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Abstract. In this paper, the authors establish the boundedness of some rough
operators and their commutators with BMO (R™) functions on generalized Mor-
rey spaces, LPv (R").

1. Introduction

To study the local behaviour of solutions to second order elliptic partial
differential equations, Morrey in introduced some spaces of functions which
are called to be the classical Morrey spaces LP**(R") (1 < p < 00, 0 < A < n)
now. Since then, a series of results relative to these spaces have been obtained.
Moreover, these spaces and the theories of singular integrals and commutators on
them are proved to be very useful in studying the regularity of solutions to partial
differential equations; see [1] and . Recently, Mizuhara {5] introduced a kind of
generalized spaces LP#(R") and investigated the behaviour of maximal operators
and singular operators on LP'¥(R"). In [4), Lu, Yang and Zhou established the
boundedness of some rough operators and their commutators with BMO (R")
functions on the spaces L?(R"), which are introduced by Nakai in [7].

For this purpose, we first recall the definition of L?*(R") in [7]. Let w be a
nonnegative function on R” x Ry, and I(a,r) = {z € R" : |z; —a;| < r/2, i =
1,2,---,n} for any a = (a1, ---,a,) € R® and r > 0. For I = I(a,r), let
kI = I(a,kr) and w(l) = w(a,r).

Definition. ([7]) Let 1 < p < 0o and w be as above. We denote by LP¥ =
LP(R") the space of locally integrable functions f which satisfy ||f|| Lro(®n) <
oo, where
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and the supremum is taken over all the cubes with the edges parallel to the axes.

It is clear that L?*(R") is a Banach space. Moreover, if w(a,r) = 1, then
pv = L?; if w(a,r) = r*, 0 < A < n, then L?* is just the standard Morrey
space LP*; and if w(a, ) is independent of a, then L?* is the generalized Morrey
space introduced by Mizuhara in [5].

In what follows, we shall write p’ = p/(p — 1) for any p € (1,00) and ¥ =
{z € R™ : |z| = 1}. Suppose that T represents a linear or a sublinear operator,
which satisfies that for any f € L!(R"™) with compact support and z ¢ supp f,

——7ﬁhﬂww%

1) fon<c/

where C > 0 is an absolute constant, 2 is homogeneous of degree zero and
Q € LI(X) for some g € [1,00]. Similarly, we assume that T represents a linear
or a sublinear operator satisfying that for any f € L!(R") with compact support

and z ¢ supp f,

@) Fr@l<c [ [

——7;HV(M

for some a € (0,n), where C is as in (1).

Theorem 1. Assume that there is a constant C > 0 such that for anya € R"
and any r > 0,

(3) r<t<2r=C!<w(at)/w(a,r)<C,
(4) / “’t(nif) dt < cZ (“ r).

Letp € (1,00) and ¢ > p’. If a sublinear operator T satisfying (1) with ) € LX)
is bounded on LP(R™), then T is also bounded on LP“(R").

Our m obviously generalizes (i) of in [7].
Now let T be a linear operator and a be a BMO function. We define the
commutator [a,T] by letting

[a,T] f(2) = a(2)T f(=) — T(af)(=)

for any suitable function f.
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Theorem 2. Let w satisfy (3) and (4). Let p € (1,00), and ¢ > p'. Sup-
pose that a linear operator T satisfies (1). If [a,T)] is bounded from LP(R™) x
BMO(R™) to LP(R"), then [a,T] is also bounded from LP*(R™) x BMO(R") to
LP (R™).

Theorem 3. Let0<a<n,1<p<n/a, andl/q=1/p— a/n. Assume
that w satisfies (3) and

(5) /det<CM.

tn—ap+1 e pn—ap

If a sublinear operator T is bounded from L?(R") to LY(R") and satzsﬁes (2) with
Qe LP(X) and B> p, then T is also bounded from LP*(R™) to Lo "(R™).

is a generalization of (i) of in [7]. On the commutator

of a such linear operator with any BMO function, we have

Theorem 4. Let o, p, B, q andw be as in Theorem 3. If a linear operatorf
satisfies (2) with Q € Lﬂ (X), and [a,T] is bounded from LP(R") x BMOg]R") to
LI(R™), then [a,T] is also bounded from LP*(R") x BMO(R™) to L4*" (R™).

We point out that the condition (1) was first introduced by Soria and Weiss
in [8]. The conditions (1) and (2) are satisfied by many interesting operators in
harmonic analysis, such as the Calder6n-Zygmund operators, Carleson’s max-
imal operators, Hardy-Littlewood maximal operators, C. Fefferman’s singular
multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular
integrals, the Bochner-Riesz means and so on; see also .

2. Proofs of Theorems

Let us begin with some lemmas on the boundedness of the rough maximal
operator Mq defined by

Maf(z)=swp— [ 12@)f(z-1)ldy,
r>0 " Jly|<r

where 2 is a homogeneous function of degree zero on R™\{0}. To do so, we first
recall some basic facts relative to w in [7].

Lemma 1. ([7]) Let ¢ : R, — Ry . If there is a constant C > 0 such that

for any r > 0,
o0
[T 8 < cpm),



18 Y. DING, D. YANG AND Z. ZHOU

then there are constants € > 0 and C' > 0 such that for any r > 0,

/ So(i)t dt S Cl<p(r)r€
r

We remark that the ¢ in can be choosen to satisfy 0 < ¢ < 1/C;

see [7]-

Lemma 2. ([7]) Let 0 < § < 1. Assume that w satisfies (8) and
* w(a,t) (a 1‘)
[ g orlen)

Then for 1 < p < oo, there is a constant C > 0 such that for any f € LP*(R"),

[ 1F@F (x1(@)* de < Colf e any
where M f is the standard Hardy-Littlewood mazimal function of f.

In what follows, for any a € R™ and r > 0, let I = I(a,r). For any complex-
valued measurable function f(y) on R", we write

(6) f(y) = F(¥)x21(a,r)(¥) + Zf(y)X2k+11\2k1( )= ka(y)-
k=1 k=0

Lemma 3. Let p, ¢ and w be as in Theorem 1. Then there is an € > 0 such
that for any k > 0 and f € LP*(R"),

2—ke

/I( [Mafi(@)f de < QoD ey

where C is independent of k, I(a,r) and f.

Proof. Let I = I(a,r). By the properties of A, welghts (see [2, p. 407]), w
can easily see that for any 6 € (0,1),

(Mx1)? € Ayyy for q>7p.

Then, by the results in we obtain
;
[ \Map@lds< [ [Masie)l (Mx;(z)) dz
I(a,r)
8
<C e)/ (@) (Mxa(a ) d.
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Note that w satisfies (4). From and the remark following it, we deduce
that there is an ¢y € (0,n) such that

/°° w(a,t) dt<Cw(a r).

tn—so+1 pn—¢o

Let 6 = (n — €p)/n. It is clear that § € (0,1). Therefore, if we choose 6 € (4,1),
and note that Mx(z) is comparable to 27%" when = € 2¥*+11\2*I, then by
we have

é
/ |Ma fi(z)|” dz < C2757(0=9) / |fe(2) [ (Mx;(:c)) de
I(a,r) R~

< C“’(I)z_kn(s_a)”f“l},p.u(mn)

Letting € = n(f — 6), we complete the proof of Lemma 3. O
Proof of Theorem 1. For I = I(a,r), we write f as in (6). It is easy to
deduce that
[ TR do < Ol any < CoCDIFEpeqany < OISy

For k > 0, it follows from that

[ ra@Pasc [  |Map@] de < CoD2 MU B uey
I(a,r) I(a,r)

where C and ¢ are independent of f and k. Thus,

1 » )1/P (<) _
w(l) Tfl= dz <C ppw n 1+ 2 kelp <C f p,w(R")-
(w(f) ram (T 7@ < Ol camy ( > ) < Cllflzrqan)

The desirable conclusion can be easily deduced from this now.

This finishes the proof of [Theorem 1. O

Proof of Theorem 2. For any I = I(a,r), we write f as in (6). By the
LP-boundedness of [a,T], we obtain

J o, [T R@ de < Il an
< Cw(2D)|I£I1%. o (Rm) = <Cuw(I )”f“’z’,p,u(mn)-

For k > 0 and z € I(a,r), we write

0.7 < oy .. 10) = arllfe =) el dy
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C

+ g [ o = o 926e = ) Sl dy
C

+ s [ 1a0) = a9z — ) fuli)ldy

EIl(Z)+I2(:L')+I3($), v
where, and in what follows, as with § > 0 is defined by

1
11(a,8)| J1(a,s)

By the well-known fact that for any » > 0 and k € N,

Jagesa, = ax| < Cln)(k+ Dllall.  (see [9)),

as = a(y) dy.

we obtain

I(z) < C(k +1)lla|le Mafx(2).

From [Lemma J it follows that there exists an ¢; > 0, which is independent of f,
r and k such that

/I o Iy(z)P de < C(k + 1)P||al w(1)27*|| |} 5. gy -

For I3(z), we choose 1 < u < min{p,q,qp/(q + p)}. Then we have
1 M
13(.1:) S C [-(—Qk-_r)—n- Lk+1[ Ia(y) - a2k+1,.| dy]

—_ 1/u
* [(2"17')" /2,,“ 19— F )l dy]

1/
< Cllall. (Miaye (15:*)(=))

where we have used Holder’s inequality and the John-Nirenberg Lemma on BMO
function (see [9]). Noting that |Q[* € LY/*(Z), by we have

r/
[ merascil [ (Mow(5)e)
I(a,r) I(a,r)
< Cllalle 275 £1 e gy (1),

where ¢, is independent of f, I(a,r) and k. Combining the above estimates we
have

[o o]

(7) 2(/1 he) dz)’ E(/ (@ dz) " < Cllalle (DI e oy
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It remains to estimate I;(z). Since p/q¢’ > 1, we choose u > 1, 1 < v < p

such that (v — 1)/u < p/¢’ — 1. From this we get
1/¢+v/(pu) +1/(pv') < L.

Now we take s satisfying 1/¢ < s < 1 and 1/(pu’) + 1/(sq) = 1. Thus, we have

1/(pu’) +1/(sq) > 1/q +v/(pu) +1/(pv),
l.e.,
1/s > 1+ qv/(pu) = (pu + qv)/(pu).
Hence, we obtain

pu/(sqv) >1 and 1/s> (pu/(sqv))’.

Since 1/(pu’) +1/(sqv) + 1/(sqv’) = 1, for z € I, by Holder’s inequality we have

1/(pu’)
1(2) < Clale) —arl |y [, 156 a

——1 sq sqv/ud 1/(2qv)
x [(2k,.)n R It y]

) 1/(sqv')
—_— —*2d
x[@kr),, /... a6y y]

Cla(z) - a,| o 1/u’ s Ny 1/ (sqv)
< Gyt @ DAL oy (Miaies (el ) ()7,

where, and in what follows, for brevity, we denote [w(2¢¥+1 )]}/ (#4) by

w!/w)(2%+11). By |Q*7 € L'/*(Z), pu/(sqv) > 1, and 1/s > (pu/(sqv))’,

applying Holder’s inequality and [Lemma 3|, we obtain

/1 L(z)? dz

c
S (2k r)n/u'

X /Il“(“’) — ar P (Migpea (I [*®/*) (2))" ™) do

W (@) FIBL ey

C
S (2k )n/u’

[ / (Miqyea (1312927 z))"/ ) dz]

Cllall u u squfu u/(squ Hu
< S 1 @ DI [ [ (o150 0))7 O ]

< Cllallt
— 2kn/u

1/u
W DI oy [ [ lalo) = ar dx]

WY (|| FIBL% gy (D275 £ L oy
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where £¢ that is independent of &, I(a,r) and f, can be choosen to be very small

by Lemma 3. Noting that

I”flsqv/ulllzﬁ(:/q((:ZU) u(]Rn) - “fl Lpe, u(mn)’

we have
/Il ”d:c < C||a||" ”f”LP“' ") 1/“’(2k+1I)wl/U(I)z—kn/u'—kéo'
Therefore,

( /I (=) dx)l/ ?

S C||a||,. “f“LPv“(R") wl/(Pu’)(2k+11)w1/(}7u)(I)2—kn/(?u')—k£o/}’

2k+1,

1/(pu)
< Cllalls fllze.« ey w* @ (1)l 4ol /gk, gnGpuFeolp+1

By Lemma 1, there is an n € (0, 1) such that
[7 410 4 glen)
.

tn+77 rn+n_1
Noting that 1/(pu’) + 1/(sq) = 1, we have

o0
([ nteras)”
k=1 I
wl/ 4 (a, )
tn/(pu’)+eo/p+1

S C”G“* “f”LPsU(R") wl/(Pu)(I)rn/(Pu’)+Eo/P / dt

S c”a”* ”f”LP:U (") wl/(P‘u)(I)rn/(Pu')'l'eo/P

* w(a,t) ,\Yew), o dt 1/(sq)
X (/r n+n dt) (/r t(1+eo/p—n/(pu’))aq)
< Cllalls Sy '/ & (Dl e 2ol

x Wi U ([)p=(rtn=1)/(pu’) 1/ (s)+n/ (pu') = o/p=1

< Cllalls 1f |z gmy w2 (D),

which is a desirable estimate for I (z).
This finishes the proof of [Theorem 2. O

Proof of Theorem 3. For any I = I(a,r), write f as in (6). By the
boundedness from L?(R"™) to LI(R"™) of T, we are easily deduce that

| Fr@lde < Cllollisn
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/
<o([ 1@Pds)"" < Cot(DIFIpean)
21

Which is desirable.

Let us now consider the case k > 0. Since 8’ < p, we can choose u € (1,p)
closed enough to 1 such that 8’ < p/u. Thus, by 8 > (p/u)’ we have Q €
L®/%)' (S7=1), If we denote § = p/q, then 0 < 6 < 1 and a = n(l —0)/p. By
Holder’s inequality, we have

1 1/u’
IT fu(2)] < C(2¢r)° [W /2k+11\2~1 12z — )] dy]

1/u
—1 u
g [(2"7’)" ./2u+11\2k1 9= = 9l fe)] dy]

0/u
1
C(2%r) ||| M. —/ Q(z — ud
C(2* )|l r (g [(zkr),, 2k+11\2u| (z — y)| |fx(¥)[* dy

1 (1-6)/u
g I:W /2‘k+11\2k1 lQ(z B y)l Ifk(y)l dy]

Applying Holder’s inequality again, we obtain

1 (1-8)/u
- Qe — ug
[(2k,.)n [T Ae] y]
] 1/(p/u)'-(1-6)/u

1 / '
<\ 7m== Q(z — y)|?/*) dy
- [(2k’°)" 2"+1I\2“I| ( 4

1 (1-8)/p
X | = Pd
[(2"1‘)" Ak-}-l[\zk[ Ifk(y)l y:l

< C(2kr)—n(1—0)/l’”Q”il(:/aj)/lfzz) (1= 0)/P(2k+lI)I|f”LP - @)

Noting that o = n(1 — 8)/p and
1/u’ 1-6 1-6
121155 - 12SG 2 < ClIRILE <G,

we have
|T fre(z)| < C||f||u &) wA=0/P (k+1 Iy (Ma (I fi|*) ().

On the other hand, by 0¢/u = p/u > 1, and the results in [10], then
for any 0 < 4 < 1, we obtain

_/I(Mn(lfkl“)(x))""/“ dz < C/I(Mn(lfkI“)(w))"”/“(MXI(w))‘S dz
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<c / (@)% (Mx1(2))? de
-
< CE) |1 e gy w(21).

Thus, we have |

[ hGar ] "

< Cllflzet ey @2 @FEI) (@)Y SR gy w0 9(2541D)
< C@2*)™| fllLrw mmy WP (251).
From [Lemma 1| we can deduce

®) /r°° w(a,t) it < c2Dr) w(a,r)

{n—ap—c+l pn—op—¢

for some small ¢ > 0. Taking § = 1 — (eq)/(2pn) and s = (2 — £)/(2p), then
when ¢ is small enough we have 0 < § < 1. Moreover, it is easy to see that
(nd/g+s)p=n—ap—ce+1and (1 —s)p’ > 1. Thus, by Holder’s inequality
and (8) we get

oowl/p(a’t) * (a1t 1/p ) 1 1/p’ wvl/p(a’r)
/,, sfqr S [/ _t(na/_q+s)p‘dt] U A= dt] SC—=m

Therefore,

o 1/q s 0 1 P(a 2k )
S| [Eseae] < orte i Y- b

k=1
wl/ p
5 (a,)
< Croa | fllneqany [ b
< C||fllzre @my w2 (1).

Thus, we complete the proof of [Theorem 3. O

Proof of Theorem 4. For any I = I(a,r), write f as in (6). The estimate
for the case k = 0 can be deduced from the boundedness from L? (R") to L4(R")
of [a,T]. Hence we only need to estimate for k > 1. For this purpose, we first
point out that in the proof of [Theorem 3 we have proved

) (/ [/zk+11\2*1 |z — |"' )°|‘ lf(y)‘dy]q dm) )

< 2704 f]| Lo (mmy WP (2T),
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where 0 < § < 1. Now we write

5= ( [[o@=art [, .. i) dz) "

1/q

= (/I [/2k+11\2k1 Bhcasd ll < y|"y_)| F(y )'dy]qu) ’
Js = ( [, o0 = a8 0] dz) "

Thus, we have

and

(/I |la, T fe (z)|° d:c) e < Ji+ J2 + Ja.

For J,, by 8 > p’ we have Q € LP'(Z). Using Holder’s inequality, we obtain

5 < s ( fu@-ar|f,  0c-vliseia) dz) "
S @%——? (‘/I |a(z) - arlq [/2"+1I\2k1 |Q(x - y) Ip, dy] q/pl

alp 1/q
<[ 1P ] dx)
2k+11\2k ]

, 1/q
< C(2kr)°“"(2kr)"/” ”Q”LP'(E)“f”LP""(]R") wli/r (2"[) (/; la(z) — a,|? da:)
< C27Fn9)|a|\, || £l e (mm) w/P(2FT).

From (9) and the properties of BMO functions, it follows that

/q
Qz
1< Cler—amert ( [[ [, 18I is)1] e
rL/arenaer & — 9l

< C(k +1)27%9|[a]|, || f||Lpw rmy w'/P (2°1).

Now, let us consider Js. Since B > p’, we choose 1 < ¢t < min{g8,pB/(p + B)}.
Thus we have |Q|* € LP/*(Z) and B/t > (p/t)’. Noting that 1/(¢/t) = 1/(p/t) —
at/n, using again Holder’s inequality and (9), we obtain

) q/t'
J3 S /[/ |a(y) — a2k+1,.|t dy]
I LJ2k+1]\2k]
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Qz — vt t q/t
[ Bt ),
aetrp\okr & — y|(nm)

< C(2¢r)™|lal|s (2Fr) ¢

’ { (/f [/M,\w 'Q(fx'_ 32 ll:l_J;(ty) i dy] /s dm) t/q}

< C(zkr)n/t’ llall (2k,,,)—n(t—1)/t 9—kndé/(q/t)-(1/t)

x I”fltuilptlt,u(mn) wl/(P/t)-(I/t)(zkI)

< Cllalls 2759 || ]| Lo (mny /P (241).

1/q

1/t

By the estimates of J1, J2, J3 and the same computational techniques used in
the proof of [Theorem 3, we obtain

00 _ 1/q 00
Z[/I |la, T1fx ()| dm] <D (J1+ T2+ Js) < Cllallallfllzee @y w? (1)
k=1 k=1

Thus, we finish the proof of [Theorem 4. O
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