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Abstract. This paper is concerned with the enumeration of labelled graphs with
only one cut vertex. In this paper we give the exponential generating functions
for labelled connected graphs and Euler graphs having exactly $n$ blocks at the
cut vertex. The numerical tables are also given.

1. Introduction

In this paper we consider enumeration problems of finite undirected labelled
graphs without multiple edges nor loops. The readers are referred to [2] for
any terms not defined below. A relation between the generating functions for
labelled blocks and labelled connected graphs was investigated in [1] and [4].
The enumerations of labelled graphs with cut vertices may be discussed in this
paper. But, the more the number of cut vertices increases, the more it becomes
difficult to enumerate such labelled graphs. Therefore, in this paper we shall
study the enumeration of labelled connected graphs with only one cut vertex.

The enumeration of labelled connected graphs with one cut vertex will be
considered in Section 3. We there state a relation between the exponential
generating function $B_{n}(x)$ for labelled connected graphs which have exactly $n$

blocks incident with the cut vertex and that for labelled connected graphs. We
also state relation between $B_{n}(x)$ and the exponential generating function for
labelled blocks.

In Section 4 we shall treat the enumeration of labelled Euler graphs with
one cut vertex. The discussion for this enumeration is almost similar to that
for the enumeration of labelled connected graphs which is considered in Sec-
tion 3. Therefore, the similar results to those in Section 3 are obtained. Many
researchers have studied the enumerations of Euler graphs. Read [3] achieved a
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counting of labelled Euler graphs. In [5], Tazawa, Jin and Shirakura investigated
the enumeration of labelled 2-connected Euler graphs, which do not have any
cut vertices.

2. Preliminaries

In this section we shall mention the well-known results with respect to the
enumerations for labelled graphs, labelled connected graphs and blocks. They
will work powerfully in the following sections.

Noting that the number of labelled graphs of order $p$ is $2^{(_{2}^{p})}$ , we consider the
exponential generating function having this number as the coefficient of $x^{p}/p!$ ,
that is,

(2. 1) $G(x)=\sum_{p=1}^{\infty}\frac{2^{(_{2}^{p})_{X^{p}}}}{p!}$ .

Let

(2.2) $C(x)=\sum_{p=1}^{\infty}\frac{C_{p}x^{p}}{p!}$

be given the exponential generating function for labelled connected graphs, where
$C_{p}$ is the number of labelled connected graphs of order $p$ . Then Riddell [4] stated
the following theorem that relates the above exponential generating functions.

Theorem 1. The exponential generating functions $G(x)$ and $C(x)$ are re-
lated by

(2.3) $G(x)+1=e^{C(x)}$ .

The first few terms of $C(x)$ are given by

$C(x)=x+\frac{x^{2}}{2!}+\frac{4x^{3}}{3!}+\frac{38x^{4}}{4!}+\frac{728x^{5}}{5!}+\frac{26704x^{6}}{6!}+\frac{1866256x^{7}}{7!}$

(2.4) $+\frac{251548592x^{8}}{8!}+\frac{66296291072x^{9}}{9!}+\frac{34496488594816x^{10}}{10!}+\cdots$

Let $B_{p}$ be the number of labelled blocks of order $p$ and let

(2.5) $B(x)=\sum_{p=1}^{\infty}\frac{B_{p}x^{p}}{p!}$ ,
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where $B_{1}=0$ . Then Riddell [4] and Ford and Uhlenbeck [1] established a
relation between the exponential generating functions for labelled blocks and
labelled connected graphs:

Theorem 2. The exponential generating functions $B(x)$ and $C(x)$ are re-
lated by

(2. 6) $C^{\prime}(x)=\exp\{B^{\prime}(xC^{\prime}(x))\}$ ,

where $C^{\prime}(x)$ and $B^{\prime}(x)$ denote derivative of $x$ .

The first few terms of $B(x)$ are given by

$B(x)=\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{10x^{4}}{4!}+\frac{238x^{5}}{5!}+\frac{11368x^{6}}{6!}+\frac{1014888x^{7}}{7!}$

(2.7) $+\frac{166537616x^{8}}{8!}+\frac{50680432112x^{9}}{9!}+\frac{29107809374336x^{10}}{10!}+\cdots$

3. Enumeration of labelled connected graphs with one cut vertex

Let $n$ be an integer with $n\geq 2$ and let $B_{n,p}$ be the number of labelled
connected graphs of order $p$ which have one cut vertex and do exactly $n$ blocks
incident with the cut vertex, and consider the exponential generating function

(3. 1) $B_{n}(x)=\sum_{p=1}^{\infty}\frac{B_{n,p}x^{p}}{p!}$ .

It is clear that $B_{n,p}=0$ for $n\geq p$ . Then we have the following two theorems,
which will be proved along the proof of the theorem in ([2], p. 12). A labelled
un-rooted graph which is seen in this section is a labelled rooted graph in which
only the root is unlabelled.

Theorem 3. Let $n$ be an integer with $n\geq 2$ . The exponential genervsting
functions $B_{n}(x)$ and $C(x)$ are related by

(3. 2) $B_{n}(xC^{\prime}(x))=xC^{\prime}(x)\frac{(\log C^{\prime}(x))^{n}}{n!}$ .

Proof. Let $R_{p}$ denote the number of labelled rooted connected graphs of
order $p$ . For a labelled connected graph of order $p$ we have $p$ kinds of labelled
rooted connected graphs by being rooted at each of its verteces. Therefore,
$R_{p}=P\cdot C_{p}$ holds. This implies that two exponential generating functions
$R(x)=\sum_{p=1}^{\infty}R_{p^{\frac{x^{p}}{p!}}}$ and $C(x)$ are related by

(3.3) $R(x)=x\frac{dC(x)}{dx}$ .
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Let $R_{m}(x)$ be an exponential generating function having the number of labelled
rooted connected graphs of order $p$ as the coefficient of $x^{p}/p!$ in which exactly
$m$ blocks contain the root. Then it is easy to see that

(3.4) $R(x)=\sum_{m=0}^{\infty}R_{m}(x)$ ,

is obtained, where $R_{0}(x)=x$ .
Consider labelled $ur\triangleright rooted$ connected graphs. Then the coefficient of $x^{p}/p!$

in $R_{1}(x)/x$ is the number of labelled $un_{r}$rooted connected graphs of order $p+1$

in which exactly one block contains the root. Therefore, it is observed that
$(\frac{R_{1}(x)}{x})^{m}/m!$ enumerates m-sets of labelled un-rooted connected graphs in each
of which exactly one block contains the root. If these $m$ roots are identified
and a single label is introduced for them, then each m-set corresponds to a
labelled rooted connected graph having exactly $m$ blocks at the identified root.
Accordingly $R_{m}(x)$ can be written as follows:

(3.5) $R_{m}(x)=x\frac{(\frac{R_{1}(x)}{x})^{m}}{m!}$ .

The application of this expression to (3.4) yields

(3. 6) $R(x)=\sum_{m=0}^{\infty}x\frac{(\frac{R_{1}(x)}{x})^{m}}{m!}=x$ exp $\{\frac{R_{1}(x)}{x}\}$

and it follows from (3.3) that

(3.7) $R_{m}(x)=x\frac{(\log C^{\prime}(x))^{m}}{m!}$

for $m=0,1,2,$ $\cdots$ .
We now see that $R_{n}(x)$ can be expressed in terms of $B_{n}(x)$ and $R(x)$ . As

seen in the above, the coefficient, $a_{k,p}$ , of $x^{p}/p!$ in $(R(x)/x)^{k-1}$ is the number
of $(k-1)$ -tuples (the elements in each tuple are orderd) of labelled $ ur\triangleright$rooted
connected graphs with order $p+k-1$ vertices including the $k-1$ vertices, where $p$

is the number of labelled vertices in each tuple. Add an unlabelled vertex to each
$(k-1)$-tuple, consider the blocks of order $k$ on the set of $(k-1)u\tau\triangleright rooted$ vertices
and the added vertex, and finally, label all vertices except for the added vertex
with 1 through $p+k-1$ . Then this procedure tells us that $\frac{B_{nk}}{k}a_{k,p}(p+kk-1-1)$ is the
number of labelled $ur\triangleright rooted$ connected graphs of order $p+k$ having only one
cut vertex and having exactly $n$ blocks at the cut vertex, where the root is the
cut vertex. Note here that $\frac{B_{n,k}}{k}$ is the number of labelled $ ur\triangleright$rooted connected
graphs of order $k$ which have only one cut vertex and do exactly $n$ blocks at the
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cut vertex, where the root is the cut vertex. This number equals the coefficient
of $x^{p+k-1}/(p+k-1)$ ! in the series accomplished by multiplying $(R(x)/x)^{k-1}$ by
$\frac{B_{nk}}{k}\frac{x^{k-1}}{(k-1)!}$ Consequently, we get

(3.8) $\frac{R_{n}(x)}{x}=\sum_{k=1}^{\infty}\frac{B_{n,k}(R(x))^{k-1}}{k!}$

Hence the combination of (3.7) and (3.8) gives

$\frac{(\log(C^{\prime}(x)))^{n}}{n!}=\sum_{k=1}^{\infty}\frac{B_{n,k}(xC^{\prime}(x))^{k-1}}{k!}$

$=\frac{B_{n}(xC^{\prime}(x))}{xC(x)}$

which implies that (3.2) holds. This completes the proof of Theorem 3. $\blacksquare$

Theorem 4. Let $n$ be an integer with $n\geq 2$ . The exponential generating
functions $B_{n}(x)$ and $B(x)$ are related by

(3.9) $B_{n}(x)=x\frac{(B^{\prime}(x))^{n}}{n!}$ ,

where $B(x)\dot{u}$ given in (2.5).

Proof. Let $B_{1,p}$ denote the number of labelled rooted blocks of order $p$ and
put $B_{1}(x)=\sum_{p=1}^{\infty}B_{1,p^{\frac{x^{p}}{p!}}}$ . Then as seen at the beginning part of the proof of
Theorem 3, we have $B_{1,p}=pB_{p}$ and

(3. 10) $B_{1}(x)=x\frac{dB(x)}{dx}$ .

Then the coefficient of $x^{p}/p!$ in $B_{1}(x)/x$ is the number of labelled un-rooted
blocks of order $p+1$ . Therefore, it is observed that $(\frac{B_{1}(x)}{x})^{n}/n!$ enumerates
n-sets of labelled un-rooted blocks. If these $n$ roots are identified and a single
label is introduced for them, then each n-set corresponds to a labelled rooted
connected graph having exactly $n$ blocks at the identified root. Accordingly
$B_{n}(x)$ can be written as follows:

$B_{n}(x)=x\frac{(\frac{B_{1}(x)}{x})^{n}}{n!}$

$=x\frac{(B^{\prime}(x))^{n}}{n!}$ ,

which is just (3.9). This completes the proof of Theorem 4. $\blacksquare$
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A numerical example of $B_{n,p}$ is given for $2\leq n\leq 6$ and $1\leq p\leq 7$ in Table 1.

Table 1 The number of connected graphs with one cut vertex
where they have exactly $n$ blocks

To find the numerical value of $B_{n,p}$ for each pair of $n$ and $p$ , much calculation
may be required. But the value of the sum $\sum_{n=2}^{\infty}B_{n,p}$ for each $p$ can be obtained
with less calculation. We shall see it. Put

(3. 11) $V_{p}=\sum_{n=2}^{\infty}B_{n,p}$ ,

which is the number of labelled connected graphs of order $p$ with one cut vertex,
and consider

(3. 12) $V(x)=\sum_{p=1}^{\infty}\frac{V_{p}x^{p}}{p!}$ .

Then it follows from (3.1) that

(3. 13) $V(x)=\sum_{n=2}^{\infty}B_{n}(x)$ .

By applying Theorem 4 to (3.13), $V(x)$ becomes

$V(x)=\sum_{n=2}^{\infty}x\frac{(B^{j}(x))^{n}}{n!}$

$=x\{\sum_{n=0}^{\infty}\frac{(B^{\prime}(x))^{n}}{n!}-(1+B^{\prime}(x))\}$

(3. 14) $=x\{e^{B^{\prime}(x)}-(1+B^{\prime}(x))\}$ .

Consequently, we have a simple expression for $V(x)$ in terms of $B^{\prime}(x)$ .

Theorem 5. The exponential generating functions $V(x)$ and $B(x)$ are re-
lated by

(3. 15) $V(x)=x\{e^{B^{\prime}(x)}-(1+B^{\prime}(x))\}$ .
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(3.15) can be rewritten as

(3. 16) $\sum_{p=0}^{\infty}\frac{V_{p+1}+(p+1)B_{p+1}}{(p+1)!}x^{p}=\exp\{\sum_{p=1}^{\infty}\frac{B_{p+1}}{p!}x^{p}\}$ ,

where $V_{1}=1$ and $V_{2}=0$ .
The following lemma plays a major part in yielding a recursive formula for

$V_{p}$ .

Lemma 6. If

$\sum_{m=0}^{\infty}A_{m}x^{m}=\exp\{\sum_{m=1}^{\infty}a_{m}x^{m}\}$

holds, then

$a_{m}=A_{m}-m^{-1}(\sum_{k=1}^{m-1}ka_{k}A_{m-k})$ for $m\geq 1$ .

Applying this lemma into (3.16) we get the recursive formula

(3. 17) $V_{p}=\frac{p}{p-1}\sum_{k=1}^{p-2}\left(\begin{array}{l}p-1\\k-1\end{array}\right)B_{k+1}\{V_{p-k}+(p-k)B_{p-k}\}$ ,

where $p\geq 3$ .
For the first few terms of V $(x)$ , we have

$V(x)=\frac{3x^{3}}{3!}+\frac{16x^{4}}{4!}+\frac{250x^{5}}{5!}+\frac{8496x^{6}}{6!}+\frac{540568x^{7}}{7!}+\frac{61672192x^{8}}{8!}$

$+\frac{12608406288x^{9}}{9!}+\frac{4697459302400x^{10}}{10!}+\cdots$

$andthevaluesofV_{p}$ are listed below forp $=3,4,$ $\cdots$ , 10.

The number of labelled connected graphs of order $p$ with one cut vertex

4. Enumeration of labelled Euler graphs with one cut vertex

Let us list the notations used in this section before making into a considera-
tion of the enumeration of labelled Euler graphs. Since a block with more order
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than two is 2-connected, here, an Euler graph which is a block itself is referred
as a 2-connected Euler graph. The symbols on the third column in this notation
list are given in Section 2 and 3.

Table 2 Notation list

Read [3] showed that $W_{p}=2^{(^{p-1})}2$ The similar expression $W(x)+1=e^{U(x)}$

to (2.3) is obtained. This expression yields the following recursive formula using
Lemma 6:

(4. 1) $U_{p}=2^{(^{p-1})}2-\frac{1}{p}\sum_{k=1}^{p-1}k\left(\begin{array}{l}p\\k\end{array}\right)2^{()}p-k-12U_{k}$

for $p=1,2,$ $\cdots$ . The first few terms of $U(x)$ are given by

$U(x)=x+\frac{x^{3}}{3!}+\frac{3x^{4}}{4!}+\frac{38x^{5}}{5!}+\frac{720x^{6}}{6!}+\frac{26614x^{7}}{7!}+\frac{1858122x^{8}}{8!}$

(4.2) $+\frac{250586792x^{9}}{9!}+\frac{66121926720x^{10}}{10!}+\cdots$

Tazawa, Jin and Shirakura [5] studied a relation between the exponential
generating functions for labelled 2-connected Euler graphs and labelled Euler
graphs. They obtained the following result:
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Theorem 7. The exponential generating functions $B^{*}(x)$ and $U(x)$ are re-
lated by

(4. 3) $U^{\prime}(x)=\exp\{B^{*\prime}(xU^{\prime}(x))\}$ ,

where $U^{\prime}(x)$ and $B^{*\prime}(x)$ denote derivative of $x$ .

For the first few terms of B*(x), we have

$B^{*}(x)=\frac{x^{3}}{3!}+\frac{3x^{4}}{4!}+\frac{23x^{5}}{5!}+\frac{540x^{6}}{6!}+\frac{22834x^{7}}{7!}+\frac{1727922x^{8}}{8!}$

$+\frac{243177614x^{9}}{9!}+\frac{65393041920x^{10}}{10!}+\cdots$

and the values of $B_{p}^{*}$ are listed below for $p=3,4,$ $\cdots$ , 10.

The number of 2-connected Euler graphs of order $p$

We next consider the enumeration of labelled Euler graphs with one cut
vertex. The discussion for this enumeration is almost similar to that for the enu-
meration of labelled connected graphss which has been considered in Section 3.
Therefore, replace the corresponding symbols on the Table 2 in Theorems 3,4,5
and (3.17) by the symbols on the first column of the Table 2, respectively. Then
we get the following respective Theorems 8,9,10 and (4.7).

Theorem 8. Let $n$ be an integer with $n\geq 2$ . The exponential generating
functions $B_{n}^{*}(x)$ and $U(x)$ are related by

(4. 4) $B_{n}^{*}(xU^{\prime}(x))=xU^{\prime}(x)\frac{(\log U^{\prime}(x))^{n}}{n!}$ .

Theorem 9. Let $n$ be an integer with $n\geq 2$ . The exponential generating
functions $B_{n}^{*}(x)$ and $B^{*}(x)$ are related by

(4.5) $B_{n}^{*}(x)=x\frac{(B^{*\prime}(x))^{n}}{n!}$ .

For the first few terms of $B_{n}^{*}(x)$ , we have Table 3.
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Table 3 The number of Euler graphs with one cut vertex
where they have exactly $n$ 2-connected Euler graphs

Theorem 10. The exponential generating functions $V^{*}(x)$ and $B^{*}(x)$ are
related by

(4.6) $V^{*}(x)=x\{e^{B(x)}-’(1+B^{*\prime}(x))\}$ .

The recursive formula for $V_{p}^{*}:$

(4.7) $V_{p}^{*}=\frac{p}{p-1}\sum_{k=1}^{p-2}\begin{array}{l}p-1\\k-1\end{array}B_{k+1}^{*}\{V_{p-k}^{*}+(p-k)B_{p-k}^{*}\}$ ,

where $p\geq 3$ .
For the first few terms of V*(x), we have

$ V^{*}(x)=\frac{15x^{5}}{5!}+\frac{180x^{6}}{6!}+\frac{3150x^{7}}{7!}+\frac{112560x^{8}}{8!}+\frac{6804378x^{9}}{9!}+\frac{698266800x^{10}}{10!}+\cdots$

and the values of $V_{p}^{*}$ are listed below for $p=5,6,$ $\cdots 10$ .

The number of labelled Euler graphs of order $p$ with one cut vertex
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