ON FORMAL EXTENSIONS OF NEAR-FIELDS

By

MAHER ZAYED

(Received July 31, 1997)

Abstract. In this note, the notion of a formal limit "Lim" is introduced. A nonprincipal ultrafilter associated with "Lim" is constructed. A characterization of ultrapower extensions of near-fields in terms of formal limits is given. In fact, we show that a near-field Ω is an ultrapower extension of a near-field K if and only if Ω is a formal extension of K.

1. Formal Limits

Let K be a near-field and I an infinite set. An I-sequence $\langle a_i : i \in I \rangle$ of elements of K is a member of the set K^I . These sequences form a (right) near-ring with identity, where the sums and products are defined pointwise,

(i.e.
$$\langle a_i \rangle + \langle b_i \rangle = \langle a_i + b_i \rangle$$
 and $\langle a_i \rangle \langle b_i \rangle = \langle a_i b_i \rangle$).

For the theory of near-rings and near-fields we refer to [3].

Definition 1.1. Let Ω be a near-field, K be a subnear-field of Ω and I be an infinite set. An Ω valued function "Lim" with domain K^I will be called a formal limit of the I-sequences of elements of K if "Lim" satisfies the following properties:

- (a) $\operatorname{Lim} \langle a_i + b_i \rangle = \operatorname{Lim} \langle a_i \rangle + \operatorname{Lim} \langle b_i \rangle$.
- (b) $\operatorname{Lim} \langle a_i b_i \rangle = \operatorname{Lim} \langle a_i \rangle \operatorname{Lim} \langle b_i \rangle$.
- (c) If $a_i = a$ for every $i \in I$, Lim $\langle a_i \rangle = a$.
- (d) If $a_i = 0$ for almost all $i \in I$, Lim $\langle a_i \rangle = 0$.

Definition 1.2. An element $b \in \Omega$ is called an approachable element if there exists an *I*-sequence $\langle b_i \rangle$ of elements of K such that $b = \text{Lim } \langle b_i \rangle$.

Definition 1.3. Let K be a subnear-field of a near-filed Ω . The extension Ω/K is said to be formal if there exist an infinite set I and an Ω -valued formal

¹⁹⁹¹ Mathematics Subject Classification: 16A76; 03C20

Key words and phrases: Near-ring, Near-field, Extension, Ultrafiltes, Ultrapower, Formal limit

106 M. ZAYED

limit "Lim" of the *I*-sequences of elements of K, such that every element of Ω is approachable.

The concept of an ultrapower extension of a "model" is defined in [1]. Let us recall a near-field Ω is an ultrapower extension of a near-field K if $K \subset \Omega$ and for some ultrafilter D, the natural embedding $d: K \to K^I/D$ can be extended to an isomorphism $f: \Omega \cong K^I/D$. For the ultraproducts of near-rings see [2].

Suppose Ω is an ultrapower extension of K. We can define an Ω -valued function "Lim" on K^I by: Lim $\langle x_i \rangle = f^{-1} \circ h \langle x_i \rangle$, where $h: K^I \to K^I/D$, $h\overline{\langle x_i \rangle} = \langle x_i \rangle$, is the canonical projection. Obviously "Lim" satisfies the first two properties of a formal limit. Let $\langle x_i \rangle$ be a constant sequence with value x_i . Then

Now if $\langle x_i \rangle$ is a sequence such that $x_i = 0$ for almost all $i \in I$, then Lim $\langle x_i \rangle = 0$, since $h\langle x_i \rangle = 0$. Finally since h and f^{-1} are surjective, every element of Ω is approachable, i.e. Ω is a formal extension of K. We sum up the result as:

Proposition 1.4. Every ultrapower extension of a near-field is a formal extension.

2. Ultrafilters

In this section, we associate with each formal limit of the *I*-sequences of elements of K, a nonprincipal ultrafilter U on I. Now, for each $J \subseteq I$, let χ_J be the characteristic function of J, i.e. $\chi_J(i) = 1$ for $i \in J$ and $\chi_J(i) = 0$ for $i \in (I - J)$.

Proposition 2.1. Let U be the set of all subsets J of I such that $\text{Lim } \chi_J = 1$. Then U is a nonprincipal ultrafilter on I.

Proof. Let $A \subseteq I$. Observe that for each $i \in I$, $\chi_A(i)\chi_A(i) = \chi_A(i)$. Hence $(\text{Lim }\chi_A)^2 = \text{Lim }\chi_A$. This means that for every subset A of I, we have either $\text{Lim }\chi_A = 1$ or $\text{Lim }\chi_A = 0$. To show that U is a filter on I, let $A \in U$ and $B \in U$.

Since $\chi_{A\cap B}(i)=\chi_A(i)\chi_B(i)$, for all $i\in I$, then $\operatorname{Lim}\chi_{A\cap B}=\operatorname{Lim}\chi_A$ $\operatorname{Lim}\chi_B=1$. Hence $A\cap B\in U$. Suppose $A\in U$ and $A\subset M$. It follows from $\chi_A(i)=\chi_A(i)\chi_M(i)$, for all $i\in I$, that $\operatorname{Lim}\chi_A=\operatorname{Lim}\chi_A\operatorname{Lim}\chi_M$. Thus $\operatorname{Lim}\chi_M=1$ and so $M\in U$.

Obviously for the empty set \emptyset , Lim $\chi_{\emptyset} = 0$, hence $\emptyset \notin U$ and U is a proper filter. Now, U is an ultrafilter on I, for if $H \subseteq I$ with Lim $\chi_H = 1$, then $H \in U$.

Otherwise Lim $\chi_H = 0$. In this case $\lim \chi_{I-H} = \lim \chi_I - \lim \chi_H = 1 - 0 = 1$, which means that $(I - H) \in U$. Finally, since for each $j \in J$, Lim $\chi_{\{j\}} = 0$, the ultrafilter U is nonprincipal. \square

Proposition 2.2. Let $\langle a_i \rangle \in K^I$ and $A = \{i \in I/a_i = 0\}$. Then $A \in U$ if and only if $\text{Lim } \langle a_i \rangle = 0$.

Proof. Suppose $A \in U$ (i.e. $\lim \chi_A = 1$). Note that for each $i \in I$, $\chi_A(i)a_i = 0$. Therefore, $\lim \chi_A \lim \langle a_i \rangle = 0$ and hence $\lim \langle a_i \rangle = 0$. Conversely, let $\langle a_i \rangle \in K^I$ with $\lim \langle a_i \rangle = 0$. We define an I-sequence $\langle b_i \rangle$ by: $b_i = 0$ for $i \in A$ and $b_i = a_i^{-1}$ for $i \in (I - A)$. Obviously, $a_i b_i = 0$ for $i \in A$ and $a_i b_i = 1$ for $i \notin A$. This means the $\chi_{(I - A)} = \langle a_i b_i \rangle$, and hence

$$\operatorname{Lim} \chi_{(I-A)} = \operatorname{Lim} \langle a_i \rangle \operatorname{Lim} \langle b_i \rangle = 0.$$

We conclude that $(I - A) \notin U$ and consequently $A \in U$. \square

We will show that the ultrafilter U associated with "Lim" entirely determines the extension.

Proposition 2.3. Every formal extension of a near-field K is an ultrapower extension of K.

Proof. Suppose Ω/K is a formal extension. Then there exist an infinite set I and an Ω -valued formal limit Lim: $K^I \to \Omega$, such that "Lim" is a near-ring epimorphism. Let U be the non principal ultrafilter associated with "Lim" and consider the natural projection $h: K^I \to K^I/U$. Observe that if $\langle x_i \rangle \in \text{Kerh}$, then $\{i \in I/x_i = 0\} \in U$ and it follows from proposition 2.2, that $\text{Lim } \langle x_i \rangle = 0$. Hence $\text{Kerh } \subseteq \text{ker Lim}$, and there exists a unique epimorphism f from K^I/U onto Ω such that foh = Lim. Science K^I/U is a near-field, f is an isomorphism. Now for every $a \in K$,

$$f^{-1}(a) = f^{-1}(\text{Lim } \langle \dots, a, \dots \rangle)$$

$$= (f^{-1} \circ \text{Lim })(\langle \dots, a, \dots \rangle)$$

$$= h(\langle \dots, a, \dots \rangle) = \overline{\langle \dots, a, \dots \rangle} = d(a).$$

Thus the isomorphism $f^{-1}: \Omega \cong K^I/U$, extends the natural embedding $d: K \to K^I/U$, and so Ω is an ultrapower extension of K. \square

Corollary 2.4. A field Ω is an ultrapower extension of a field K if and only if Ω/K is a formal extension.

M. ZAYED

References

- [1] C.C. Chang and H.J. Keisler, Model theory (Amsterdam: North-Holland, 1977).
- [2] P. Fuch and G. Pilz, Ultraproducts and ultra-limits of near-rings. *Monatsh. Math.*, 100 (1985), 105-112.
- [3] G. Pilz, Near-rings, 2nd edn. (Amsterdam: North-Holland, 1983).

Department of Mathematics Faculty of Science University of Banha, Banha-Egypt