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Abstract. Negami has already shown that there is a natural number $N(F^{2})$

for any closed surface $F^{2}$ such that two triangulations on $F^{2}$ with $n$ vertices can
be transformed into each other by a sequence of diagonal flips if $n\geq N(F^{2})$ . We
shall show a cubic upper bound for $N(F^{2})$ with respect to the genus $g$ of $F^{2}$ and
a quadratic upper bound for the number of diagonal flips in the sequence with
respect to $n$ .

Introduction

A triangulation $G$ on a closed surface $F^{2}$ is a simple graph embedded on $F^{2}$

so that each face is triangular and that any two faces share at most one edge.
Two triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ are said to be equivalent (or homeomorphic)
to each other if there is a homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ with $h(G_{1})=G_{2}$ .

Let $ac$ be an edge of $G$ and let abc and adc be the two faces incident to the
edge $ac$ in $G$ . The diagonal flip of $ac$ is to replace $ac$ with the other diagonal $bd$

in the quadrilateral abcd. Flipping the diagonal $ac$ is however forbidden when
there is an edge joining $b$ and $d$ in $G$ . For, if we were not subject to this rule, such
a diagonal flip would result in a nonsimple graph with multiple edges between $b$

and $d$ . We always have to keep any triangulation simple.
Classically, Wagner [22] proved that any two triangulations on the sphere can

be transformed into each other, up to equivalence, by a sequence of diagonal flips
if they have the same number of vertices. Dewdney [5], Negami and Watanabe
[15] have shown the same facts for the torus, the projective plane and the Klein
bottle.

Such a fact does not hold as it is for other surfaces in general. However,
Negami [17] has proved the following theorem for general surfaces, devising some
good tricks to connect the diagonal flips to graph minors.
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Figure 1 Diagonal flip

Theorem 1. (Negami [17]) For any closed surface $F^{2}$ , there exists a natural
number $N(F^{2})$ such that two triangulations $G_{1}$ and $G_{2}$ can be trcsnsformed into
each other, up to equivalence, by a finite sequence of diagonal flips $if|V(G_{1})|=$

$|V(G_{2})|\geq N(F^{2})$ . $\blacksquare$

This theorem is the starting point of many recent works on diagonal flips of
triangulations; [4], [6], [11], [12], [13], [14], [16]. This paper also presents related
topics and answers more basic problems. Estimate an upper bound for the value
of $N(F^{2})$ and the length of a sequence of diagonal flips which transforms $G_{1}$ into
$G_{2}$ .

Hereafter, let $N(F^{2})$ denote its minimum value which makes the theorem
valid and $\chi(F^{2})$ the Euler characteristic of a closed surface $F^{2}$ . The genus $g$

of an orientable closed surface $F^{2}$ is the number of its handles, or holes and
$\chi(F^{2})=2-2g$ . If $F^{2}$ is nonorientable, the genus $g$ is the number of crosscaps
and $\chi(F^{2})=2-g$ .

Theorem 2. There is a cubic function of the genus $g$ which gives an upper
bound for $N(F^{2})$ . That is, $N(F^{2})=O(g^{3})$ .

We shall prove this theorem in Section 1, introducting some related topics;
the irreducible triangulations and the crossing number of two graphs embedded
on one closed surface. Our proof is based on Negami’s theory presented in [17].
Recently, he has succeeded in showing that $N(F^{2})=O(g)$ with a new idea [19].

Let $d(G_{1}, G_{2})$ denote the minimum length taken over all the sequences of
diagonal flips which transform $G_{1}$ into $G_{2}$ . It is clear that $d(G_{1}, G_{2})$ defines a
distance over the triangulations with a fixed number of vertices, say $n$ . For exam-
ple, Komuro [6] has shown that $d(G_{1}, G_{2})\leq 8n-48$ for any pair of triangulations
$G_{1}$ and $G_{2}$ on the sphere if $n\geq 7$ . The following result presents a quadratic
upper bound for $d(G_{1}, G_{2})$ , but is for triangulations on general surfaces. We
shall prove it in Section 2.
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Theorem 3. Given a closed surface $F^{2}$ , there are two constants $\alpha_{1}$ and $\alpha_{0}$ ,
depending only on $F^{2}$ , such that

$d(G_{1}, G_{2})\leq 2n^{2}+\alpha_{1}n+\alpha_{0}$

for any pair of triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ with precisely $n$ vertices.

The coefficients $\alpha_{1}$ and $\alpha_{0}$ are functions of the genus $g$ of $F^{2}$ , but we have
known nothing about their orders with respect to $g$ , yet. It is not difficult to
construct a sequence of pairs of triangulations $(G_{1}, G_{2})$ such that $d(G_{1}, G_{2})$ has
a lower bound of order $n$ , modifying the examples given in [6]. Is there a linear
upper bound for $d(G_{1}, G_{2})$ with respect to the number of vertices in general, as
well as in the spherical case?

1. Bounding the number of vertices

Let $G$ be a triangulation on a closed surface $F^{2}$ . The contraction of an edge
$ac$ in $G$ is to contract the edge $ac$ after deleting $bc$ and $cd$ , where abc and adc
are the two faces incident to $ac$ . (See Figure 2.) If its contraction yields another

$trian.gu1ationonF^{2},denotedbyG/ac,thenthee_{\ovalbox{\tt\small REJECT}}deacissaidtobecontractibleinGItitoseethatanedeaci_{S}contractib$

precisely two cycles of length 3 containing $ac$ , unless $G$ is isomorphic to $K_{4}$ . It
is forbidden to contract any noncontractible edge since we always have to keep
a triangulation simple.

Figure 2 Contracting an edge

A triangulation $G$ is said to be contractible to another trinagulation $G^{\prime}$ if
$G^{\prime}$ can be obtained from $G$ by contracting edges. In particular, if $G$ is not
contactible to any other triangulation, that is, if $G$ has no contractible edge,
then $G$ is called an irreducible $tr\dot{i}angulation$ of the surface $F^{2}$ .

The only irreducible triangulation of the sphere is the tetrahedron, that is, the
unique embedding of $K_{4}$ on the sphere [21]. Barnette [2] has shown that there are
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precisely two irreducible triangulations of the projective plane. Lowrencenko [7]
also has identified all of the 21 irreducible triangulations of the torus. Recently,
Lowrencenko and Negami [8] have classified those of the Klein bottle, which are
25 in number.

In general, the number of inequivalent irreducible triangulations of each
closed surface is finite, which has been shown in [3] and also in [17] as an appli-
cation of Wagner’s conjecture [20]. Moreover, Nakamoto and Ota [10] have given
a linear upper bound for the number of their vertices with respect to the genus
of a closed surface, as follows. This is one of what we need to prove Theorem 2.

Theorem 4. (Nakamoto and Ota [10]) Every irreducible triangulation of
a closed surface $F^{2}$ with Euler chamcteristic $\chi(F^{2})\leq 1$ has at most $171(2-$
$\chi(F^{2}))-72$ vertices.

Figure 3 The standard spherical triangulation $\Delta_{m}$ with $m+3$ vertices

The finiteness of those irreducible triangulations works essentially in Negami’s
proof of Theorem 1 given in [17]. He denotes a triangulation $T$ with one face
subdivided as given in Figure 3, by $T+\Delta_{m}$ , where $m$ stands for the number of
vertices inside the big triangle. Following his proof, we can bound the value of
$N(F^{2})$ by the number $N_{0}=N_{0}(F^{2})$ such that:

For any two irreducible triangulations $T_{i}$ and $T_{j}$ of $F^{2},$ $T_{2}+\Delta_{m:}$ and
$T_{j}+\triangle_{m_{j}}$ can be transformed into each other, up to equivalence, by
diagonal flips if

$|V(T_{1})|+m_{i}=|V(T_{j})|+m_{j}\geq N_{0}$ .
If there were infinitely many irreducible triangulations $T_{1},$ $T_{2},$

$\ldots$ , then there
would not be a finite number $N_{0}$ with the above condition.

For example, we have the following table for the sphere, the projective plane,
the torus and the Klein bottle. The number $N(F^{2})$ in the table coincides with
the number of vertices of minimal triangulations on each of these surfaces while
$N_{0}(F^{2})$ is equal to the maximun number of vertices of their irreducible triangu-
lations. However, these facts do not hold in general.
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Another notion we need is the crossing number of a graph embedding pair,
which was introduced first by Negami [18]. Let $G_{1}$ and $G_{2}$ be two graphs em-
bedded separately on closed surfaces $F_{1}^{2}$ and $F_{2}^{2}$ , each of which is homeomorphic
to a common closed surface $F^{2}$ . Consider homeomorphisms $h_{1}$ : $F_{1}^{2}\rightarrow F^{2}$ and
$h_{2}$ : $F_{2}^{2}\rightarrow F^{2}$ and count the crossing points of $h_{1}(G_{1})$ and $h_{2}(G_{2})$ embedded
on $F^{2}$ . The crossing number $cr(G_{1}, G_{2})$ is defined as the minimum number of
crossing points when $h_{1}$ and $h_{2}$ range over those homeomorphisms such that
$h_{1}(G_{1})$ and $h_{2}(G_{2})$ intersect each other only in their edges transversely.

Let $\beta(G)$ denote the Betti number, or the cycle rank of a graph $G$ , which is
equal to $|E(G)|-|V(G)|+1$ if $G$ is connected.

Theorem 5. (Negami [18]) Let $G_{1}$ and $G_{2}$ be two graphs embedded on a
closed surface $F^{2}$ of genus $g$ , orientable or nonorientable. Then we have the
following inequality:

$cr(G_{1}, G_{2})\leq 4g\cdot\beta(G_{1})\cdot\beta(G_{2})$

Negami has defined in [18] the diagonal crossing number $cr_{\triangle}(G_{1}, G_{2})$ as the
minimum number of crossing points evaluated under the following conditions.

(i) Any vertex does not lie on the interior of edges.
(ii) A pair of edges coincide fully or cross each other in a finite number of

points transversely with or without common ends if they intersect.

He suggested that this is preferable, rather than $cr(G_{1}, G_{2})$ , when we discuss
about diagonal flips in triangulations on a closed surface. By their definition, it
is clear that:

$cr_{\triangle}(G_{1}, G_{2})\leq cr(G_{1}, G_{2})$

Although the former will be smaller than the latter so much, we have never had
a good bound for $cr_{\triangle}(G_{1}, G_{2})$ yet.

The following two lemmas also are the key facts to prove Theorem 2, which are
refered as Lemmas 6 and 8 respectively in [17]. A refinement $G$ of a triangulation
$T$ is a triangulation which contains a subdivision of $T$ as its subgraph.

Lemma 6. Let $G$ and $T$ be two triangulations of a closed surface $F^{2}$ . If $G$

is contmctible to $T$ , then $G$ is equivalent to $T+\Delta_{m}$ with $m=|V(G)|-|V(T)|$ .
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Lemma 7. Any refinement $T$‘ of a triangulation $T$ is contractible to $T$ .

Proof of Theorem 2. First, we shall prove the theorem for the orientable
closed surfaces. The argument below however works for the nonorientable ones
in parallel with suitable modification.

Let $\tau_{:}$ and $T_{j}$ be any two irreducible triangulations of the orientable closed
surface $F^{2}$ of genus $g$ . Embed $T_{1}$ and $T_{j}$ together on $F^{2}$ so that they attain their
diagonal crossing number $cr_{\triangle}(T_{i}, T_{j})$ , and construct their common refinement
$T_{ij}$ , adding new edges to $T_{i}\cup T_{j}$ . The vertex set of this refinement consists of
the vertices of $T_{i}$ and $T_{j}$ and their crossing points. Then, $T_{1j}$ is contractible to
each of $T_{1}$ and $T_{j}$ by Lemma 6, and is equivalent to $T_{i}+\Delta_{m:}$ and to $T_{j}+\triangle_{m_{j}}$

by Lemma 7. Thus, $T_{1}+\Delta_{m_{i}}$ and $T_{j}+\Delta_{m_{j}}$ are equivalent to each other via $T_{1j}$ .
By Theorem 5, we have:

$|V(T_{ij})|\leq|V(T_{i})|+|V(T_{j})|+cr_{\triangle}(T_{i}, T_{j})$

$\leq|V(T_{1})|+|V(T_{j})|+4g\cdot\beta(T_{1})\cdot\beta(T_{j})$

From Euler’s formula, it follows that:

$\chi(F^{2})=2-2g$ , $\beta(T_{1})=2|V(T_{i})|-3\chi(F^{2})+1$

Now let $V_{\max}$ be the maxmun number of vertices taken over all the irreducible
triangulations of $F^{2}$ and define $N_{0}$ by:

$N_{0}=2V_{\max}+4g(2V_{\max}-3\chi(F^{2})+1)^{2}$

$=2V_{\max}+4g(2V_{\max}-3(2-2g)+1)^{2}$

$=144g^{3}+48(2V_{\max}-5)g^{2}+4(2V_{\max}-5)^{2}g+2V_{\max}$

Since $|V(T_{ij})|\leq N_{0}$ , we can construct a common refinement of $T_{1}$ and $T_{j}$ with
$n$ vertices for any $n\geq N_{0}$ , adding new vertices to $T_{ij}$ . Thus, the same argument
as above concludes that $N_{0}$ satisfies the condition quoted in the previous.

By Theorem 4, we have the following bound for $V_{\max}$ :

$V_{\max}\leq 171(2-\chi(F^{2}))-72=342g-72$

Assigning this bound to the above cubic function of $g$ , we obtain an upper bound
for $N_{0}$ as follows:

$N_{0}\leq 1,904,400g^{3}-822,480g^{2}+89,488g-144$

This is also an upper bound for $N(F^{2})$ .
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For the nonorientable closed surfaces of genus $g$ , we should substitute $\chi(F^{2})=$

$2-g$ and $V_{\max}\leq 171g-72$ in our previous arguments to obtain a similar upper
bound of $N_{0}$ . Then we have:

$N_{0}\leq 484$ , 416$g^{3}-414,816g^{2}+89,146g-144$

Since this bound is smaller than the previous, the previous should be chosen as
the cubic function of $g$ in the theorem. $\blacksquare$

2. Bounding the number of diagonal flips

In this section, we shall give an upper bound for $d(G_{1}, G_{2})$ , that is, for the
number of diagonal flips included in a shortest sequence which transforms $G_{1}$ into
$G_{2}$ . To do so, we need to give an algorithm to transform $G_{1}$ into $G_{2}$ , guaranteed
by Theorem 1.

Negami’s proof of Theorem 1 in [17] suggests the following algorithm. Its
consistency and details of each step will be shown later in our proof of Theorem
3.

Let $G_{1}$ and $G_{2}$ be two triangulations on a closed surface $F^{2}$ with $n$ vertices.
Let $N_{0}$ denote the same number as given in the previous section and suppose
that $n\geq N_{0}$ .

STEP 1. Let $T_{1}$ be a triangulation on $F^{2}$ with precisely $N_{0}$ vertices which
is obtained from $G_{1}$ by contracting edges. Ranslate the sequence of edge
contractions from $G_{1}$ to $T_{1}$ into that of diagonal flips from $G_{1}$ through tri-
angulations with $n$ vertices. (We call the latter “the sequence of diagonal
flips corresponding to edge contractions”.) Let $G_{1}^{\prime}$ be the triangulation with
$n$ vertices obtained from $G_{1}$ by applying this sequence.

STEP 2. Define $T_{2}$ and $G_{2}^{\prime}$ for $G_{2}$ similarly to the above. Since both $T_{1}$ and $T_{2}$

have $N_{0}$ vertices, they can be transformed into each other by diagonal flips.
Ranslate such a sequence of diagonal flips from $T_{1}$ to $T_{2}$ into that starting
from $G_{1}^{j}$ . Let $G_{2}^{\prime\prime}$ be the triangulation obtained from $G_{1}^{\prime}$ by applying this
sequence. In general, $G_{2}^{\prime\prime}$ does not coincide with $G_{2}^{\prime}$ .

STEP 3. Each of $G_{2}^{\prime\prime}$ and $G_{2}^{\prime}$ includes a subgraph, equivalent to $T_{2}$ , not subdi-
vided. Transform $G_{2}^{\prime\prime}$ into $T_{2}+\Delta_{m}$ with $m=n-N_{0}$ , moving the vertices
not belonging to $T_{2}$ into one face of $T_{2}$ .

STEP 4. Ttansform $T_{2}+\Delta_{m}$ into $G_{2}^{\prime}$ by the inverse of a similar sequence of
diagonal flips from $G_{2}^{j}$ .

STEP 5. Transform $G_{2}^{j}$ into $G_{2}$ by the inverse of a sequence of diagonal flips
corresponding to edge contractions from $G_{2}$ to $T_{2}$ .
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To give an upper bound for d $(G_{1}, G_{2})$ , we shall evaluate the number of diag-
onal flips in the sequence which this algorithm generates.

The following lemma has been proved in [6] and is rephrased for our purpose.
(We don’t need it if we don’t care about the coefficient of $n^{2}$ to be 2.)

Lemma 8. (Komuro [6]) Let $G$ be a planar triangulation bounded by a pe-
ripheml triangle uvw and suppose that there are $m$ vertices inside $uvw$ . Then:

$d(G, \Delta_{m})\leq 4m+8-$ ( $3$ deg $v+\deg w$ )

More precisely speaking, there is a sequence of diagonal flips of such length
which transforms $G$ into $\Delta_{m}$ , fixing $uvw$ , so that deg $u=3$ and deg $v=\deg w=$

$m+2$ afterwards.

Proof of Theorem 3. To describe the above algorithm in more details,
we shall look at a partial structure in a triangulation. Let $G$ and $T$ be two
triangulations on a closed surface $F^{2}$ and suppose that $G$ includes $T$ as its
subgraph. Then each vertex of $G$ lies inside a face of $T$ if it does not belong to
$T$ and each face of $T$ is subdivided as like a planar triangulation. The subgraph
induced by the edges lying in each face of $T$ is often called a bridge in $G$ for $T$ .

Figure 4 hanslating a diagonal flip in $T$ for $G$

Figure 4 presents a trick to translate a diagonal flip in $T$ into a sequence of
diagonal flips in $G$ . We call this Trick $A$ . This sequence consists of flipping edges
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which are incident to the vertex $a$ inside the quadrilateral abcd. To simplify
figures below, we may omit the vertices inside each face of $T$ and draw only
diagonal flips in $T$ . In such a case, we should expand each diagonal flip in the
figures by Trick A.

Let $G_{1}$ and $G_{2}$ be two triangulations on $F^{2}$ with $n$ vertices and suppose that
$n\geq N_{0}$ . Since the number of vertices of any irreducible triangulation does not
exceed $N_{0},$ $G_{i}$ is contractible to a triangulation with precisely $N_{0}$ vertices. Thus,
we can choose it actually as $T_{i}$ in the above-mentioned algorithm.

STEP 1. Let $G$ be a triangulation on a closed surface $F^{2}$ with $n$ vertices and
$T$ another triangulation included in $G$ as a subgTaph. Let $uv$ be a contractible
edge of $T$ . The contraction of $uv$ in $T$ can be realized as flipping deg$\tau u-3$

edges incident to $u$ and removing $u$ which has degree 3 after flipping, as shown
in Figure 5. Expand the diagonal flips of these edges by Trick A. The resulting
sequence is “a sequence corresponding to an edge contraction” and consists of
at most $\deg_{G}u-3$ diagonal flips in $G$ , transforming $T$ into $T/uv$ . The vertex
$u$ of degree 3 will be unifiyed with a bridge in $G$ to be one bridge in the new
triangulation which includes $T/uv$ as its subgraph. Since $\deg_{G}u\leq n-1$ , the
number of diagonal flips in the seuquence does not exceed $n-4$ .

Figure 5 Diagonal flips corresponding to an edge contraction

Apply this argument to the transformation of $G_{1}$ into $G_{1}^{\prime}$ in Step 1. At
the initial stage, we set $G=T=G_{1}$ and carry out the sequences of diagonal
flips corresponding to edge contractions from $G_{1}$ to $T_{1}$ in order. Then we have
$G=G_{1}^{\prime}$ and $T=T_{1}$ at the final stage. The number of diagonal flips in the total
sequence from $G_{1}$ to $G_{1}^{\prime}$ is bounded by:

$(n-N_{0})(n-4)=n^{2}-(N_{0}+4)n+4N_{0}$

STEP 2. Now $G_{1}^{\prime}$ includes $T_{1}$ as its subgraph and $T_{1}$ can be transformed
into $T_{2}$ by a sequence of diagonal flips since $N_{0}\geq N(F^{2})$ . Expand this sequence
from $T_{1}$ to $T_{2}$ into that in $G_{1}^{\prime}$ by Trick A. Since each diagonal flip in the former
corresponds to at most $n-4$ diagonal flips in the latter, the total length of the
sequence from $G_{1}^{\prime}$ to $G_{2}^{\prime\prime}$ is bounded by $(n-4)d(T_{1},T_{2})$ .
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Let $d_{0}=d_{0}(F^{2})$ denote the maximum value of $d(T^{\prime}, T^{\prime\prime})$ taken over all the
pair of triangulations $T^{\prime}$ and $T^{\prime\prime}$ with precisely $N_{0}$ vertices. Since there are only
a finite number of such triangulations, this maximum value $d_{0}$ exists actually as
a finite constant, depending only on $F^{2}$ . Thus, the number of diagonal flips we
need in Step 2 is bounded by:

$(n-4)d_{0}=d_{0}n-4d_{0}$

STEP 3. Now we transform $G_{2}^{\prime\prime}$ into $G_{2}^{\prime}$ , preserving the subgraph $T_{2}$ in them.
Our basic trick is shown in Figure 6 and it carries a bridge in a face of $T_{2}$ into
a neighboring face. This trick flips the diagonal $ac$ and the edges in the bridge
incident to $a$ or $b$ . The number of those edges does not exceed $2m$ if we denote
the number of vertices in the bridge by $m$ . Since $m\leq n-4$ , this trick consists
of at most $2(n-4)+1=2n-7$ diagonal flips.

Figure 6 Moving bridges

Let $F_{0}$ be the number of faces of $T_{2}$ , which is equal to $2(N_{0}-\chi(F^{2}))$ . Choose
one face of $T_{2}$ , say $A=uvw$ , and move all the bridges in $G_{2}^{\prime\prime}$ into the face $A$ .
To do this, consider a spanning tree in the dual of $T_{2}$ with $A$ as its root. This
spanning tree has precisely $F_{0}$ vertices and we can define the directions of its
edges uniquely so that they induce a path from each vertex to the root $A$ . We
move the bridges of $G_{2}^{\prime\prime}$ into the face $A$ by the above trick along such a path
system, starting at the ends of the spanning tree.
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In this process, we carry out the trick at most $F_{0}-1$ times and bridges are
unified together in order since there are precisely $F_{0}-1$ faces of $T_{2}$ except the
root $A$ . Thus, the number of diagonal flips in such a sequence is bounded by:

$(2n-7)(F_{0}-1)=2(F_{0}-1)n-7(F_{0}-1)$

We need at most $4m+8-$ ( $3$ deg$Bv+\deg_{B}w$ ) diagonal flips, in addition,
to transform the inside of $A$ into $\Delta_{m}$ if $m=n-N_{0}\geq 2$ . In this case, we may
assume that deg$B^{v}\geq 4$ and deg$Bw\geq 3$ , and hence the number of additional
diagonal flips does not exceed $4m-7=4(n-N_{0})-7$ . Adding this to the
previous, we have the following upper bound for the number of diagonal flips we
need in Step 3:

$(2F_{0}+2)n-7F_{0}-4N_{0}$

STEPS 4 AND 5. In these cases, we have the same upper bounds as in Steps
3 and 1, respectively.

Sum up the upper bounds given in all of the steps. Then we conclude that:

$d(G_{1}, G_{2})\leq 2n^{2}+(d_{0}-2(N_{0}+4)+2(2F_{0}+2))n-4d_{0}-14F_{0}$

Substituting $F_{0}=2(N_{0}-\chi(F^{2}))$ to the above, we obtain the coefficients $\alpha_{1}$ and
$\alpha_{2}$ in the theorem, as follows:

$\alpha_{1}=d_{0}+6N_{0}-8\chi(F^{2})-4$ , $\alpha_{2}=-4d_{0}-28(N_{0}-\chi(F^{2}))<0$

It is clear that they depend only on the surface $F^{2}$ . $\blacksquare$

The only unknown quantity in the above expressions for $\alpha_{1}$ and $\alpha_{2}$ is $d_{0}$ , or
the maximum distance over the triangulations with precisely $N_{0}$ vertices. This
is bounded by the number of inequivalent such triangulations, but the latter will
be so big.
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