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Abstract. In this paper, we investigate pseudo-umbilical surfaces in a complex
projective space under some additional condition.

1. Introduction

Let CP™(c) be a complex m-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature ¢.

Recently, Maeda [4] investigated the skew-Segre imbedding of CP"(1) into
C P™(n*+2)(2) and showed that CP™(1) is imbedded into CP™"*+2)(2) as a totally
real and pseudo-umbilical submanifold with parallel mean curvature vector.

Now, the author proved that any pseudo-umbilical submanifold with nonzero
parallel mean curvature vector in CP™(¢) is a totally real submanifold (see [9]).

The class of totally umbilical submanifolds in C P™(c) was completely clas-
sified by Chen and Ogiue [2]. However, it is well known that the class of pseudo-
umbilical submanifolds in CP™(¢) is too wide to classify. Thus, it is reasonable
to study pseudo-umbilical submanifolds in CP™(¢) under some additional con-
dition. The aim of this paper is to prove the following result.

Theorem A. Let M be a complete pseudo-umbilical surface with nonzero
parallel mean curvature vector in CP*(¢). If M is isotropic and of P(R)-
type, then M is an extrinsic hypersphere in a 3-dimensional real projective space
RP3(¢/4) of CP3(c).

Remark 1.1. The map f: M2 — CP*(¢) in Theorem A is given as

f: M2 — RP3(c/4) — CP3(c) — CP4(2).
totally umbilical

non-totally geodesic totally geodesic totally geodesic
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2. Preliminaries

Let M be an n-dimensional submanifold of a complex m-dimensional Kaehler
manifold M with complex structure J and Kaehler metric g. A submanifold M
of a Kaehler manifold M is called totally real if each tangent space of M is
mapped into the normal space by the complex structure of M (see [1]).

Let V (resp. V) be the covariant differentiation on M (resp. M ) We denote
by o the second fundamental form of M in M. Then the Gauss formula and the
Weingarten formula are given respectively by

o(X,Y)=VxY —VxY, Vxé=—A;X + Dx¢

for vector fields X, Y tangent to M and a normal vector field £ normal to M,
where —A¢ X (resp. Dx€) denotes the tangential (resp. normal) component of
v x€. A normal vector field ¢ is said to be parallel if Dx€ = 0 for any vector
field X tangent to M.

The covariant derivative Vo of the second fundamental form o is defined by

(Vxo)(Y,Z) = Dx(o(Y,2)) — o(VxY,Z) — (Y, Vx2)

for all vector fields X, Y and Z tangent to M. The second fundamental form o
is said to be parallel if Vxo = 0.

Let ¢ = 1/n trace 0 and H = ||{|| denote the mean curvature vector and
the mean curvature of M in M , respectively. If the second fundamental form o
satisfies 0(X,Y) = ¢g(X,Y)(, then M is said to be totally umbilical submanifold
of M. In particular, if o vanishes identically, M is said to be totally geodesic
submanifold of M. If the second fundamental form o satisfies 9(c(X,Y),Q) =
9(X,Y)g(¢, ), then M is said to be pseudo-umbilical submanifold of M.

Now, we recall the notion of an extrinsic sphere. By eztrinsic sphere we mean
a totally umbilical submanifold with nonzero parallel mean curvature vector (see
[D-

The submanifold M of M is called to be a A — isotropic submanifold if
llo(X, X)|| = X for all unit tangent vectors X at each point.

The first normal space at z, N}(M) is defined to be the vector space spanned
by all vectors o(X,Y). The first osculating space at z, OL(M) is defined by

04 (M) = Tz (M) + Ny (M)

The submanifold M of M is called to be a submanifold of P(R)-type if
JTz(M) C {N}(M)}* for every point z € M.
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Let R (resp. E) be the Riemannian curvature for V (resp. 6) Then the
Gauss and Codazzi equations respectively are given by

(2.1) g(R(X,Y)Z,W) = g(R(X,Y)Z,W)

+9(0(X, Z),0(Y,W)) — g(o(Y, Z),0(X, W))
(2.2)  {R(X,Y)Z} = (Vxo)(Y,2) — (Vyo)(X, 2),
for all vector fields X, Y, Z and W tangent to M.

3. Proof of Theorem A

Let M be a pseudo-umbilical surface with nonzero parallel mean curvature
vector ¢ in CP*(c).
We recall the following result.

Theorem 3.1. [9]. Let M be an n-dimensional pseudo-umbilical subman-
ifold with nonzero parallel mean curvature vector in CP™(c). Then 2m > n and
M™ is immersed in CP™(c) as a totally real submanifold.

Since M is a totally real submanifold in C P™(c), the normal space T;- M is
decomposed in the following way; T--M = JT,M @ v, at each point z of M,
where v, denotes the orthogonal complement of JT, M in T;-M. We prepare
the following.

Lemma 3.1. [9]. Let M be a pseudo-umbilical submanifold with nonzero
parallel mean curvature vector ¢ in CP™(c). Then we have ¢ € v;.

Lemma 3.2. Let M be a pseudo-umbilical submanifold with nonzero parallel
mean curvature vector { in CP™(c). Then we have

9(c(X,Y),J¢) =0
for all vector fields X, Y tangent to M.

Proof. By the Gauss formula, we get
9(o(X,Y),J¢) = g(VxY, J()
= g(JY, Dx() =0,
for all vector fields X, Y tangent to M. Q.E.D.

We choose a local orthonormal frame field

€1, €2, €3, €4, €5 = Jey, eg = Jeg, €7 = Jez, eg = Jey
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of CP4(c) such that ey, e, are tangent to M. We choose e4 in such a way that
its direction coincides with that of the mean curvature vector ¢. Then it is easily
seen that we have

tr Hy=2H, tr H,=0, o#4,

where Hy denotes an 2 x 2 symmetric matrix (h;), h{; = g(o(ei,e;), eq) for
,7=1,2,a=3,4,5,6,7,8.

Since M is a pseudo-umbilical surface, it is umbilic with respect to the direc-
tion of the mean curvature vector . Thus, by Lemma 3.1 and Lemma 3.2, the

surface of P(R)-type satisfies

o(er,e1) = aez + Hey + bey
(3.1) o(ey,e3) = ce3 + dey

o(ez,e3) = —ae3 + Hey — ber

for some functions a, b, ¢, d with respect to the orthonormal local frame field.
We get the following.

Lemma 3.3. Let M be a pseudo-umbilical surface with nonzero parallel
mean curvature vector ¢ in CP™(c). If the surface is of P(R)-type, we have

9(Vxo)(Y,Z),IW) = g(Jo(Y, Z),0(X,W))
for all vector fields X, Y, Z, W tangent to M.
Proof.

9(Vxo)(Y, Z),JW) = g(Dx(a(Y, Z)), IW)
= 9(Vx(a(Y, 2)), W)
= —9(o(Y, 2), Vx (JW))
= g(Jo(Y, 2), VxW)
= g(Jo(Y, Z),0(X, W))

for all vector fields X , Y, Z, W tangent to M. Q.E.D.

Lemma 3.4. Let M be a pseudo-umbilical surface with nonzero parallel
mean curvature vector { in CP4(¢). If the surface is of P(R)-type, we have

9((Ve,0)(ej,ex),e1) =0, fori,j,k=1,2 andl=5,6,8.
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Proof. Since the surface is immersed in C P*(¢) as a totally real submanifold

by Theorem 3.1], the equation (2.2) is reduced to (3.2).
(32) (vxa)(ya Z) = (—V_YO')(X,:Z),

for all vector fields X, Y, Z tangent to M.
By and (3.1), we have

(33) g((vela)(elve2)’ Jel) = g(Ja(elan)ao(ela 61))
=bc —ad

(34) g((veza)(el:el)7 Jel) = g(']a(ela 61)70(62761))
=ad — bc

By (3.3), (3.4) and (3.2), we get
(3.5) ad — bc = 0.
By and (3.5), we obtain
9((Ve,0)(ej,ex), Je)) =0, for i,5,k,1=1,2.
Moreover, by Lemma 3.2, we get
9((Vxo)(Y, 2),J¢) = g(Dx(0(Y} Z)), JC)
= 9(Vx(o(Y, 2)), JO)
= —g(a(Y,2), Vx(J¢))
= g(Jo(Y, Z), V()
= g(Jo(Y, Z), Dx()
=0

for all vector fields X, Y, Z tangent to M.

Q.ED.

Lemma 3.5. Let M be a pseudo-umbilical surface with nonzero parallel

mean curvature vector ¢ in CP™(¢). Then we have

g((an)(Y, Z)a C) =0

for all vector fields X, Y, Z tangent to M.
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Proof. Since M is a pseudo-umbilical surface, we get

(3.6) a(o(Y, 2),¢) = g(Y, Z)9(¢, €),

for all vector fields Y, Z tangent to M. Differentiating (3.6) with respect to X,
we get

(3.7) 9(Vxo)(Y,2) +o(VxY,Z) +0(Y,VxZ),() + g(a(Y, Z), Dx()
=9(VxY, 2Z)g(¢,{) + 9(Y, Vx Z2)g(¢, () + 29(Y, Z)9(Dx ¢, €)

Since M is a pseudo-umbilical surface, we get

(3.8) 9(c(VxY,Z) + o(Y,VxZ),()
=9(VxY,2)g(¢, ) + 9(Y, Vx Z)g(¢, <)
Combining (3.7) and (3.8), we have
9((Vxo)(Y, 2),¢) + g(a(Y, Z), Dx{)
=29(Y, Z2)g9(Dx(,¢)

Since M has nonzero parallel mean curvature vector ¢, we obtain Lemma 3.5.
Q.E.D.

Immediately by and Lemma 3.5, we obtain the following.

Proposition 3.1. Let M be a pseudo-umbilical surface with nonzero parallel
mean curvature vector ¢ in CP*(C). If the surface is of P(R)-type, then the
second fundamental form o satisfies (Vxo)(Y,Z) = zes + yer for all vector
fields X, Y, Z tangent to M and for some functions x, y with respect to the
orthonormal local frame field.

Now, for an isotropic surface, we get (see [8], [5])

(3.9) g(o(er,e1),0(e1,e2)) = g(o(ez,e2),0(e1,e2)) = 0.
By (3.1) and (3.9) we obtain

(3.10) ac+bd = 0.

For a unit tangent vector (e; + e3)/v/2, we get

(3.11) o ((e1 +e2)/ V2, (e1 + €2)/v2) ||2 —H 4+ 24P
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On the other hand, we get
(3.12) llo(er,e1)||? = H? + a® + b2
Since the surface is isotropic, by (3.11) and (3.}12) we have
(3.13) 2=+
By (3.5), (3.10) and (3.13) we have |
(a® + b2)(c + d?) = (a® + b"?ﬁ)2 =0.

Hence we see that the surface is immersed in C'P4(C) as a totally real, totally
umbilical surface.
We recall the following Theorem 3.2.

Theorem 3.2. [3]. Let M be an n-dimensional totally real, totally _umbils-
cal submanifold (n > 2) of a complex m-dimensional complex space form M™(¢),
c#0. |

(i) If the mean curvature vector { =0, then M is contained in an__
n-dimensional totally geodesic complez submanifold M (¢) of M™(c).

(ii) If the mean curvature vector { # 0, then is contained in an (n + 1)-
dimensional totally geodesic compler submanifold WH(E) of M™(c).

By Theorem 3.1 and 3.2, we see that the surkme M is immersed in a to-
tally geodesic submanifold C P3(c) of C P%(C) as a totally umbilical submanifold.
Since the surface M is immersed in CP3(c), we obtain Vo = 0 by Proposition
3.1. |

The assertion of Theorem A follows immediately from the following.

Theorem 3.3. [6] If M™ is an n(n > 2)-dimensional complete nonzero
isotropic P(R)-totally real submanifold with parallel second fundamental form in
CP™(c), there ezists a unique totally geodesic s'u,bi anifold RPT"(c) such that

M™ is a submanifold in RP"(c)

and that O1(M) = T, (RPT(c)) for every point x € M.
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