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Abstract. In this paper, we investigate pseud$\triangleright umbIl\ddagger cal$ surfaces in a complex
projective space under some additional condition.

1. Introduction

Let $CP^{m}(c\wedge)$ be a complex m-dimensional complex projective space with the
IFUbini-Study metric of constant holomorphic sectional curvature $\sim c$.

Recently, Maeda [4] investigated the skew-Segre imbedding of $CP^{n}(1)$ into
$CP^{n(n+2)}(2)$ and showed that $CP^{n}(1)$ is imbedded into $CP^{n(n+2)}(2)$ as a totally
real and pseudo-umbilical submanifold with parallel mean curvature vector.

Now, the author proved that any pseudo-umbilical submanifold with nonzero
parallel mean curvature vector in $CP^{m}(\overline{c})$ is a totally real submanifold (see [9]).

The class of totally umbilical submanifolds in $CP^{m}(c\wedge)$ was completely clas-
sified by Chen and Ogiue [2]. However, it is well known that the class of pseudo-
umbilical submanifolds in $CP^{m}(c\wedge)$ is too wide to classify. Thus, it is reasonable
to study pseudo-umbilical submanifolds in $CP^{m}(c\wedge)$ under some additional con-
dition. The aim of this paper is to prove the following result.

Theorem A. Let $M$ be a complete pseudo-umbilical surface with nonzero
parallel mean curwature vector in $CP^{4}(c\sim)$ . If $M$ is isotropic and of $P(R)-$

type, then $M$ is an extrinsic hypersphere in a 3-dimensional real projective space
$RP^{3}(\overline{c}/4)$ of $CP^{3}(c\wedge)$ .

Remark 1.1. The map $f$ : $M^{2}\rightarrow CP^{4}(c\wedge)$ in Theorem A is given as

$f$ : $M^{2}$
$\rightarrow$ $RP^{3}(c\sim/4)$ $\rightarrow$ $CP^{3}(c\sim)$ $\rightarrow$ $CP^{4}(c\wedge)$ .

totally umbilical totally geodesic totally geodesicnon-totally geodesic
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2. Preliminaries

Let $M$ be an n-dimensional submanifold of a complex m-dimensional Kaehler
manifold $M$ with $compl\underline{ex}$ structure $J$ and Kaehler metric $g$ . A submanifold $M$

of a Kaehler manifold $M$ is called totally real if each tangent space of $M$ is
mapped into the normal space by the complex structure of $M(s\underline{ee}[1])$ .

Let $\nabla$ (resp. $\overline{\nabla}$ ) be the covariant differentiation on $M$ (resp. $M$). We denote
by $\sigma$ the second fundamental form of $M$ in $M$ . Then the Gauss formula and the
Weingarten formula are given respectively by

$\sigma(X, Y)=\overline{\nabla}_{X}Y-\nabla_{X}Y$, $\overline{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$

for vector fields $X,$ $Y$ tangent to $M$ and a normal vector field $\xi$ normal to $M$ ,
$where-A_{\xi}X$ (resp. $ D_{X}\xi$) denotes the tangential (resp. normal) component of
$\overline{\nabla}_{X}\xi$ . A normal vector field $\xi$ is said to be parallel if $D_{X}\xi=0$ for any vector
field $X$ tangent to $M$ .

The covariant derivative $\overline{\nabla}\sigma$ of the second fundamental form $\sigma$ is defined by
$(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$

for all vector fields $X,$ $Y$ and $Z$ tangent to $M$ . The second fundamental form $\sigma$

is said to be parallel if $\overline{\nabla}_{X}\sigma=0$ .
Let $\zeta=1/n$ trace $\sigma$ and $ H=\Vert\zeta$ II denote the mean curvature vector and

the mean curvature of $M$ in $\overline{M}$, respectively. If the second fundamental form $\sigma$

satisfies $\sigma(X, Y)=g(X, Y)\zeta$ , then $M$ is said to be totally umbilical submanifold
of $\overline{M}$ . In particular, if $\sigma$ vanishes identically, $M$ is said to be totally geodesic
submanifold of $\overline{M}$. If the second fundamental form $\sigma$ satisfies $g(\sigma(x_{-}Y), \zeta)=$

$g(X, Y)g(\zeta, \zeta)$ , then $M$ is said to be pseudo-umbilical submanifold of $M$ .
Now, we recall the notion of an extrinsic sphere. By ext$r\dot{\tau}nsic$ sphere we mean

a totally umbilical submanifold with nonzero parallel mean curvature vector (see
[7]).

The submanifold $M$ of $\overline{M}$ is called to be a $\lambda-$ isotropic submanifold if
$||\sigma(X, X)\Vert=\lambda$ for all unit tangent vectors $X$ at each point.

The first normal space at $x,$ $N_{x}^{1}(M)$ is defined to be the vector space spanned
by all vectors $\sigma(X, Y)$ . The first osculating space at $x,$ $O_{x}^{1}(M)$ is defined by

$O_{x}^{1}(M)=T_{x}(M)+N_{x}^{1}(M)$

The submanifold $M$ of $\overline{M}$ is called to be a submanifold of $P(R)$ -type if
$JT_{x}(M)\subset\{N_{x}^{1}(M)\}^{\perp}$ for every point $x\in M$ .
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Let $R$ (resp. $\overline{R}$ ) be the Riemannian curvature for $\nabla$ (resp. $\overline{\nabla}$ ). Then the
Gauss and Codazzi equations respectively are given by

(2. 1) $g(\overline{R}(X, Y)Z,$ $W$) $=g(R(X, Y)Z,$ $W$)
$+g(\sigma(X, Z),$ $\sigma(Y, W))-g(\sigma(Y, Z),$ $\sigma(X, W))$

(2.2) $\{\tilde{R}(X,Y)Z\}^{\perp}=(\overline{\nabla}_{X}\sigma)(Y, Z)-(\overline{\nabla}_{Y}\sigma)(X, Z)$ ,

for all vector fields $X,$ $Y,$ $Z$ and $W$ tangent to $M$ .

3. Proof of Theorem A

Let $M$ be a pseudo-umbilical surface with nonzero parallel mean curvature
vector $\zeta$ in $CP^{4}(c\wedge)$ .

We recall the following result.

Theorem 3.1. [9]. Let $M$ be an n-dimensional pseudo-umbilical subman-
ifold with nonzero parallel mean curvature vector in $CP^{m}(\sim c)$ . Then $2m>n$ and
$M^{n}$ is immersed in $CP^{m}(c\sim)$ as a totally real submanifold.

Since $M$ is a totally real submanifold in $CP^{m}(\overline{c})$ , the normal space $T_{x}^{\perp}M$ is
decomposed in the following way; $T_{x}^{\perp}M=JT_{x}M\oplus\nu_{x}$ at each point $x$ of $M$ ,
where $\nu_{x}$ denotes the orthogonal complement of $JT_{x}M$ in $T_{x}^{\perp}M$ . We prepare
the following.

Lemma 3.1. [9]. Let $M$ be a pseudo-umbilical submanifold with nonze$w$

parallel mean curvature vector $\zeta$ in $CP^{m}(c\sim)$ . Then we have $\zeta\in\nu_{x}$ .

Lemma 3.2. Let $M$ be a pseudo-umbilical submanifold with nonzerv parallel
mean curvature vector $\zeta$ in $CP^{m}(c\wedge)$ . Then we have

$g(\sigma(X, Y),$ $ J\zeta$) $=0$

for all vector fields $X,$ $Y$ tangent to $M$ .

Proof. By the Gauss formula, we get
$g(\sigma(X, Y),$ $ J\zeta$) $=g(\tilde{\nabla}_{X}Y, J\zeta)$

$=-g(\tilde{\nabla}_{X}(JY), \zeta)=g(JY,\tilde{\nabla}_{X}\zeta)$

$=g(JY, D_{X}\zeta)=0$ ,

for all vector fields X, Ytangent to M. Q.E.D.

We choose a local orthonormal frame field

$e_{1},$ $e_{2},$ $e_{3},$ $e_{4},$ $e_{5}=Je_{1},$ $e_{6}=Je_{2},$ $e_{7}=Je_{3},$ $e_{8}=Je_{4}$
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of $CP^{4}(c\wedge)$ such that $e_{1},$ $e_{2}$ are tangent to $M$ . We choose $e_{4}$ in such a way that
its direction coincides with that of the mean curvature vector $\zeta$ . Then it is easily
seen that we have

$trH_{4}=2H$ , $trH_{\alpha}=0$ , $\alpha\neq 4$ ,

where $H_{\alpha}$ denotes an $2\times 2$ symmetric matrix $(h_{1j}^{\alpha}),$ $h_{1j}^{\alpha}=g(\sigma(e_{i}, e_{j}),$ $e_{\alpha}$ ) for
$i,j=1,2,$ $\alpha=3,4,5,6,7,8$ .

Since $M$ is a pseudo-umbilical surface, it is umbilic with respect to the direc-
tion of the mean curvature vector $\zeta$ . Thus, by Lemma 3.1 and Lemma 3.2, the
surface of $P(R)$-type satisfies

(3. 1) $\left\{\begin{array}{ll}\sigma(e_{1}, e_{1})= & ae_{3}+He_{4}+be_{7}\\\sigma(e_{1}, e_{2})= & ce 3 +de_{7}\\\sigma(e_{2}, e_{2})= & ae_{3}+He_{4} - be 7\end{array}\right.$

for some functions $a,$ $b,$ $c,$
$d$ with respect to the orthonormal local frame field.

We get the following.

Lemma 3.3. Let $M$ be a pseudo-umbilical surface with nonzero parallel
mean curvature vector $\zeta$ in $CP^{m}(c\sim)$ . If the surface is of $P(R)$ -type, we have

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $JW$) $=g(J\sigma(Y, Z),$ $\sigma(X, W))$

for all vector fields $X,$ $Y,$ $Z,$ $W$ tangent to $M$ .

Proof.

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $JW$) $=g(D_{X}(\sigma(Y, Z)),$ $JW$)

$=g(\overline{\nabla}_{X}(\sigma(Y, Z)),$ $JW$)

$=-g(\sigma(Y, Z),\overline{\nabla}_{X}(JW))$

$=g(J\sigma(Y, Z),\overline{\nabla}_{X}W)$

$=g(J\sigma(Y, Z),$ $\sigma(X, W))$

for all vector fields $X,$ $Y,$ $Z,$ $W$ tangent to $M$ . Q.E.D.

Lemma 3.4. Let $M$ be a pseudo-umbilical surface with nonzero parallel
mean curvature vector $\zeta$ in $CP^{4}(c\wedge)$ . If the surface is of $P(R)$ -type, we have

$g((\overline{\nabla}_{e}.\sigma)(e_{j}, e_{k}),$
$e_{\ell}$ ) $=0$ , for $i,j,$ $k=1,2$ and $l=5,6,8$ .
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Proof. Since the surface is immersed in $CP^{4}(\sim c)$ as a totally real submanifold
by Theorem 3.1, the equation (2.2) is reduced to (3.2).

(3.2) $(\overline{\nabla}_{X}\sigma)(Y, Z)=(\overline{\nabla}_{Y}\sigma)(X, Z)$ ,

for all vector fields $X,$ $Y,$ $Z$ tangent to $M$ .
By Lemma 3.3 and (3.1), we have

$(34)(3..3)$

$g((\overline{\nabla}_{e_{2}}\sigma)(e_{1},e_{1}),Je_{1})=g(J\sigma(e_{1},eg((\overline{\nabla}_{e_{1}}\sigma)(e_{1}, e_{2}),Je_{1})=g(J\sigma(e_{1},e=bc-adt),\sigma(e_{1},e_{1}))),\sigma(e_{2},e_{1}))$

$=ad-bc$ $|$

By (3.3), (3.4) and (3.2), we get

(35)

$g((\overline{\nabla}_{e:}\sigma)(e_{j}, e_{k}),$ $Je_{l}$ ) $=0$ , for

$i\{$

ad–bc $=0$ .

By Lemma 3.3 and (3.5), we obtain

$1$

$j,$ $k,$ $l=1,2$ .

Moreover, by Lemma 3.2, we get
$|$

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $ J\zeta$)

$=g(D_{X}(\sigma(====ggg-(((g\tilde{JJ}\nabla_{X}(\sigma\sigma(Y,z_{D_{X}\zeta)}$

for all vector fields $X,$ $Y,$ $Z$ tangent to $M$ .

mean $cun$)$ature$ vector $\zeta$ in $CP^{m}(c\sim)$ .

$=0Then$

we

$hav\ovalbox{\tt\small REJECT}||$

rface with nonzero

$pamllelQED$

Lemma 3.5. Let $M$ be apseudo-umbihcal $s$

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $\zeta$ ) $=C$

for all vector fields $X,$ $Y,$ $Z$ tangent to M. $|$
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Proof. Since $M$ is a pseudo-umbilical surface, we get

(3.6) $g(\sigma(Y, Z),$ $\zeta$ ) $=g(Y, Z)g(\zeta, \zeta)$ ,

for all vector fields $Y,$ $Z$ tangent to $M$ . Differentiating (3.6) with respect to $X$ ,
we get

(3.7) $g((\overline{\nabla}_{X}\sigma)(Y, Z)+\sigma(\nabla_{X}Y, Z)+\sigma(Y, \nabla_{X}Z),$ $\zeta$ ) $+g(\sigma(Y, Z),$ $ D_{X}\zeta$)

$=g(\nabla_{X}Y, Z)g(\zeta, \zeta)+g(Y, \nabla_{X}Z)g(\zeta, \zeta)+2g(Y, Z)g(D_{X}\zeta, \zeta)$

Since $M$ is a pseudo-umbilical surface, we get

(3.8) $g(\sigma(\nabla_{X}Y, Z)+\sigma(Y, \nabla_{X}Z),$ $\zeta$ )

$=g(\nabla_{X}Y, Z)g(\zeta, \zeta)+g(Y, \nabla_{X}Z)g(\zeta, \zeta)$

Combining (3.7) and (3.8), we have

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $\zeta$) $+g(\sigma(Y, Z),$ $ D_{X}\zeta$ )

$=2g(Y, Z)g(D_{X}\zeta, \zeta)$

Since $M$ has nonzero parallel mean curvature vector $\zeta$ , we obtain Lemma 3.5.
Q.E.D.

Immediately by Lemma 3.4 and Lemma 3.5, we obtain the following.

Proposition 3.1. Let $M$ be a pseudo-umbilical surface with nonzero parallel
mean curvature vector $\zeta$ in $CP^{4}(c\wedge)$ . If the surface is of $P(R)$ -type, then the
second jundamental $ fom\iota\sigma$ satisfies $(\overline{\nabla}_{X}\sigma)(Y, Z)=xe_{3}+ye_{7}$ for all vector
fields $X,$ $Y,$ $Z$ tangent to $M$ and for some functions $x,$ $y$ with respect to the
orthonormal local frame field.

Now, for an isotropic surface, we get (see [8], [5])

(3.9) $g(\sigma(e_{1}, e_{1}),$ $\sigma(e_{1}, e_{2}))=g(\sigma(e_{2}, e_{2}),$ $\sigma(e_{1}, e_{2}))=0$ .

By (3.1) and (3.9) we obtain

(3. 10) $ac+bd=0$ .

For a unit tangent vector $(e_{1}+e_{2})/\sqrt{2}$ , we get

(3. 11) $\Vert\sigma((e_{1}+e_{2})/\sqrt{2},$ $(e_{1}+e_{2})/\sqrt{2})\Vert^{2}=H^{2}+c^{2}+d^{2}$
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On the other hand, we get

(3. 12) $\Vert\sigma(e_{1}, e_{1})\Vert^{2}=H^{2}+a^{2}+b^{2}$

Since the surface is isotropic, by (3.11) and $(3.b^{2})|$ we have

(3. 13) $a^{2}+b^{2}=c^{2}+d^{2}$ $|$

By (3.5), (3.10) and (3.13) we have
$|$

$(a^{2}+b^{2})(c^{2}+d^{2})=(a^{2}+bt_{1})^{2}=0$ .

umbilical surface.
We recall the following Theorem 3.2.$Theorem32.[3].LetMbeann- dimensioHencewesee.thatthesurfaceisimmersedinC\ovalbox{\tt\small REJECT}_{altotallyreal,totally\underline{u}mbdi-}^{4}(c\wedge)asatota11yrea1,tota11y$

cal submanifold $(n\geq 2)$ of a complex $m- dimension\phi l$ complex space form $M^{m}(c\wedge)$ ,
$\overline{c}\neq 0$ .

and that $o_{x}^{1}(M)=T_{x}(RP^{r}(c))$ for every point $x\ovalbox{\tt\small REJECT} M|$
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