. Then, by Lemma 4.2,
for each $x\in O$ , it holds that either there exists
$B_{x}\in \mathcal{B}_{Vx}$ , where $V_{x}\in \mathcal{V}:$ , such that $x\in q(B_{x})\subset O$ , or $V_{x}\in \mathcal{V}_{i}$ such that
$x\in q(V_{x})\subset O$ .
For each $i,j\geq 0$ put

$g_{\dot{\iota}j}=$ { $V_{x}\in \mathcal{V}_{i}$ : diam $V_{x}\geq 1/2^{j}$ }, and
$\mathcal{H}_{ij}=$ { $B_{x}\in \mathcal{B}_{Vx}$ : $V_{x}\in \mathcal{V}:$ , and diam $B_{x}\geq 1/2^{j}$ }.

Note that two collections $\mathcal{G}_{ij}$ and $\mathcal{H}_{ij}$ are discrete in $B_{\kappa}$ by our construction.
Put

$c_{:j}\cdot=\cup \mathcal{G}_{ij},$ $H_{1j}=\cup \mathcal{H}_{ij}$ , and $O_{ij}=q(G_{1j}\cup H_{1j})$ .

Then, $O_{1j}$ is clopen in $D_{\kappa,\dot{\mathcal{F}}_{\infty}}$ , since $q^{\leftarrow}(O_{ij})=G_{ij}\cup H_{ij}$ is clopen in $B_{\kappa}$ , and $q$

is a quotient map. This completes the proof, since we have $O=\bigcup_{ij\geq 0}O_{ij}$ , and
hence dim $D_{\kappa,\mathcal{F}_{\infty}}=0$ by [4, Exercise $6.2.C.(b)$ ] . $\square $

We shall show that the topology of our space $D_{\kappa,\mathcal{F}_{\infty}}$ does not depend on the
choice of a collection $\mathcal{F}_{\infty}$ .

Definition 4.3. A family $\mathcal{F}=\bigcup_{j\geq 0}\mathcal{F}_{j}$ of closed subset of $B_{\kappa}$ is called uni-
versal when there exists a collection $\mathcal{V}=\bigcup_{j\geq 0}\mathcal{V}_{j}$ , satisfying the above conditions
$1|4.5-4.6$ as well as $\mathcal{V}0$ is a cover of $B_{\kappa}$ .

Theorem 4.3. Every decomposition space $D_{\kappa,\mathcal{F}}$ with respect to some uni-
versla closed collection $\mathcal{F}$ is homeomorphic each other.

Proof. Let $\mathcal{F}^{\prime}$ be another universal collection, and let $\mathcal{V}^{\prime}$ satisfy $1|4.5-4.6$ .
Since $|\mathcal{F}_{0}|=|\mathcal{F}_{0}^{\prime}|=\kappa$ , there exists a bijection $\phi_{0}$ : $\mathcal{F}_{0}\rightarrow \mathcal{F}_{0}^{\prime}$ . For each $V\in \mathcal{V}_{0}$ ,
let $h_{0,V}$ : (V, $F_{V}$ ) $\rightarrow(V^{\prime}, \phi_{0}(F_{V}))$ be a $(\mathcal{V}_{V}, \mathcal{V}_{V}^{\prime},)$ -preserving homeomorphism
given by Theorem 4.2 (a), where $V^{\prime}$ is the unique $V^{\prime}\in \mathcal{V}_{0}^{\prime}$ , which contains the
set $\phi_{0}(F_{V})$ by $1|4.5$ . Let $h_{0}$ : $B_{\kappa}\rightarrow B_{\kappa}$ be the homeomorphism defined by
$h_{0}|V=h_{0,V}$ . By recursion, for each $i\geq 1$ we shall define a homeomorphism
$h$; : $(B_{\kappa}\backslash E_{1-1}, F_{1})\rightarrow(B_{\kappa}\backslash E_{i-1}^{\prime}, F_{i}^{\prime})$ , and a bijection $\phi_{i}$ : $\mathcal{F}_{1}\rightarrow \mathcal{F}_{1}^{\prime}$ , which satisfy
that, for each $ V\in \mathcal{V}_{U}\subset \mathcal{V}\iota$ , where $U\in \mathcal{V}_{i-1}$ ,
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$n4.8$ . $h_{i}|V=h_{i,V}$ : (V, $F_{V}$ ) $\rightarrow(V^{\prime}, \phi_{i}(F_{V}))$ is a $(\mathcal{V}_{V}, \mathcal{V}_{V}^{\prime},)- preserving$ homeo-
morphism;

1I 4.9. $V^{\prime}$ is the unique element of $\mathcal{V}_{i}^{\prime}$ , which satisfies that $V^{\prime}\supset\phi_{i}(F_{V})$ ;

1I 4.10. $\phi_{i}|\mathcal{F}_{1,U}$ : $\mathcal{F}_{1,U}\rightarrow \mathcal{F}_{i,U}^{\prime}$ , is bijective, where $\mathcal{F}_{1,U}=\{F\in \mathcal{F}_{i} : F\subset U\}$ .

By $1|4.8$ and $1|4.10$ it holds that

1T 4.11. $h_{i+1}(V_{i+1})\subset h_{i}(V_{1})$ , when $V_{1+1}\subset V_{i}$ and $V_{k}\in \mathcal{V}_{k}$ for $k=i,$ $i+1$ .

Define $h_{\infty}$ : $B_{\kappa}\rightarrow B_{\kappa}$ as follows.

$h_{\infty}|F=h_{i}|F$, where $F\in \mathcal{F}_{i}$ , and
$h_{\infty}(x)=\cap\{h_{j}(V_{j}) : x\in V_{j}\in \mathcal{V}_{j}, j\geq 0\}$ for each $x\in M_{0}$ .

Then, this definition is well-defined, because the point $h_{\infty}(x)$ exists, $1|4.6$ holds
and $h_{i}(V)\in \mathcal{V}_{i}^{\prime}$ . Note that by Theorem 4.2, $1|4.8$ , and $1|4.11$ we have

$1|4.12$ . $h_{\infty}$ is a $(\mathcal{V}_{i}, \mathcal{V}_{i}^{\prime})$ -preserving autohomeomorphism for each $i\geq 0$ .

Let $q^{\prime}$ : $B_{\kappa}\rightarrow D_{\kappa,\mathcal{F}_{\infty}^{\prime}}$ be the canonical quotient map. Then, define $g$ :
$D_{\kappa,\mathcal{F}_{\infty}}\rightarrow D_{\kappa,\mathcal{F}_{\infty}^{\prime}}$ as follows.

$g(y)=q^{\prime}oh_{\infty}oq^{\leftarrow}(y)$ .

Then, $g(y)$ is well-defined and bijective by the definition of $h_{\infty}$ . Since both $q$

and $q^{\prime}$ are quotient, both $g$ and $g^{\leftarrow}=q\circ h_{\infty}^{\leftarrow}\circ g^{\prime}\leftarrow are$ continuous. $\square $

Hereafter we shall abbreviate the space $D_{\kappa,\mathcal{F}_{\infty}}$ as $D_{\kappa}$ by virtue of Theorem 4.
Finally let $Z_{\kappa}$ be the subspace of $D_{\kappa}$ consisting of non-trivial equivalent classes
(i.e. $Z_{\kappa}=q(\cup \mathcal{F}_{\infty})$ ).

Remark 4.2. (a) We may think that the above homeomorphism $g$ is a pro-
totype of our general embedding, which shall be given in the final part of this
section (see Remark 4.3).

(b) By $1|4.12$ we have proved the following proposition, which sounds inter-
esting by itself (compare it with Theorem 3.2).

Proposition 4.1. Let $\mathcal{F}$ and $\mathcal{F}^{\prime}$ be two universal collections. Then there
exists an autohomeomorphism $h:B_{\kappa}\rightarrow B_{\kappa}$ , which induces a bijection $h^{*}$ : $\mathcal{F}\rightarrow$

$\mathcal{F}^{\prime}$ , defined by $h^{*}(F)=h(F)\in \mathcal{F}^{\prime}$ for each $F\in \mathcal{F}$ .

We shall show that $Z_{\kappa}$ is homogeneous. For that purpose we begin with:
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Proposition 4.2. Spaces $D_{\kappa}$ and $Z_{\kappa}$ aoe h-homogeneous. Moreover, they
satisfy $HO$ .

Proof. Let $G$ be an arbitrary non-empty open subset of $Z_{k}appar$ , and let $U$

be an open subset of $D_{\kappa}$ such that $G=U\cap D_{\kappa}$ . Put

$C_{*}^{*}=\{K\in C_{i} : K\subset q^{\leftarrow}(U)\}$ and $C^{*}=\bigcup_{i\geq 0}C_{i}^{*}$ for $C=\mathcal{F}$ or $\mathcal{V}$ .

We shall show that $\mathcal{F}^{*}$ is a universal collection for the set $q^{\leftarrow}(U)\approx B_{\kappa}$ . For
that purpose, by rearranging the collection $\mathcal{V}^{*}$ we will construct a collection
$\mathcal{V}^{\prime}=\cup:\geq 0\mathcal{V}_{1}^{\prime}$ , satisfying 74.6 for $q^{\leftarrow}(U)$ . For each $x\in U$ , there exists a clopen
subset $W(x)\in \mathcal{W}(x)$ such that $W(x)\subset U$ by Lemma 4.2. By 14.6 every such
$W(x)$ is contained in a maximal $W(y)$ , since any two of them are disjoint or one
contains the other. Let $\mathcal{W}_{0}$ be the collection (moreover, a covering of $U$ ) of all
maximal $W(y)s$ , and let $\mathcal{V}_{0}^{\prime}=q^{\leftarrow}\mathcal{W}_{0}$ . Note that $\mathcal{V}_{0}^{\prime}$ is a clopen disjoint covering
of $q^{\leftarrow}(U)$ , and by the definition of $\mathcal{W}(x)$ it satisfies that:

nt 4.13. If $H\in \mathcal{V}_{0}^{\prime}$ , then it holds, for some $i$ , that either $H=V\in V_{i}$ or
$H=\cup \mathcal{V}_{H}\cup F_{V}$ for some $\mathcal{V}_{H}\subset \mathcal{V}_{V}$ where $V\in \mathcal{V};$ .

Let $F_{H}=F_{V}$ for each $V\in \mathcal{V}_{0}^{\prime}$ in either case of $1|4.13$ , and let $\mathcal{F}_{0}^{\prime}=\{F_{H}$ :
$H\in \mathcal{V}_{0}^{\prime}\}$ . Note that in the second case in $1|4.13$ the collection $V_{H}$ is a $\mathcal{P}_{\kappa}-s$ . $c$ ,

cover VH for the pair $(H, F_{H})$ by Theorem 4.2 (c), and that it corresponds to
the collection VU in $1|4.6$ .

Consider a complete metric $\rho^{*}$ of $q^{\leftarrow}(U)$ , which is defined as follows:

$\rho^{*}(x, y)=\left\{\begin{array}{ll}\rho(x, y) & if there exists V\in \mathcal{V}_{0}^{\prime} such that x, y\in V, and\\1 & otherwise,\end{array}\right.$

where $\rho$ is any complete metric of $B_{\kappa}$ . Then, for each $i\geq 1$ , put

$v_{:}^{J}=\{V\in \mathcal{V}^{*}$ : $V\in \mathcal{V}_{U}$ and $F=F_{U}\in \mathcal{F}_{i-1}^{\prime}$ , where $U\in \mathcal{V}_{\dot{\iota}-1}^{\prime}$ , and
$\mathcal{F}_{1}^{\prime}=$ { $F\in \mathcal{F}^{*}$ : $F=F_{V}$ for some $V\in \mathcal{V}_{i}^{\prime}$ }.

Then $\mathcal{V}_{i}^{\prime}$ satisfies $1|4.5-4.6$ since $\mathcal{V}_{\infty}$ satisfies them (note that $\mathcal{V}_{0}^{\prime}$ satisfies them by
Theorem 4.2 $(c))$ . By Theorem 4.3 there exists a homeomorphism $h:U\rightarrow D_{\kappa}$ .
Hence, the corresponding subspaces, consisting of all non first countable points
$G$ in $U$ , and $Z_{\kappa}$ are homeomorphic by the restriction $h|G$ of $h$ . $\square $

Proposition 4.3. The space $Z_{\kappa}$ is homogeneous.

Proof. For a pair of distinct points $x,$ $y\in q(\cup \mathcal{F}_{0})$ , it is easy to see that there
exists a homeomorphism $g_{0}$ : $Z_{\kappa}\rightarrow Z_{\kappa}$ such that $g_{0}(x)=y$ . In general case, let
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$G$ and $H$ be clopen disjoint neighborhoods of $q(x)$ and $q(y)$ , respectively, given
by Lemma 4.2. Then, there exists a required homeomorphism, since $Z_{\kappa}\backslash G$ and
$Z_{\kappa}\backslash H$ are non-empty clopen subsets (and hence are homeomorphic), and there
exists a homeomorphism $g_{0}$ : $G\rightarrow H$ such that $g_{0}(x)=y$ by the first case. $\square $

Before proving Corollary 4.1, which is a key to construct closed embeddings, we
present here a proof of Theorem 1.5, since it is more concrete, and it uses the
same idea, handling $G_{\delta}$ subsets (hence, it helps a lot to imagine the heart of the
proof of the corollary).

Proof of Theorem 1.5. Let $\tilde{f}:M\rightarrow\tilde{L}$ be the EE-map, defined in Example
2.3, where $M=P^{*}\times P_{0}$ and $P^{*}=(P_{0}\cup Q_{2})$ . We will show that $\tilde{L}$ is homeomor-
phic to $D_{\omega}$ (hence, the maximal non-first countable subset $L$ is homeomorphic
to $Z_{\omega}$ , which is homogeneous by the above proposition). It suffices to show that
the collection $\mathcal{F}=\{\Delta_{i,j}^{n} : n=1,2, \ldots ; 1\leq i\leq 2^{n} : 1\leq j\leq 2^{n-1}\}$ is a universal
collection of $M$ . We begin with the following lemma.

Lemma 4.6. Let $\mathcal{G}$ be a countable collection of f-saturated clopen subsets,
which covers a clopen subset $H$ of M. Then, there exists a disjoint refinement

$\mathcal{H}$ of $\mathcal{G}$ , which covers $H$ and consists of clopen $\tilde{f}$-saturated subsets.

Proof. For each $G_{i}\in \mathcal{G}$ put $H_{i}=G;\backslash \bigcup_{k<i}G_{k}$ . Then, one can shows that
$\{H_{i}\}$ satisfies all the conditions of the lemma. $\square $

From the construction of $\tilde{L}$ we can show that:

$\eta 4.14$ . For each point $x\in M$ , there exists a neighborhood base $\mathcal{B}$ in $M$ such
that each $B$ (respectively, $B\backslash \Delta_{i)j}^{n}$ ), where $B\in \mathcal{B}$ , is $\tilde{f}$-saturated when $x\not\in \mathcal{F}$

(respectively, when $x\in\Delta_{i,j}^{n}$ ).

Indeed, for each two numbers $ m\in\omega$ and $q\in Q\backslash Q_{2}$ , take open intervals
$(p_{x}-q,p_{x}+q)$ and $(r_{x}^{\prime\prime}, r_{x}^{\prime})$ , and put

$B_{m}(q, x)=M\cap((p_{x}-q,p_{x}+q)\times(r_{x}^{\prime\prime}, r_{x}^{\prime}))$ ,

where $x=\{p_{x}\}\times\{r_{x}\}$ and $r_{x}^{\prime\prime},$ $r_{x}^{\prime}$ are the unique subsequent binary rational
numbers with rank at most $m$ such that $r_{x}^{\prime\prime}<r_{x}<r_{x}^{\prime}$ . Then, $B=\{B_{m}(q, x)$ :
$m\in\omega,$ $q\in Q\backslash Q_{2}$ } satisfies $1|4.14$ . Indeed, for any neighborhood $U$ of $x$ , take
open intervals $H^{\prime}$ and $O^{\prime}$ such that $x\in G=M\cap(H^{\prime}\times O^{\prime})\subset U$ . Take a
sufficiently large $n_{0}$ ($n_{0}>n$ when $x\in\Delta_{1_{1j}}^{n}$ ) such that it satisfies that

$O^{\prime}\supset\Delta_{i,j}^{m}$ if $\Delta_{\dot{\iota},j}^{m}\cap(r_{x}^{\prime\prime}, r_{x}^{\prime}))\neq\emptyset$ and $m\geq n_{0}$ .

In case $x\not\in \mathcal{F}$ (respectively, $x\in\Delta_{i,j}^{n}$ ) take open intervals $H\subset H^{\prime}$ and $O\subset O^{\prime}$
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such that

$(H\times O)\cap(\bigcup_{m\leq n_{O}}(\bigcup_{i,j}\Delta_{i,j}^{n}))=\emptyset$

(respectively, $(H\times O\backslash \Delta^{n}:,j)\cap(\cup m\leq n_{0}(\cup i,j_{1}\Delta_{j}^{n})=\emptyset)$ .

Finally, take $l\geq n_{0}$ and $q\in Q\backslash Q_{2}$ such that $B_{l}(q, x)\subset H\times O$ . Then, it is ready
to see that $B_{l}(q, x)\subset U$ and it satisfies the remaining conditions in $1|4.14$ .
Moreover, we have:

lt 4.15. For each $F=\Delta_{1)j}^{n}\in \mathcal{F}$ , there exists a clopen neighborhood base in $M$

consisting of $\tilde{f}$-saturated subsets.

Indeed, for any neighborhood $U$ of $F$ , let $\{B_{i}\}$ be a countable clopen col-
lection of $\tilde{f}$-saturated subsets such that $F\subset\cup B;\subset U$ by $1|4.14$ and the Lin-
del\"offness of $F$ . Note that we may assume that it holds that $q;>q_{i+1}$ and
$m_{i}\geq n$ for each $i$ , where $B_{i}=B_{m:}(q_{i}, x_{i})$ . Then, the set

$H=\cup B$;

is $\tilde{f}$-saturated and is clopen in $M$ , since it holds that $H\cap(\{j/2^{n}\}\times P^{*})=F$ .
Let $\rho^{*}$ and $\rho_{E}$ be a bounded complete metric $\leq 1$ of $P^{*}$ , and the usual

Euclidean metric of the closed unit interval $I=[0,1]$ , respctively. Put

$d=\sqrt{(\rho^{*})^{2}+(\rho_{E})^{2}}$ .

Note that:

lt 4.16. For any $\epsilon>0$ , there are only finitely many $\Delta_{i)j}^{n}$ such that their diameter
$>\epsilon$ , where we use the metric $d$ of $P^{*}\times I$ .

At first we shall construct an $\omega$-complete refining sequence $\{\mathcal{H}_{i}\}_{i\geq 0}$ of $M$

such that there exists a decomposition $\{\mathcal{F}_{i}\}$ of $\mathcal{F}$ such that mesh $\mathcal{F}_{i}<1/2^{i}$ with
respect to the metric induce by $\{\mathcal{H}_{i}\}_{i\geq 0}$ . Let $\{x_{i}\}_{t\geq 0}$ be an enumeration of $I\backslash P_{0}$ ,
and put $K_{i}=\bigcup_{n\leq i}P^{*}\times\{x_{n}\}$ . Put also

$\mathcal{F}_{1}^{\prime}=\{F\in \mathcal{F} : cl_{d}(F)\cap K_{i}\neq\emptyset\}$ .

Using 74.16 we see that:

1I 4.17. Every $\mathcal{F}_{1}^{\prime}$ , where $i\geq 0$ , is infinite discrete in $M$ .

On the other hand, for each $H\in \mathcal{F}\backslash \mathcal{F}_{i}^{\prime}$ , we have:

1I 4.18. For the d-closed set $K=cl_{d}(H)$ it holds that $ K\cap K_{i}=\emptyset$ .
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Let
$\mathcal{F}_{0}^{*}=\mathcal{F}_{0}^{\prime}\cup\{F\in \mathcal{F} : d(F)\geq 1/2\}$ .

Then, $\mathcal{F}_{0}^{*}$ is discrete by $1|4.16$ and $1|4.17$ . Hence, by $1|4.14$ and 4.15 there exists
a discrete $\tilde{f}$-saturated clopen collection $\mathcal{H}_{0}^{\prime}=\{H_{F} : F\in \mathcal{F}_{0}^{*}\}$ such that $F\subset H_{F}$

and $d(H_{F})\leq 1$ (note that $d(F)\leq 1/2$ by the definitions of $\Delta_{1j}^{n}$ and $d$).
Let $\mathcal{H}_{0}^{*}$ be a countable cover of the clopen subset $M\backslash \cup \mathcal{H}_{0}^{\prime}$ by $1|4.14$ and

$1|4.15$ , which consists of clopen $\tilde{f}$-saturated subsets of diameter $\leq 1$ with respect
to $d$ , and which also satisfies $1|4.18$ for each $H\in \mathcal{H}_{0}^{*}$ . By Lemma 4.6 we can
assume that all members of $\mathcal{H}_{0}^{*}$ are disjoint. Put

$\mathcal{H}_{0}=\mathcal{H}_{0}^{\prime}\cup \mathcal{H}_{0}^{*}$ .

Assume that we have defined a discrete collection $\mathcal{F}_{i-1}^{*}$ , and a discrete clopen
cover $\mathcal{H}_{i-1}$ . Let

$\mathcal{F}_{i}^{*}=\mathcal{F}_{\dot{\iota}}^{\prime}\cup\{F\in \mathcal{F}:d(F)\geq 1/2^{t+1}\}$ .
Note that $\mathcal{F}_{i}^{*}$ is discrete, $\mathcal{F}_{\dot{*}-1}^{*}\subset \mathcal{F}_{i}^{*}$ and $\mathcal{F}=\bigcup_{i}\mathcal{F}_{i}^{*}$ . By the collectionwise
normality of $M$ take a clopen discrete collection $G_{i}=\{G_{F} : F\in \mathcal{F}_{i}^{*}\}$ such that
$F\subset G_{F}$ for each $F\in \mathcal{F}_{i}^{*}$ . For each $F\in \mathcal{F}_{i-1}^{*}$ , take a countable infinite discrete
$\tilde{f}$-saturated clopen collection $\mathcal{H}_{F}$ such that, for each $H\in \mathcal{H}_{F}$ :

St 4.19. It holds that $d(H)\leq 1/2^{i},$ $H\cap F\neq\emptyset,$ $H\backslash F$ is $\tilde{f}$-saturated, satisfying
$1|4.18$ , and $F\subset\cup \mathcal{H}_{F}\subset G_{F}\cap H_{F}$ , where $H_{F}\in \mathcal{H}_{i-1}$ .

For each $F\in \mathcal{F}_{i}^{*}\backslash \mathcal{F}_{1-1}^{*}$ , take a $\tilde{f}$-saturated clopen set $H_{F}$ of diameter $\leq 1/2^{i}$

with respect to $d$ , which also satisfies that $H_{F}\subset G_{F}$ . Put

$\mathcal{H}_{i}^{\prime}=\{H_{F} : F\in \mathcal{F}_{i}^{*}\backslash \mathcal{F}_{i-1}^{*}\}\cup\{\mathcal{H}_{F} : F\in \mathcal{F}_{i-1}^{*}\}$

Let $\mathcal{H}_{i}^{*}$ be a disjoint cover of the clopen subset $M\backslash \cup \mathcal{H}_{i}^{\prime}$ , which consists of clopen
$\tilde{f}$-saturated subsets of diameter $\leq 2^{i}$ with respect to $d$ , and which also satisfies
$1|4.18$ for each $H\in \mathcal{H}_{*}^{*}$ . Put

$\mathcal{H}_{i}=\mathcal{H}_{i}^{\prime}\cup \mathcal{H}^{*}|$

By $1|4.19$ it is ready to see that $\{\mathcal{H}_{i}\}$ is a $\kappa$-complete refining sequence of $M$ ,
and that mesh $\mathcal{F}_{1}^{*}\leq 1/2^{i}$ with respect to its induced metric. Note that it is not
difficult to see that we can define $\mathcal{F}_{1}$ and $\mathcal{V}_{i}$ so that $\mathcal{F}$ is a universal collection
by using the above constructions of $\mathcal{F}_{1}^{*}$ and $\mathcal{H}_{i}^{*}$ . $\square $

Corollary 4.1. Let $G$ be a $G_{\delta}$ subset in $D_{\kappa}$ such that $G\supset q(\cup \mathcal{F}_{\infty})$ . Then,
$G$ is homeomorphic to $D_{\kappa}$ .
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An outline of the proof. Put $K=B_{\kappa}\backslash q^{\leftarrow}(G)$ and let $K=\bigcup_{j\geq 0}K_{j}$ , where
each $K_{j}$ is non-empty closed set in $B_{\kappa}$ and $K_{j}\subset K_{j+1}$ . Note that each $K_{j}$ is
nowhere dense, since $ K\cap(\cup \mathcal{F}_{\infty})=\emptyset$ and $\cup \mathcal{F}_{\infty}$ is dense by $1|4.7$ . Then, for
each open subset $M\backslash K_{j}$ , by a parallel argument with the proof of Proposition
4.2, we can construct a clopen disjoint collection $\mathcal{V}_{j}\subset \mathcal{V}_{\infty}^{\prime}$ , which corresponds
to the collection $\mathcal{V}_{0}^{\prime}$ in there. Put $\mathcal{V}_{j}^{*}=\mathcal{V}_{j}^{\prime}\{q^{\leftarrow}(G)$ . Then, by Theorem 4.2 (b)
$\mathcal{V}_{j}^{*}$ consists of $\mathcal{P}_{\kappa^{-}}s$ . $c$ , covers. Moreover, by a $s$ame idea, avoiding the set $K_{j}$ ,
in the above proof of Theorem 1.5, we can make that $\mathcal{V}_{j+1}^{*}$ refines $V_{j}^{*}$ for each
$ j\in\omega$ , and that the mesh $\mathcal{V}_{j}^{*}\leq 1/2^{j}$ with respect to the induced metric of
some $\kappa$-complete refining sequence of $q^{\leftarrow}(G)$ . We leave the details to the reader.
Hence, the corollary follows from Theorem 4.3, since $\mathcal{F}_{\infty}$ is a universal collection
of $q^{\leftarrow}(G)\approx B_{\kappa}$ . $\square $

c) Universality of $D_{\kappa}$ . Let $f$ : $M\rightarrow Y$ be a closed onto map from a
complete metric space $M$ of $ w(M)\leq\kappa$ . By Facts 2.1 and 2.2 we can assume
that $M=B_{\kappa}$ and $f$ is irreducible (see also [2]). In this section we shall show
that $Y$ can be embedded in $D_{\kappa}$ as a closed subset. For that purpose we shall
use the control due to S. Watson in [22]. In the present case, however, we have a
different situation from there, since we have a dense subset $Y_{0}$ of $Y$ , consisting of
first countable points (in other words, $Y_{0}$ is the maximal metrizable part of $Y$ ).
Moreover, we must see that there exists a closed embedding. For that purpose,
we shall construct a closed embedding $g$ : $Y\rightarrow G$ , where $G$ is some dense $G_{\delta}$

subset $G$ of $D_{\kappa}$ , and shalI show that $G$ is homeomorphic to $D_{\kappa}$ .
By [8, 14, 23] it holds that $Y\backslash Y_{0}$ is $\sigma$-discrete. Put $Y\backslash Y_{0}=\cup\iota\geq 0D_{i}$ , where

each $D_{i}$ is closed discrete in $Y$ and pairwise disjoint. Considering $Y\oplus D_{\kappa}$ , if
necessary, we can assume that $|D_{i}|=\kappa$ and that any $f^{\leftarrow}(y)$ is non-compact,
whenever $y\in D_{i}$ and $i\geq 0$ .
Put $Z_{i}=\{Z_{y}=f^{\leftarrow}(y) : y\in D_{i}\},$ $Z_{i}=\cup Z_{i}$ , and $M_{i}=M\backslash \bigcup_{j<i}Z_{j}$ .

Remark 4.3. The author explains here for the reader the brief explanation
of how to produce a desired embedding $g$ . Our embedding is a kind of limit
of (not necessarily continuous) mappings. For each i-th step, we construct a
homeomorphism $\tilde{h}_{i}$ between open sets $M_{i}$ and $\tau_{i}\backslash \bigcup_{j<i}\tilde{h}_{j}(Z_{j})$ , where $T_{1}$ is a
closed subset of $B_{\kappa}$ . By means of $\tilde{h};$ , we can correspond neightborhoods of each
set $Z_{y}$ in $M$ and those of closed set $\tilde{h}_{i}(Z_{y})\in \mathcal{F}_{\infty}$ in $T_{1}$ freely. But, it does not
induce a mapping between open subsets of $Y$ and $q(T_{i})\subset D_{\kappa}$ , since it is not $s$ . $c$ .
cover preserving. Hence, we should adjust it to a correspondence $\varphi$; : $M_{i}\rightarrow S_{i}$ ,
where $S_{i}$ is a closed subset of $T_{i}$ , which preserves certain $s$ . $c$.-covers about $Z_{i}$

and $\tilde{h}_{i}(Z_{i})$ . Though it must adjust neighborhoods between each point of $D_{i}$

in $Y$ and that of $q(\tilde{h}_{i}(Z_{i}))$ in $q(T_{i})$ , we remind the reader again that $\varphi_{i}$ needs
not induce a continuous mapping between subsets of our La\v{s}nev spaces either,
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because it controls nothing about points in $D_{j}$ for $j>i$ . Thus, by recursion
with respect to $i$ , we can adjust topology about all the points in $Y\backslash Y_{0}$ and those
in $g(Y\backslash Y_{0})$ . By choosing $s,$ $c$ . covers for $S_{i}$ carefully, we can also adjust topology
about the remaining metrizable points in $Y_{0}$ and those in $g(Y_{0})$ .

Since it holds that $|D_{i}|=\kappa$ and $ w(f^{\leftarrow}(y))\leq\kappa$ for each $y\in Y$ , we can apply
Fact 4.2 and $1|4.5$ , so that the following property holds.

lf 4.20. For any $Z_{y}$ , where $y\in D_{0}$ , there exists $F_{y}\in \mathcal{F}_{0}$ , and a closed embedding
$h_{y}$ : $Z_{y}\rightarrow F_{y}$ , with $ F_{y}\cap F_{y^{\prime}}=\emptyset$ if $y\neq y^{\prime}\in D_{0}$ .

Let $\mathcal{G}_{-1}$ be a clopen disjoint cover of $B_{\kappa}$ , which separates $D_{0}$

$(i.e. \forall_{y}\in D_{0}[|\{G\in \mathcal{G}_{-1} : y\in G\}|=1])$ .
Let $h_{0}$ : $Z_{0}\rightarrow B_{\kappa}$ be the closed embedding defined by $h_{0}|Z_{y}=h_{y}$ . Applying
Lemma 3.3 for $A=F_{0}$ and $B=h_{0}(Z_{0})=H_{0}$ , we have a closed subspace $T_{0}$ of
$B_{\kappa}$ and a subcollection $\mathcal{H}0$ of $\mathcal{V}_{0}$ , which is a $s$ . $c$ . cover for $(T_{0}, H_{0})$ . Note that by
Fact 4.1 the space $T_{0}$ is homeomorphic to $B_{\kappa}$ and $H_{0}$ is its nowhere dense closed
$ subset\sim$ . Applying Corollary 3.1 for $G=Z_{0},$ $H=H_{0}$ , we have a homeomorphism
$h_{0}$ : $M\rightarrow T_{0}$ which is an extension of $h_{0}$ . For each $y\in Y\backslash D_{0}$ let

$G_{y}=f^{\leftarrow}(Y\backslash f(M\backslash U_{y}))$ ,

where $U_{y}=st(Z_{y},\tilde{h}^{\leftarrow}(\mathcal{H}_{0}))$ . Put

$\mathcal{G}^{\prime}=\{G_{y} : y\in Y\backslash D_{0}\}$ .

Since dimY $=0$ and Fact 3.1 holds for $Y$ , take a clopen disjoint refinement $\mathcal{G}0$

of $\mathcal{G}^{\prime}$ , which is a $s$ . $c$ . cover for $(Y, D_{0})$ such that

$f^{\leftarrow}\mathcal{G}0$ refines $\{B_{0}(Z_{y}) : y\in Y\backslash D_{0}\}$ ,

where $B_{i}(A)$ is the $1/2^{i}$-neighborhood of $A$ . Note that the following 14.21 is
valid for $i=0$ , since $1|4.7$ holds.

1I 4.21. For each $G\in \mathcal{G}_{i}$ we can take a $U_{G}\in\bigcup_{k\geq i}\mathcal{V}_{k}$ , such that $ U_{G}\subset$

$\tilde{h}_{i}(f^{\leftarrow}(G))$ .

Let $O_{0}=\{U_{G} : G\in \mathcal{G}_{0}\}$ . Then by Fact 3.4 we have a closed set $S_{0}=S_{A}$ ,
where $A=H_{0}$ .
Let $\varphi$ : $M\rightarrow S_{0}$ be a one to one correspondence defined by $\varphi_{0}|Z_{0}=\tilde{h}|Z_{0}$ ,
and $\varphi_{0}|f^{\leftarrow}(G)$ is an arbitrary homeomorphism onto $U_{G}$ for each $G\in \mathcal{G}0$ . By
recursion we have, for each $i\geq 1$ , two closed subsets $\mathcal{T}_{1}$ and $S_{i}$ in $B_{\kappa}$ , a $s$ . $c$ . cover
$\mathcal{G}_{i}$ , two subcollections $\mathcal{H}\iota,$ $\mathcal{O}_{i}\subset \mathcal{V}_{\infty}$ , a homeomorphism satisfying the following
$1|4.22-4.28$ .
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$T4.22$ . $\mathcal{G}_{i}$ refines $\mathcal{G}_{i-1},$ $\mathcal{G}_{i}$ separates $D_{i+1}$ , and $\mathcal{G}_{i}$ is a clopen disjoint $s$ . $c$ . cover
for $(Y, \bigcup_{j\leq i}D_{j})$ .

1I 4.23. $f^{\leftarrow}\mathcal{G}_{i}$ refines $\{B_{i}(Z_{y}) : y\in Y\backslash \bigcup_{j\leq i}D_{j}\}$ , and $\tilde{h}_{i}(Z_{i})=H_{1}\subset\cup \mathcal{F}_{\infty}$ .

lt 4.24. $\mathcal{H}$ ; refines $\mathcal{H}_{i-1}$ , and $ S_{i}=\cup O_{i}\cup(\bigcup_{j\leq i}H_{j})\subset T_{1}=\cup \mathcal{H}_{i}\cup(\bigcup_{j\leq};H_{j})\subset$

$S_{i-1}$ .

$\eta 4.25$ . For each $y\in G\cap D;$ , where $G\in \mathcal{G}_{i-1}$ (by $1|4.22G$ is unique and is
different for each $y$), the closed embedding $h_{y}$ : $Z_{y}\rightarrow F_{y}=F_{V_{y}}$ is given by 14.5
and Fact 4.2, where it holds that $V_{y}=U_{G}\in \mathcal{O}_{i-1}$ and $U_{G}$ is chosen by $1|4.21$ . We
also apply Lemma 3.3 to get $T_{y}=T_{B}$ and $\mathcal{H}_{y}=\mathcal{U}_{B}$ for $B=\tilde{h}_{i}(Z_{y})\subset A=F_{y}$ ,
$X=V_{y},$ $\mathcal{U}=\mathcal{V}_{V_{y}}$ .

1I 4.26. $\mathcal{H}_{i}=\bigcup_{y\in D_{i}}\mathcal{H}_{y}\cup\{U_{G}\in \mathcal{O}_{i-1} : G\cap D_{i}=\emptyset\}$ , and $\tilde{h}_{i}$ : $M_{1}\rightarrow(T_{1}\backslash \bigcup_{j<i}H_{j})$

is a homeomorphism, satisfying that, for each $G\in \mathcal{G}_{i}$ with $ G\cap D_{i}\neq\emptyset$ , the
restriction $\tilde{h}_{i}|f^{\leftarrow}(G)$ is an extension of $h_{y}$ onto $T_{y}$ given by Corollary 3.1, and
the restriction in case $ G\cap D_{i}\neq\emptyset$ is an arbitrary homeomorphism onto $U_{G}$ .

lt 4.27. $\mathcal{O}_{i}$ is defined by $1|4.21$ in such a way that $O_{i}=\{U_{G} : G\in \mathcal{G}_{i}\}$ refines
$O_{i-1}$ , and for each $y\in D_{i}$ , the collection $\mathcal{O}_{y}=\{O\in \mathcal{O}; : O\subset V_{y}\}$ satisfies Fact
3.4 for the pair $(S_{B}, B)$ , where $S_{B}=\cup O_{y}\cup B$ and $B=\tilde{h}_{i}(Z_{y})$ .

1I 4.28. $\varphi$; : $M_{1}\rightarrow S_{i}\backslash \bigcup_{j<i}H_{j}$ is a one to one correspondence defined by
$\varphi_{i}|Z_{i}=\tilde{h}|Z_{i}$ , and $\varphi_{i}|f^{\leftarrow}(G)$ is an arbitrary homeomorphism onto $U_{G}$ for each
$G\in \mathcal{G}_{i}$ .

The following lemma is used not only for defining a closed embedding, but
also for showing its required properties.

Lemma 4.7. (a) $\{\mathcal{G}_{i}\}\iota\geq 0$ is a clopen base of $Y_{0}$ in Y.
(b) $\mathcal{O}_{i}\subset\bigcup_{k\geq i}\mathcal{V}_{k}$ , and for any $G_{j}\in \mathcal{G}_{j}$ , where $j=i,$ $i-1$ , it holds that

if $G;\subset G_{i-1}$ , then $O_{i}=\tilde{h}_{i}(f^{\leftarrow}(G_{i}))\subset O_{i-1}=\tilde{h}_{i-1}(f^{\leftarrow}(G_{i-1}))$ .
(c) The map $\varphi_{i}$ has the following property: Every $\varphi_{i}(f^{\leftarrow}N)$ is a clopen neigh-
borhood of $\tilde{h}_{i}(Z_{y})$ in $S_{1}$ , where $N=\{y\}\cup(\cup C)$ is a neighborhood of $y\in D_{i}$ in
$Y$ for some subcollection $C$ of $\mathcal{G}_{i}$ . On the other hand, for each neighborhood $E$

of $\tilde{h}_{i}(Z_{y})$ in $S_{1}$ , there exists a subcollection $Cof\mathcal{G}_{i}$ such that $N=\{y\}\cup(\cup C)$ is
a neighborhood of $y\in D$; in $Y$ and $\varphi_{i}(f^{\leftarrow}N)\subset E$ .

Proof. (a) It is shown without difficulties by a parallel argument in [3, The-
orem 4.4.15]. The remaining proofs for (b) and (c) are easily obtained by our
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construction and Fact 3.4. $\square $

Define $g:Y\rightarrow D_{\kappa,\lambda}$ as follows.

$g(y)=qo\tilde{h}_{i}(F_{y})$ for every $y\in D_{i}$ and,
$=\bigcap_{t\geq 0}q(O_{i})$ for each $y\in Y_{0}$ , where $O_{i}=\varphi_{i}(f^{\leftarrow}(G_{i}))\in \mathcal{O}_{i}$

and $\{G_{i}\in \mathcal{G}_{i} : y\in G_{i}\}$ .

Note that $g$ is well-defined, since $g(y)$ is uniquely determined by 14.6, 14.27,
and Lemma 4.6 (b) (compare with $1|4.12$ ). For each $y\in D_{i}$ , let $\mathcal{N}(y)$ be the
collection of all clopen subsets of $Y$ such that, for each $N\in \mathcal{N}(y)$ , there exists
a subcollection $\mathcal{G}_{N}\subset \mathcal{G}$; satisfying that $N=\cup \mathcal{G}_{N}\cup\{y\}$ . Put also

$\mathcal{N}(y)=\{G:x\in G\in \mathcal{G}_{i}\}$ for $y\in Y_{0}$ .

Then, the following lemma, corresponding to Lemma 4.1, holds. We omit its
parallel proof.

Lemma 4.8. For each $y\in Y$ the collection $\mathcal{N}(y)$ is its clopen neighborhood
base.

Proof of Theorem 4.1. By Propositions 4.2 and 4.3 it suffices to show the
following two lemmas. At first we shall show that $g$ is injective. By its definition,
Lemma 4.6 (a) and (b), it is ready to see that $g|(Y\backslash Y_{0})$ is one to one and into
$D_{\kappa}\backslash q(M_{0})$ by 14.25 and 14.26. On the other hand, $g|Y_{0}$ is one to one and into
$q(M_{0}),$ $because\cap t\geq 0O_{i}\subset M_{0}$ . Hence, $g$ is injective. Next, we show that:

Lemma 4.9. The map $g:Y\rightarrow D_{\kappa,\lambda}$ is an embedding.

Proof. (i) Continuity of $g$ . For arbitrary neighborhood $W$ of $ x=g(x)\in$

$D_{\kappa,\lambda}$ , we can assume that $W\in \mathcal{W}(x)$ by Lemma 4.2. Hence,
(a) in case $y\in Y_{0}$ , there exists a unique point $q^{\leftarrow}(x)$ such that $q^{\leftarrow}(x)\in V$ and
$W=q(V)$ for some $V\in \mathcal{V}_{i}$ . On the other hand, by the definition of $g$ , we have
$q^{\leftarrow}(x)\in O;$ , where $O;=\varphi_{i}(f^{\leftarrow}(G))$ and $y\in G\in \mathcal{G}_{i}$ Then, $g(G)\subset W$ by $1|4.21$ ,
$T4.26$ , and Lemma 4.7 (b).
(b) In case $y\in D_{i}$ for some $i\geq 0$ , we can put $W=q(B)$ , where $B\in \mathcal{B}_{V}$ for
some $V\in \mathcal{V}_{k_{i}}$ and $k_{i}\geq i$ . By Lemma 4.7 (c) we have a neighborhood $N$ of $y$

such that $\varphi_{i}(N)\subset E=q^{\leftarrow}(W)$ . Then $g(N)\subset W$ by the definition of $g$ and
Lemma 4.7 (b).
(ii) Continuity of $g^{\leftarrow}$ . (a) Assume that $y\in Y_{0}$ , and suppose that $G_{i}\in \mathcal{G}_{i}$ and
that $y\in G_{i}$ . Then, $x=g(y)\in q(O_{i})$ and $y\in g^{\leftarrow}(q(O_{i}))\subset G$; by Lemma 4.7
(b) and $g^{\leftarrow}$ is one to one. Then, $g^{\leftarrow}$ is continuous at $x$ by Lemma 4.8 and by
the fact that $q(O_{i})$ is clopen in $D_{\kappa}$ .
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(b) In case $y\in D_{i}$ , using Lemma 4.8, it can be seen that $g^{\leftarrow}$ is continuous at $x$

by a parallel argument for $g$ . $\square $

Lemma 4.10. The set $g(Y)$ is closed in a $G_{\delta}$ subset $G$ in $D_{\kappa}$ , which satisfies
Corollary 4.1, hence $G$ is homeomorphic to $D_{\kappa}$ .

Proof. Note that the set $q(\bigcup_{k\leq i}H_{k})$ is closed, since $T_{1}$ is closed in $B_{\kappa}$ and
$\bigcup_{j\leq i}H_{j}$ is closed in $T_{i}$ (by Lemma 4.7 (c) and the construction of $O_{i}$ in 14.27 we
can show without difficultie $s$ that each $q(H_{i})$ is closed discrete). It holds that

$g(\bigcap_{i}S_{i})\supset g(Y)\supset\cup\iota q(H_{i})$ ,

by the definition of $g$ . Hence, since $S_{1}$. is closed for each $i$ , it holds that

$cl(g(Y))\backslash g(Y)\subset q(M_{0})$ .

On the other hand, put $X=(q|\cap;S_{i})^{\leftarrow}(g(Y))$ and $h=q|X$ : $X\rightarrow Y$ . Then
$h$ is closed irreducible, since $g(Y_{0})$ is dense in $g(Y)$ (note also that $h|h^{\leftarrow}(Y_{0})$

is a homeomorphism). Hence, $X$ is a $G_{\delta}$ subset of $B_{\kappa}$ , since it is completely
metrizable by [19, Theorem 1]. Therefore it holds that

$K=cl(X)\backslash X$ is an $F_{\sigma}$ subset of $B_{\kappa}$ and $K\subset M_{0}$ .

Let $G=q(B_{\kappa}\backslash K)$ . Then, it is easy to see that $G$ satisfies the required property,
since $q$ is a closed map, and that $q|M_{0}$ is one to one. $\square $

5. Homogeneous universal spaces for Watson spaces

a) Preliminaries. Let us fix a point $*=(0,0, \ldots)\in B_{\kappa}$ . Let $Q_{\kappa}$ be the
subspace of $B_{\kappa}$ consisting of all points all but finitely many coordinates of which
are equal those $of*$ . Then, $Q_{\kappa}$ is $\sigma$-discrete, and $|Q_{\kappa}|=\kappa$ by its definition. In.
particular, $Q_{\omega}$ is homeomorphic to $Q$ , and it holds that:

1T 5.1. For every infinite $\mu\leq\kappa$ , there exists a closed nowhere dense subset
$F_{\mu}=Q_{\kappa}\cap(^{\omega}I_{\mu})$ of $Q_{\kappa}$ , where $I_{\mu}\subset\kappa s$atisfies that $|I_{\mu}|=\mu$ and $|\kappa\backslash I_{\mu}|=\kappa$

(hence $F_{\mu}$ is homeomorphic to $Q_{\mu}$ and $|F_{\mu}|=w(F_{\mu})=\mu$ ).

We outline here the method by which we shall produce a homogeneous univer-
sal space for Watson spaces. One of the main points is developing a method how
to produce a homeomorphism between closed nowhere dense subsets, using only
their two preassigned refining sequences (see also Remark 4.1). For example, we
must show Lemma 5.2 corresponding to Theorem 4.2. In other words, we need
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some method, which produces an isometric homeomorphism $h$ : $G\rightarrow H$ , satis-
fying that $\mathcal{B}^{\prime}=h(\mathcal{B})$ , when $G\approx H\approx Q_{\kappa}$ , squeezing from preassigned standard
$s$ . $c$ . covers $\mathcal{B}$ and $\mathcal{B}^{\prime}$ of $(Q_{\kappa}, G)$ and $(Q_{\kappa}, H)$ , respectively.
For that purpose, we can use the method of restricting the homeomorphism $h$

defined in $1|4.4$ to the particular subset $A$ satisfying the following condition,
where $\mathcal{B}=\{B(\alpha_{0}, \ldots, \alpha_{i})\}$ is a preassigned $\kappa$-complete refining sequence of $B_{\kappa}$ .

$1I5.2$ . The set $A$ is dense in $B_{\kappa}$ , and for each $x\in A$ , there exists $i$ and the
unique $B(\alpha_{0}, \ldots, \alpha_{i})$ such that

$\{x\}=\bigcap_{n>i}B(\alpha_{0}, \ldots, \alpha_{i}, 0_{t+1}, \ldots, O_{n})$ .

For a given subset $A$ we use the following renaming technique of complete
refining sequences.

Lemma 5.1. Let $A$ be a dense $\sigma$-discrete subset of $B_{\kappa}$ . Suppose that $\mathcal{B}=$

$\{\mathcal{B}_{i}\}$ is a complete refining sequence of $B_{\kappa}$ . Then, we can rename each member
of $\mathcal{B}_{1}$ so that it satisfies lt5.2 for the set $A$ ,

Proof. Note that $A$ is homeomorphic to $Q_{\kappa}$ by [9, Theorem 5] and, hence
put $A=\bigcup_{i\geq 0}D_{i}$ , where each $D_{i}$ is closed discrete in $B_{\kappa}$ and $D_{i}\subset D_{i+1}$ . For each
$B\in \mathcal{B}_{0}$ let $x_{B}$ be any point such that $x_{B}\in B\cap D;$ , where $ i=\min\{j:B\cap D_{j}\neq$

$\emptyset\}$ . Assume that we have defined $E_{m}=\{x_{B} : B\in \mathcal{B}_{m}\}$ . For each $B\in \mathcal{B}_{m+1}$ let
$x_{B}$ be the unique point such that $x_{B}\in B\cap D_{m}$ if $ B\cap E_{m}\neq\emptyset$ . Otherwise, let $x_{B}$

be any point such that $x_{B}\in B\cap D$; and $i=\min\{j:B\cap D;\neq\emptyset\}$ . Using $x_{B}$ , we
shall rename $B$ , if necessary, such that $1|5.2$ holds for each $x\in A\cap E_{i}$ . For the
members of $\mathcal{B}_{0}$ we do not change their indices, and we assume that we rename all
the members of $\mathcal{B}_{m}$ . For each $B\in \mathcal{B}_{m+1}$ , there is the unique element $B^{*}$ of $\mathcal{B}_{m}$

such that $B\subset B^{*}=B(\alpha_{0}, \ldots, \alpha_{m})$ . Hence, we change the first k-coordinates of
$B$ to that of $B^{*}$ if necessary. Then, we change its last coordinate $\alpha_{m}$ in such a
way that $B=B(\alpha_{0}, \ldots, \alpha_{m-1},0)$ only when $ x_{B}=x_{B}\cdot$ .

By the above definition of renaming we see that $1|5.2$ holds for each $x\in A\cap E_{i}$ .
Hence, we shall show the following property, which concludes our proof.

$A=\bigcup_{i\geq 0}E_{i}$ .

Indeed, for each $x\in D;$ , take a sufficiently small $B\in \mathcal{B}_{m}$ , with $m>i$ such that
$\{x\}=B\cap D;$ . Then, $x=x_{B}$ if $x\not\in E_{m-1}$ . $\square $

By the above lemma we cau show Theorem 3.2 as follows.

Proof of Theorem 3.2. Since a proof for the Cantor set is achieved by
a parallel way, we specify our proof for the case $X=B_{\kappa}$ . By Lemma 5.1 we
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can assume that we have $\kappa$-complete refining sequences $\mathcal{B}$ and $\mathcal{B}^{\prime}$ such that 15.2
holds for $D$ and $E$ , respectively. Hence, the natural homeomorphism $h$ defined
in $1|4.4$ satisfies the theorem. $\square $

b) $\mathcal{R}_{\kappa}$ -covers. Now we can define final $s$ . $c$ . covers, which will be used in
our construction. One of the key points is that it is preserved to certain clopen
subsets (see Lemma 5.2).

Definition 5.1. For a fixed $\kappa\geq\omega$ let $\mathcal{R}_{\kappa}$ be the class of all the pairs (X, $A$),
where $A$ is a nowhere dense closed subset of $X$ , and $A\approx X\approx Q_{\kappa}$ . Then, for
each pair (X, $A$) $\in \mathcal{R}_{\kappa}$ , we can assume that $X=Q_{\kappa}\subset B_{\kappa}$ . Let $F=d_{B_{\kappa}}A$ , and
note that $F$ is nowhere dense in $B_{\kappa}$ and $F\approx B_{\kappa}$ by a characterization of $B_{\kappa}$

(Fact 4.1). Take a $\kappa$-complete refining sequence $\mathcal{B}$ of $F$ , satisfying $1|4.1-1|4.3$ .
Let $\mathcal{U}$ be a standard $s$ . $c$ . cover for the pair $(B_{\kappa}, F)$ with respect to $\mathcal{B}$ . Then,
the $s$ . $c$ . cover $\mathcal{U}|X$ defined in Fact 3.3 is called an $\mathcal{R}_{\kappa}-s$ . $c$ . cover for the pair
(X, $A$). By Lemma 5.1 we can assume that $1|5.2$ holds for $A$ and $\mathcal{B}$ .

Lemma 5.2. (a) For each (X, $A$), and $(Y, B)\in \mathcal{R}_{\kappa}$ , there enists a (V, $\mathcal{V}^{\prime}$ ) $-$

preserving homeomorphism $h:(X, A)\rightarrow(Y, B)$ , where $\mathcal{V}$ and $\mathcal{V}^{\prime}$ are any given
$\mathcal{R}_{\kappa}$ -s. $c$ . covers for (X, $A$ ) and $(Y, B)$ , respectively.
(b) Let $\mathcal{V}$ be an $\mathcal{R}_{\kappa}$ -s. $c$ . cover for a pair (X, $A$). Suppose that $G$ is a clopen
neighborhood of $A$ in $X$ such that $G=A\cup(\cup \mathcal{V}_{G})$ for some subcollection $\mathcal{V}_{G}$ of
V. Then, $\mathcal{V}_{G}$ is a $\mathcal{P}_{\kappa}$ -s. $c$ . cover for the pair $(G, A)$ .

Outline of Proofs. (a) Let $\mathcal{U}$ and $\mathcal{U}^{\prime}$ be standard $s$ . $c$ . covers in Definition
5.1 such that $\mathcal{V}=\mathcal{U}|X$ and $\mathcal{V}^{\prime}=\mathcal{U}^{\prime}|Y$ . We also assume that $\mathcal{U}$ and $\mathcal{U}^{\prime}$ are stan-
dard $s$ . $c$ . covers for the pairs $(B_{\kappa}, clA)$ and $(B_{\kappa}, clB)$ , with respect to $\kappa$-complete
refining sequences $\mathcal{B}$ of clA and $\mathcal{B}^{\prime}$ of $clB$ , respectively. Let $h$ : $clA\rightarrow clB$ be
the isometric homeomorphism given by $1|4.4$ . Then, by Definition 5.1 it sat-
isfies that $h|A$ is an isometric homeomorphism between $A$ and $B$ , and that
$\mathcal{V}^{\prime}=(h|A)(\mathcal{V})$ . On the other hand, $\mathcal{V}$ and $\mathcal{V}^{\prime}$ satisfy the remaining conditions
in Theorem 3.1, since $\mathcal{V}$ and $\mathcal{V}^{\prime}$ are standard $s$ . $c$ . covers with respect to refining
sequences $\mathcal{B}|A$ and $\mathcal{B}^{\prime}|B=(h|A)(\mathcal{B}|A)$ , respectively. Since each element of both
collections $\mathcal{V}$ and $\mathcal{V}^{\prime}$ is homeomorphic, we have a (V, $\mathcal{V}^{\prime}$ ) -preserving homeomor-
phism $h:(X, A)\rightarrow(Y, B)$ by Theorem 3.1
(b) Put $V=\mathcal{U}|X$ , where $\mathcal{U}$ is a standard $s$ . $c$ . cover for $(B_{\kappa}, F)$ with respect to
a $\kappa$-complete refining sequence $\mathcal{F}$ of $F=clA\approx B_{\kappa}$ . Put $G=O\cap X$ for some
open subset $O$ of $B_{\kappa}$ , and let $F^{*}=O\cap F$ . Then, let

$\mathcal{W}_{G}=\{W\in\bigcup_{i\geq 1}\mathcal{W}_{i} : W\subset O\}$ and $H=F^{*}\cup(\cup \mathcal{W}_{G})$ ,

where $\mathcal{W}=\bigcup_{i\geq 0}\mathcal{W}_{i}$ is a refining sequence satisfying $\eta 3.2$ and 13.3. Note that
$H\cap F=F^{*}$ and we see that $H$ is open in $B_{\kappa}$ . Indeed, for each $x\in F^{*}$ , there
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exists $F\in \mathcal{F}$ such that $x\in F\subset O$ . Hence, by taking sufficiently small $F$ , there
exists $W\in \mathcal{W}$ such that $F=W\cap A$ and $W\subset O$ by $1|3.2$ . Then, $x\in W\subset H$ ,
since $W\in \mathcal{W}_{G}$ . Therefore, both sets $F^{*}$ and $H$ are homeomorphic to $B_{\kappa}$ . Put

$\mathcal{U}_{G}=$ { $U\in \mathcal{U}$ : $U=U(W)=W\backslash \cup \mathcal{W}_{i+1}$ for $s$ome $W\in \mathcal{W}_{G}\cap \mathcal{W}_{i}$ }.

By a parallel argument with that given in Proposition 3.1 we have the following
two assertions. We skip their proofs (see the proof of Theorem 4.2 $(c)$ ).

Assertion 2. The set $F^{*}$ is nowhere dense closed in $H$ , and the collection
$\mathcal{U}_{G}$ is a standard $s,$ $c$ . cover for the pair $(H, F^{*})$ .

Put $\mathcal{V}_{0}=\mathcal{V}_{G}\backslash (\mathcal{U}_{G}|X)$ . Let $\mathcal{V}_{0}=\mathcal{U}_{0}|X$ for some subcollection $\mathcal{U}_{0}$ of $\mathcal{U}$ . Then,
it holds that $ U\cap H=\emptyset$ for every $U\in \mathcal{U}_{0}$ , since $\mathcal{V}_{G}$ is a disjoint collection and
it holds that $U\cap H\subset O$ . Assume that $|\mathcal{U}_{0}|=\kappa$ , since $|\mathcal{U}|=\kappa$ and it is easier to
manage the case $|\mathcal{U}|<\kappa$ .

Assertion 3. For the standard $s$ . $c$ . cover $\mathcal{U}_{G}$ of the pair $(H, F^{*})$ , the col-
lection $\mathcal{O}=\mathcal{U}_{0}\cup \mathcal{U}_{G}$ is also a standard $s$ . $c$ . cover for the pair $(S, F^{*})$ , hence
$\mathcal{V}_{G}=\mathcal{O}|X$ is an $\mathcal{R}_{\kappa}-$ cover for the pair $(G, A)$ , where $S=H\cup(\cup \mathcal{U}_{0})$ .

We see that $\mathcal{V}_{G}=O|G$ satisfies the required property, since $F$ is a $\sigma$-discrete
dense subset of $F^{*}\approx B_{\kappa}$ , and we have the following assertion, which can be
shown by a parallel method in the proof of Lemma 5.1.

Assertion 4. For any given $\kappa$ -complete refining sequence $\mathcal{B}=\{\mathcal{B}_{i}\}$ of $F^{*}$ ,
we can rename elements of $\mathcal{B}$ in such a way that lr5.2 holds for $A=F$ .

$\square $

c) One more Watson construction. We present here one more Watson
construction, which produces a homogeneous universal space. We explain our
method rather than necessary proofs, since our construction is similar to that
given for van Douwen-complete spaces in \S 4. We also remark the differences
from [18] for the reader who is familiar to the method give in [17, 18, 22].

Put $Q_{\kappa}=\bigcup_{i\geq 0}D_{i}$ , where each $D_{i}$ is closed discrete in $Q_{\kappa},$ $|D_{i}|=\kappa$ , and
pairwise disjoint. Let $V0$ be a clopen disjoint cover of $Q_{\kappa}$ with $|\mathcal{V}_{0}|=\kappa$ , and the
mesh $\mathcal{V}_{0}\leq 1$ with respect to some metric of $Q_{\kappa}$ . Then by $1|5.1$ , for each $V\in \mathcal{V}_{0}$ ,
take a nowhere dense closed subset $F_{V}$ of $V$ , satisfying that $D_{i}\cap V\subset F_{V}\approx Q_{\kappa}$ .
Put $\mathcal{F}_{0}=\{F_{V} : V\in \mathcal{V}_{0}\}$ .
By recursion we shall construct two collections $\mathcal{F}_{i}$ and $\mathcal{V}_{i}$ for each $i$ , satisfying
the following $15.3-1|5.4$ .

1I 5.3. $\mathcal{V}_{i}$ is a clopen disjoint collection with $|\mathcal{V}_{1}|=\kappa$ and $\mathcal{F}_{i}=\{F_{V} : V\in \mathcal{V}_{i}\}$ ,
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where $F_{V}$ is a closed nowhere dense subset of $V$ , and is homeomorphic to $Q_{\kappa}$ .

lt 5.4. The mesh $\mathcal{V}_{i}\leq 1/2^{i}$ with respect to some metric of $Q_{\kappa}$ , and $\mathcal{V}_{i}=$

$\bigcup_{U\in \mathcal{V}:-1}\mathcal{V}_{U}$ , where $\mathcal{V}_{U}$ is an $\mathcal{R}_{\kappa}-s$ . $c$ . cover for the pair $(U, F_{U})$ , and $F_{i}\supset D_{i}$ ,
where $F_{1}=\cup \mathcal{F}:$ .

Put also

$\mathcal{V}_{\infty}=\bigcup_{j\geq 0}\mathcal{V}_{i},$ $\mathcal{F}_{\infty}=\bigcup_{j\geq 0}\mathcal{F}_{j}$ , and $E_{i}=\bigcup_{j\leq i}F_{j}$ .

Note that the properties ($|5.3-5.4$ imply that:

15.5. The collection $\mathcal{V}_{i}$ refines $\mathcal{V}_{i-1},$ $\cup \mathcal{F}_{1}=Q_{\kappa}$ , each $E_{1}$ is nowhere dense
closed in the space $Q_{\kappa},$ $\mathcal{V}_{i}$ is a $s$ . $c$ . cover for $(Q_{\kappa}, E_{i})$ , hence $V_{\infty}$ is a $\pi-$ base
(i.e. any non-empty open set contains some element of $\mathcal{V}_{\infty}$ ).

Explanation of above collections. One of the differences form [18] is that
we make the set, corresponding first countable points in our universal space,
empty by the fact $that\cup \mathcal{F}_{i}=Q_{\kappa}$ in $1|5.5$ . The main difference from \S 4 is that
we use $\mathcal{R}_{\mu}$ -covers in Definition 5.1 so that we can apply Lemma 5.2 to show the
homogeneity. Each $s$ . $c$ . cover $\mathcal{V}_{i}$ controls about each point, defined by collapsing
each $F\in \mathcal{F}_{i}$ . $\square $

We skip the way how to take the above collections, since we can construct the
above collections without any difficulties (see \S 4, and [18]). Now, let $W_{\kappa,\mathcal{F}_{\infty}}$ be
the decomposition space defined by the following identification on $Q_{\kappa}$ :

lt 5.6. We identify $r,$ $s\in Q_{\kappa}$ if $r,$ $s\in F\in \mathcal{F}_{i}$ for some $i$ .

From the above construction this definition of identification makes sense, and
let $q$ : $Q_{\kappa}\rightarrow W_{\kappa,\mathcal{F}_{\infty}}$ be the natural quotient map. Here, we need the following
fundamental property of our quotient topology, which easily follows from the
construction.

Lemma 5.3. For a point $q(x)\in W_{\kappa,\mathcal{F}_{\infty}}$ , where $x\in F\in \mathcal{F}_{i}$ , there exists a
clopen neighborhood base $\mathcal{W}$ of $q(x)$ such that $\mathcal{W}=\{q(B) : B\in \mathcal{B}_{F}\}$ , where $\mathcal{B}_{F}$

is the collection of all neighborhoods of $F$ in $Q_{\kappa}$ such that, for each $B\in \mathcal{B}$ , there
exists a collection $\mathcal{U}_{B}\subset \mathcal{U}_{i}$ satisfying that $B=\cup \mathcal{U}_{B}\cup F$ .

Hereafter we fix the above notation of the neighborhood base $\mathcal{W}$ , appearing
in this lemma.

Lemma 5.4. The quotient map $q$ : $Q_{\kappa}\rightarrow W_{\kappa,\lambda}$ is closed. Hence, the de-
composition space $W_{\kappa,\mathcal{F}_{\infty}}$ is $\sigma$ -discrete, and is a member of $\mathcal{W}_{\kappa}$ .
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Proof. The map $q$ is closed by virtue of Lemma 4.3 and Lemma 5.3. $\square $

In the rest of this section we shall show that the space $W_{\kappa,\mathcal{F}_{\infty}}s$atisfies the second
statement in Theorem 1.1.

Lemma 5.5. The topology of our universal spaces does not depend on the
choioe of $\mathcal{F}_{\infty}$ and $\mathcal{V}_{\infty}$ .

Proof. Let $\mathcal{F}_{\infty}^{\prime}$ and $\mathcal{V}_{\infty}^{\prime}$ be another pair of collections, satisfying 15.3–5.4.
Then, we can follows the same argument and same notations used in the proof
of Theorem 4.3, when we replace the space $B_{\kappa}$ by the space $Q_{\kappa}$ . In particular,
we have homeomorphism $h_{i}$ : $(Q_{\kappa}\backslash E_{i-1}, F_{i})\rightarrow(Q_{\kappa}\backslash E_{i-1}^{\prime}, F_{i}^{\prime})$ for each $i$ . By the
fact $that\cup \mathcal{F}_{i}=Q_{\kappa}$ in $1|5.5$ we can define $h_{\infty}$ : $Q_{\kappa}\rightarrow Q_{\kappa}$ as follows.

$h_{\infty}|F=h_{i}|F$, where $F\in \mathcal{F}_{i}$ .

Then, we can proceed the remaining parallel argument with the proof of Theorem
4.3 to obtain the desired homeomorphism $g$ by Lemma 5.3. $\square $

d) Proof of homogeneity. By Lemma 5.5 we abbreviate the space $W_{\kappa,\mathcal{F}_{\infty}}$

as $W_{\kappa}$ . Since $W_{\kappa}$ satisfies all the conditions in [18], it is a universal space for $\mathcal{W}_{\kappa}$ .
Then, we have the following assertions. We skip its parallel proofs (see those of
Propositions 4.2 and 4.3).

Assertion 5. The space $W_{\kappa}$ are h-homogeneous. Moreover, any non-empty
open subset of it is homeomorphic each other.

Assertion 6. For any $x,$ $y\in W_{\kappa}$ , there exists an autohomeomorphism $h$ :
$W_{\kappa}\rightarrow W_{\kappa}$ such that $h(x)=y$ .

6. Rigid Watson spaces and how to manage two parameters classes

a) Proof of Theorem 1.6. At first we need the following lemma.

Lemma 6.1. For any $\alpha>\omega$ there exists $\beta\geq\alpha$ such that $\beta=|\{\gamma$ :
uncountable cardinal $<\beta$ } $|$ .

Proof. (due to Professor K. Eda). Let $f$ : $\omega\rightarrow ON$ be the function defined
inductively by

$ f(O)=\alpha$ , and $f(n+1)=\omega_{f(n)}$ .
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Let
$\beta=\sup_{n\in\omega}f(n)$ .

Since $\beta=\omega_{\beta}$ , the cardinal $\beta$ has the required property by the equality { $\gamma$ :
cardinal $<\beta$} $=\{\omega_{\eta} : \eta<\beta\}$ . $\square $

For the above $\beta$ , put $\Gamma=$ { $\gamma$ : uncountable cardinal $<\beta$}, and let $\{\Gamma_{i} : i\in\omega\}$

be a mutually disjoint decomposition of $\Gamma$ satisfying that $\beta=|\Gamma_{i}|$ for each $ i\in\omega$ .
By 15.1 it holds that:

1T 6.1. for every $\gamma\in\Gamma$ there exists a closed nowhere dense subset $F_{\gamma}$ , satisfying
that it is homeomorphic to $Q_{\gamma}$ and hence, $|F_{\gamma}|=w(F_{\gamma})=\gamma$ .

lt 6.2. Let $\mathcal{V}_{0}$ be a clopen disjoint cover of its mesh $\leq 1$ for some metric $d$ of
$ Q\rho$ with $|\mathcal{V}_{0}|=\beta$ .

1I 6.3. For each $V\in V_{0}$ , let $F_{V}$ be a closed nowhere dense subset of $V$ . Since
$|V_{0}|=\beta$ and each $V$ is homeomorphic to $ Q\rho$ , we can assume that

$F_{V}\approx F_{\gamma}$ for some (unique) $\gamma\in\Gamma_{0}$ in $1|6.1$ .

Put $\mathcal{F}_{0}=\{F_{U} : U\in \mathcal{V}_{0}\}$ . By recursion, with respect to $ i\in\omega$ , we shall
construct two collections $\mathcal{F}_{i}$ and $\mathcal{V}_{i}$ satisfying the following $1|6.4-16.5$ .

1I 6.4. $\mathcal{V}_{1}$ is a clopen disjoint collection with $|\mathcal{V}:|=\beta$ and $\mathcal{F}_{1}=\{F_{V} : V\in \mathcal{V}_{\dot{*}}\}$ ,
where $F_{V}$ is a closed nowhere dense subset of $V$ , and it satisfies that, for each
$F\in \mathcal{F}_{i}$ , it holds that $F\approx F_{\gamma}$ for the unique $\gamma\in\Gamma_{i}$ , where $F_{\gamma}$ is given by $1|6.1$ .

$1I6.5$ . The mesh $V_{i}\leq 1/2^{i}$ with respect to the metric $d$ of $Q_{\beta}$ in 16.2, the
collection $\mathcal{V}_{i}$ refines $\mathcal{V}_{i-1}$ , and $\mathcal{V}_{i}=\bigcup_{U\in \mathcal{V}:-1}\mathcal{V}_{U}$ , where $\mathcal{V}_{U}$ is a $s$ . $c$ . cover for the
pair $(U, F_{U})$ .

lt 6.6. We identify $r,$ $ s\in Q\rho$ if $r,$ $s\in F\in \mathcal{F}_{i}$ for some $i$ .

From the above construction this definition of the identffication makes sense,
and let $q$ : $Q_{\beta}\rightarrow T_{\beta,\mathcal{F}_{\infty}}$ be the natural quotient map. Finally let $W_{\beta}$ be the
subspace of $T_{\beta,\mathcal{F}_{\infty}}$ consisting of non-trivial equivalent classes, i.e. $W\rho=q(\cup \mathcal{F}_{\infty})$ .
From the above construction it follows that $W\rho\in \mathcal{W}_{\beta}$ . We shall show that it is
rigid. On the contrary, assume that there exists an autohomeomorphism $h\neq id$

from $ W\rho$ onto itself. Then, take two different points $x_{\eta}=q(F_{\eta}),$ $x_{\gamma}=q(F_{\gamma})$

such that $h(x_{\eta})=x_{\gamma}$ . Assume that $\eta<\gamma$ . By $1|6.5$ there exist two $s$ . $c$ . covers
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$\mathcal{V}_{\eta}$ and $\mathcal{V}_{\gamma}$ for the pairs $(U_{\eta}, F_{\beta})$ and $(U_{\gamma}, F_{\gamma})$ , respectively. Put

$P_{\eta}=\{q(F_{V}) : V\in \mathcal{V}_{\eta}\}$ .

Then, let
$X_{\eta}=\{x_{\eta}\}\cup P_{\eta}$ , and $X_{\gamma}=h(X_{\eta})$ .

Note that $P_{\eta}$ (respectively, $h(P_{\eta})$ ) is open dense discrete in $X_{\eta}$ (respectively, in
$X_{\gamma})$ . Then, by a method parallel to the one in Example 2.2 we have metric space
$Y_{\eta},$ $ Y_{\gamma}\subset Q\rho$ satisfying that $F_{\eta}\subset Y_{\eta},$ $F_{\gamma}\subset Y_{\gamma}$ , and that $\varphi_{\eta}=q|Y_{\eta}$ : $Y_{\eta}\rightarrow X_{\eta}$

and $\varphi_{\gamma}=q|Y_{\gamma}$ : $Y_{\gamma}\rightarrow X_{\gamma}$ , are EE-maps. Then, by Proposition 2.1 there exist
two perfect onto map$sp_{\eta}$ : $Z\rightarrow X_{\eta}$ and $p_{\gamma}$ : $Z\rightarrow X_{\gamma}$ . Then, the following
lemma concludes our proof, since $ l(F_{\eta})=\eta<l(F_{\gamma})=\gamma$ , where $l(X)$ denotes
the Lindeloff number of $X$ (see [4] for its definition).

Lemma 6.2. Let $p$ : $Z\rightarrow X$ be a perfect onto map. Then, it holds that
$l(Z)=l(X)$ , where $l(X)$ is the Lindeloff number of $X$ .

We omit its straightforward proof of this lemma.

b) How to manage two parameters classes. For two parameters class
$\mathcal{D}_{\kappa,\lambda}$ (respectively, $\mathcal{W}_{\kappa,\lambda}$ ), we produce its universal space, using a method parallel
to the one in [18]. The main difference is that we shall derive its topological
properties (e.g. HO (see the discussion in \S 1 d) also)) by using standard $s$ . $c$ .
covers in order to define our universal spaces firmly. Comparing with previously
defined universla spaces in this paper, we need one more sequence $\{u\}$ of clopen
collections, where each $\mathcal{U}_{1}$ refines certain standard $s$ . $c$ . cover (see also Example
3.1). More precisely, at first, we should replace each closed nowhere dense subset
$F\in \mathcal{F}_{\infty}$ by that homeomorphic to $B_{\mu}$ (respectively, $Q_{\mu}$ ) for some $\omega\leq\mu<\lambda$

$(T6.7)$ . Then, for each $F\in \mathcal{F}_{1}$ take a standard $s$ . $c$ . cover $\mathcal{V}_{F}$ with respect to some
refining sequence of $F(1|6.8)$ . Note that the cardinality of $\mathcal{V}_{F}$ is different for each
$\mu$ . Hence, we should chop every member of VF up $\kappa$-times, and name resulting
clopen collection $\mathcal{U}_{F}$ (by this chopping up process in $1|6.9$ , we can derive not
only property HO, but also universality). All $\mathcal{U}_{F}$ constitute the required clopen
collection $u$ of $B_{\kappa}$ (respectively, $Q_{\kappa}$ ).

We begin with the construction for the class $\mathcal{D}_{\kappa,\lambda}$ . Instead of $1|4.5-1|4.6$ , by
recursion, we shall construct three collections $\mathcal{F}_{i},u$ , and $V_{i}$ for each $i$ , satisfying
the following three conditions.

lt 6.7. $\mathcal{F}:=\{F_{U} : U\in u|\}$ , and $\mathcal{F}_{i,V}=\{F\in \mathcal{F}_{i} : F\subset V\}$ , where $V\in \mathcal{V}_{i-1}$ ,
consists of $\kappa$ many copies of $B_{\mu}$ (i.e. it holds that 1 $\{F\in \mathcal{F}_{i,V}$ : $ F\approx B_{\mu}\}|=\kappa$ )
for each $\mu$ satisfying $\omega\leq\mu<\lambda$ , and each $F_{U}\in \mathcal{F}_{1}$ is a closed nowhere dense
subset of $U\in u$ .
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lt 6.8. The mesh $\mathcal{V}_{i}\leq 1/2^{i}$ with respect to some complete metric of $B_{\kappa}$ , and
$\mathcal{V}_{i}=\bigcup_{U\in V_{1-1}}\mathcal{V}_{U}$ , where $F_{U}\approx B_{\mu}$ and VU is a $\mathcal{P}_{\mu}- s$ . $c$ . cover for the pair $(U, F_{U})$

(hence the collection $\mathcal{V}_{i}$ refines $V_{i-1}$ ).

Since the cardinality of $\mathcal{V}_{U}$ is different for each $\mu$ , we chop it to the following
collection $\mathcal{U}_{V}$ .

16.9. $\mathcal{U}_{V}$ is a clopen disjoint collection with $|\mathcal{U}_{V}|=\kappa$ , satisfying $that\cup \mathcal{U}_{V}=V$

for each $V\in \mathcal{V}:$ , and we put $u=\bigcup_{V\in \mathcal{V}_{i}}\mathcal{U}_{V}$ (hence, $u$ refines $\mathcal{V}_{i}$ ).

Using $\mathcal{F}_{\infty}=\bigcup_{i}\mathcal{F}_{i}$ , we can define the decomposition space $\mathcal{D}_{\kappa,\lambda,\mathcal{F}_{\infty}}$ by a
parallel way in \S 4 as follows:

We identify $r,$ $s\in B_{\kappa}$ if $r,$ $s\in F\in \mathcal{F}_{i}$ for some $i$ .

Then, it is not difficult to see that $\mathcal{D}_{\kappa,\lambda,\mathcal{F}_{\infty}}\in \mathcal{D}_{\kappa,\lambda}$ (we can show the corre-
sponding properties in Lemmas 4.1–4.5 for $\mathcal{D}_{\kappa,\lambda,\mathcal{F}_{\infty}}$ ). We shall show that the
topology of our space $\mathcal{D}_{\kappa,\lambda,\mathcal{F}_{\infty}}$ does not depend on choice of a collection $\mathcal{F}_{\infty}$ .

Definition 6.1. A family $\mathcal{F}=\bigcup_{j\geq 0^{\mathcal{F}}:}$ of closed subset of $B_{\kappa}$ is called $\lambda-$

universal when there exist two collections $\mathcal{V}=\bigcup_{j\geq 0}V_{j}$ and $\mathcal{U}=\bigcup_{j\geq 0}\mathcal{U}_{j}$ , satisfy-
ing the above conditions $1|6.7-1|6.9$ .

Theorem 6.1. Every decomposition space $D_{\kappa,\lambda,\mathcal{F}}$ with respect to some $\lambda-$

universal closed collection $\mathcal{F}$ is homeomorphic each other.

A sketch of the proof. Let $\mathcal{F}^{\prime}$ be another $\lambda$-universal collection, and let
$\mathcal{U}^{\prime}$ and $\mathcal{V}^{\prime}$ satisfy $1|6.7-1|6.9$ . We shall follow the notations in the proof of
Theorem 4.3. Instead of $14.8-1|4.9$ we can show that, for each $V\in \mathcal{V}_{U}\subset \mathcal{V}_{i}$ ,
where $U\in v_{:-1}$ :

$n6.10$ . $h_{i}|V=h_{i,V}$ : (V, $F_{V}$ ) $\rightarrow(V^{\prime}, \phi_{i}(F_{V}))$ is not only a $(\mathcal{V}_{V}, \mathcal{V}_{V}^{\prime},)$-preserving,
but also $(\mathcal{U}_{V},\mathcal{U}_{V}^{\prime},)$-preserving homeomorphism;

$V6.11$ . $V^{\prime}$ is the unique element of $\mathcal{V}_{i}^{\prime}$ , which satisfies that $V^{\prime}\supset\phi_{i}(F_{V})$ ;

lt 6.12. $\phi_{i}|\mathcal{F}_{1,U}$ : $\mathcal{F}_{i,U}\rightarrow \mathcal{F}_{i,U^{\prime}}^{\prime}$ is not only bijective but also satisfies that $ F_{V}\approx$

$\phi_{i}(F_{V})$ , where $U^{\prime}=h_{i}(U)$ , and $\mathcal{F}_{i,U}$ and $\mathcal{F}_{i,U^{\prime}}^{\prime}$ are the collections defined in
$1|6.7$ .

By $1|6.10-1|6.12$ we can proceed the remaining proof in parallel with that of
Theorem 4.3 without any difficulties so that we leave the details to the reader. $\square $
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Hereafter we shall abbreviate the space $D_{\kappa,\lambda,\mathcal{F}_{\infty}}$ as $D_{\kappa,\lambda}$ by virtue of Theorem
6.1. Let $Z_{\kappa,\lambda}$ be the subspace of $D_{\kappa,\lambda}$ consisting of non-trivial equivalent classess
(i.e. $Z_{\kappa,\lambda}=q(\cup \mathcal{F}_{\infty})$ ). Now, we have a parallel result with Proposition 4.2 as
follows.

Proposition 6.1. Spaces $D_{\kappa,\lambda}$ and $Z_{\kappa,\lambda}$ are h-homogeneous. Moreover,
they satisfy $HO$ .

We skip its parallel proof (see the proof of Proposition 4.2), and state the
corollary, corresponding Corollary 4.1, by which we can show the closed embed-
dability of any space in $\mathcal{D}_{\kappa,\lambda}$ into $D_{\kappa,\lambda}$ .

Corollary 6.1. Let $G$ be a $G_{\delta}$ subset in $D_{\kappa,\lambda}$ such that $G\supset q(\cup \mathcal{F}_{\infty})$ , Then,
$G$ is homeomorphic to $D_{\kappa,\lambda}$ .

We leave its proof to the reader (see the proof of Lemma 4.10).

The remaining part of a proof of Theorem 1.2. By Proposition 6.1 the
remaining thing, which we should show, is universality of our universal space
$D_{\kappa,\lambda}$ . The argument, however, in \S 4 b), can be applied in the present case
without any difficulties so that we leave the details to the reader. $\square $

The remaining part of a proof of Theorem 1.1. For two parameters
class $\mathcal{W}_{\kappa,\lambda}$ we can apply the $s$ame argument in this section to the spaces $Q_{\mu}$

(instead of $B_{\mu}$ ), using $\mathcal{R}_{\mu}$ -covers (instead of $\mathcal{P}_{\mu}$-covers), without any difficulties.
Hence, one can show that there exists a universal space $W_{\kappa,\lambda}$ for $\mathcal{W}_{\kappa,\lambda}$ , which
$s$atisfies the property HO. We leave the details to the reader (see also [18]). $\square $
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