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Abstract. Let {X,, n > 1} be a sequence of symmetric pairwise independent
and identically distributed (piid) random variables. If EX; = 0, EX f =1, then
the Central Limit Theorem (CLT) is proved by Dug Hun Hong [5]. In this paper
we show that under the above assumptions the sequence so defined is a sequence
of martingale differences and CLT follows from McLeish’s result. The class of
pairwise independent random variables for which CLT holds, described in [@,
is in consequence the known class of martingale differences. Furthermore, the
assumption of pairwise independency is not crucial there and may be weakened.
It seems that the assumption of pairwise independency is not essential in CLT,
but we give an interesting result in this direction. Furthermore, an example is
provided to illustrate this result.

1. The Dug Hun Hong Example

The strong asymptotic behaviour of pairwise independent random variables,
described for the first time by Etemadi [6] and developed in subsequent papers
by Martinkainen , , seems very good. On the other hand, there is a lot of
examples of sequences of pairwise independent random variables for which the
central limit theorem (CLT) fails (cf. [3], [8]). The largest bibliography on this
subject may be found in [4]. The problem arises: What do we have to add to
pairwise independency in order to obtain CLT ? An answer was given in Dug Hun
Hong . He proved, that the sequence of symmetric and pairwise independent
identically distributed random variables with variance 1 satisfies CLT. In this
result the symmetry was defined as follows:

Definition 1. [2],[5] The sequence of random variables {X,, n > 1} is
symmetrically distributed if every finite dimensional distribution function of the
sequence is invariant under any changes in the signs of the {X,,, n > 1}.
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It is easy to check that the sequence of symmetric random variables {X,, n >
1} is conditionally independent under given o-field o (| Xn|,n > 1) (cf. [2] or [5]).
Now the proof of CLT follows from the conditional version of CLT and SLLN.
On the other hand, we have:

Theorem 1. Let {X,, n > 1} be a sequence of symmetric random variables
such that E|X,| < oo,n > 1, then {X,, n > 1} is the martingale differences
sequence.

Proof. See Corollary 1.1 [2, p.220]. O

Corollary 1. Assume that {X,, n > 1} is a sequence of symmetric random
variables such that EX, =0, EX2 =02 < o0, n > 1,

1
(1.1) limsup Y EX?X}/sp < 5
T 1gigj<n

and for every € > 0

1 < 2
(1.2) 's—z'ZEXiI“Xil >esy] — 0, asn — 00

ni=1

then CLT holds, where

n
2 _ 2
sn—E o, n=>1
i=1

Proof. See Corollary 2.13 [13, p.624]. [J
Note that for pairwise independent random variables we have
EX?X2/st = = (1 (EX2)/s8 ) < L
Z ; j/sn_'z' —Z( 7)/sn <3
1<i<jsn i=1
On the other hand, if {X,, n > 1} are identically distributed random variables
then (1.2) holds.
2. The CLT for pairwise independent random variables

The following result gives another class of pairwise independent random vari-
ables for which CLT holds.
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Theorem 2. Let {X,,, n > 1} be a sequence of pairwise independent iden-
tically distributed random variables with EX; = 0, EX? = 1, and let us put
itX;
N
If, for every t € R, T,,(t) is uniformly integrable and

(2.1) T,(t) = I, (1 + ) ,i2=-1n>1.

(2.2) ET,(t) — 1, as n — oo,
then
n
(2.3) Y Xi/vn B @(), asn — oo.
=1

Proof. By Theorem 2.1 for (2.3) we must prove only

n

(2.4) ZXJ?/nLI, as n — 00,
i=1

and

(2.5) r?g|x,-|/\/ﬁi>o, as n — oo.

By the strong law of large numbers applied to the sequence {X2, n > 1} and
{X2I[|Xn| > VK], n > 1}, for every ¢, K > 0, (cf. Theorem 1 [6]), we have

(2.6) Y X2/n %51, as n — oo,
=1

and
(2.7) ix;?l [|Xj| > s\/?] /n %5 EX2I [|X1| > ex/E] , as n — oo.
ji=1

Now, (2.6) immediately implies (2.4).
Assume that {X,, n > 1} are not bounded (if they are then (2.5) is obvious).
Let € > 0 be arbitrarily chosen and let us put K > 0 such that

2
EX2I|X,| > eVE] < %—
(this is possible as X is unbounded), then, for n > K

n
(2.8) osp[r?gﬂije\/ﬁ] =P |Y X [|X;]| > evn] /n > €
< s
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- 2
<P|S X2 [|X,-| > s\/E] /n> EX2I [|X1| > e\/E] + %
[ 7=1

<P |iXJ?I [|Xj| > ex/E] /n— EX2I [1X1| > ex/?] | > %
j=1

which from (2.7) proves (2.5). O
Remark 1.

(i) For pairwise independent random variables with EX,, = 0 assumption
(2.2) may be replaced by

EY (it)* > X, X, ... Xj,/n*/? — 0, as n — oo,
k=3

i<j1<j2<...<jr<n
(ii) If
(2.9) sup || Xnlow < € < 00
or for every t € R i
(2.10) sup E exp(tXy;) = M(t) < 00

then the sequence {T},(t), n > 1}, defined in [Theorem 2, is uniformly
integrable.

Proof. Since EX;, =0and EX; X;, = EX; EXj, =0, for1 <j; <j2 <

n, we have

ETa(t) =1+ (it)* > EX;,Xj, ... X;/n*/2,
k=3

1<j1<j2<...<jk<n
From (2.9) we obtain

sup [T (t)| < eC°F°/2 as.
n

whereas if (2.10) holds then we have

t2X2 12X2
EITn(t)|2 = EH?:I <1 + nJ ) S EHJ=1 exp ( ~ J )

<, (Bexp(X2)™ < M(12).
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For a sequence of nonindentically distributed random variables we have the

following version of [Theorem 2k

Theorem 3. Let {X,, n > 1} be a sequence of pairwise independent random
variables with EX; = 0, EXJ‘-1 < 00, j 2 1 and for some divergent to infinity
sequence {b;, j > 1} of positive numbers let us put

n itX;

Assume, for every t € R, T,(t) is uniformly integrable,

(2.12) > EX}/b: —0asn— oo
i=1

(2.13) > EX?/b, —1asn — oo
i=1

and

(2.14) ET,.(t) — 1, as n — oo,

then

n
(2.15) ZX,-/\/bn 2, ®(.), as n — oo.
i=1

Proof. Let us first prove

n 2
(2.16) 'E (Z Xiz/bn> — 1, as n — oo.
i=1

By using E(X?X?) = EX?EX? for i # j, we have

n 2 n
E (Z X2 /bn) =Y EX}/B2+ Y EXEX?/b?
=1

=1 1<i, j<n
%
n n 2
=D (EX! - (EXD?) /0L + (E EX,?/bn) .
i=1 i=1

The first term goes to O since it is non-negative and is bounded from above
by 3751 EX}/b% — 0 (by (2.12)). The second term goes to 1 by (2.13), and
thereby we have (2.16).
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From (2.16) and (2.13) we get
2

2
E ZXJ?/bn—l) =E(2Xf/bn) ~2) X}/bp+1-0.
j=1 j=1

i=1

Since L2-convergence implies convergence in probability, we have

n
(2.17) ZX?/bn-—&lasn—aoo.
i=1

Let ¢ > 0 be arbitrarily chosen, then by (2.12)

0<P [rJnSa\T.icIXﬂ > s\/lZ] =P [ZX}I [|X,~| > s\/zi] /bp > €2

i=1

< S EXI[1X;1 > ev/ba] /(bas?)
j=1

< lg EX?%/b? 0

< 6—4 j/ T

j=1
which with (2.17) ends the proof. [
Remark 2.

(i) For pairwise independent random variables with EX,, = 0 assumptions
(2.14) may be replaced by

n
EY (it)* > Xj Xy X, /B2 — 0, as n — oo.
k=3 1<j1<j2<...<Jx<n
(ii) If
n
supmax{HXnIIoo, ?)_} <C<o0
or

sup E exp (tZX?/bn) = M(t) < o0

Jj=1
then the sequence {Ty(t), n > 1} defined in is uniformly inte-
grable.

The proof of Remark 2 runs similarly as this for Remark 1.
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3. The Example

Now we describe the construction of sequence of pairwise independent random
variables satisfying the assumptions of Theorem 3, but at first we recall some
definitions:

Definition 2. The sequence {6,, n > 1} is called k-algebraically indepen-

dent if for every subset of natural numbers 0 < i; < i3 < ... < iy < oo and
numbers €1, €,...,6x € Q such that } ;- €2 # 0, we have
k
(3.1) D ej6; #0,
i=1

where Q denotes the set of rational numbers (it is easy to check that we may
consider the integer numbers only).

The finite sequence {6k, 1 < k < n} is algebraically independent if it is
n-algebraically independent.

The sequence is called algebraically independent if every finite subset is al-
gebraically independent.

Contrarily, the sequence is k algebraically dependent if for some choice of
numbers €;,¢€3,...,ex € Q such that Ele €2 # 0 the inequality (3.1) isn’t true.

We say that the sequence {6,,, n > 1} satisties the signed sum condition (SS-
condition) if (3.1) holds for every k, every subset 0 < i; < i < ... < i < 00
and numbers €1, ¢€3,...,6, € {—1,1}.

It is easy to check that an algebraically independent sequence satisfies SS-
condition, but not contrary. Now we give the construction:

The construction. Let {ax, k > 1} be the sequence of algebraically inde-
pendent numbers. For example, we may choose {e/, j > 1} or {VBj, i =1}
where {3;, j > 1} are sequential prime numbers. Define

([ oy if i=1,
Qg if ’L=2,
a1 + as if i=3
A = < 2141 if i1=4l,1>1,
a214+2 if ’L=4l+1, lZl,
Qg1 + 042 if t=4l+2,12>1,
L 4(a1+a3+a5+...+a21+1) if i=41+43,12>1,

We note that such defined sequence {Aj, j > 1} is pairwise algebraically inde-
pendent but triplewise algebraically dependent. Really, to this sequence be-
long the numbers a3, as and a; + a; but the linear combination of these
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numbers with the coefficients —1, —1, 1 gives zero. It is easy to check that
this sequence is m-algebraically dependent for every m > 2 as the sebsequence
{a1,a3,...,02m-1,4(c1 + @3 + a5 + ... + azm-1)} is algebraically dependent.
Furthermore, the sequence {\;, j > 1} does not satisfy the SS-condition.

Now let us define the probabilistic measure ug(.) as follows

pr(E) = lim EN[-T,T)),

T—o00 ﬁﬂ(

where p(.) is the Lebesgue measure.

By Kolmogorov existence theorem there exists the probability space and
the family of random variables {£»,, ¢ > 1} such that the subset {{x; , r =
1,2,...,k} has law

k .
3.2)P [ghr €B,, r= 1,2,...,k] = UR (ﬂ {:c : \/Ecos()\i,,x) € Br}) .
r=1

By Lemma 2 [7, p.560] the sequence defined above is identically distributed,
bounded, pairwise independent, but not m-wise independent for every m > 2.
From the proof of this Lemma we have:

(3.3)
B (& 65, - 88,) =
T T T
p1/ \P2 Pk 0,35, (2pi—Ti) Xy,

P1=0 p2=0 pr=0

where 6; ; is Kronecker’s delta.

Now we prove that the sequence defined in (3.2) is not the multiplicative
system considered in and is not symmetrically distributed but satisfied the
assumptions of and in consequence CLT holds. By (3.3) we have

1 1 1
E (5/\.-15/\1-2 ...5,\,.,:) =3 > ... 2"°/250,E:=1(2p,--1)xi,.’

p1=0 p2=0 Pk=0

and it is easy to check (as 2p; —1 = —1 or 2p; —1 =1, only) that

k
> @pi - X, =0
Jj=1

if and only if k divides 3(k = 3[, say) and for some sequence ji, ja,. - -, ji we have
{A‘il_ ’ Aizy SRR Aik} = {02j1+1 ’ a2j1 +2 a2j1 +1 + a2,’1 +2 a2j2+la a2,'2+27 a2,'2+l

+oag;, 42,005 Q2;, 41,025 42, X2, +1 T 02,-,+2} .
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In this case we have
E (E,\.-IE,\t-2 "'5»\1';:) =27k/6

so that {{x;, ¢ > 1} is not a multiplicative system.

Assume contrary that {£),, i > 1} is symmetrically distributed sequence. By
Theorem 1l it is martingale differences, but every martingale differences sequence
is multlphcatlve system, which is a contradiction.

Because {¢);, i > 1} are bounded, T}, () is unformly integrated. F‘urthermore
we have

n
E Z(it)k Z &, 605, - -y, /T2
k=3 1<551<j2<...<jr<n
[((n+1)/4]

- Z (it)% Z o—3k/6,,—3k/2
k=1

1<j1<j2<...<jx<[(n+1)/4]

[(n+1)/4]
Z <[(n + 1)/4]) (it) 3k Q—k/2p—3k/2

k=1 k
[((n+1)/4] k
=y ([(n +k1)/4]) ((z’t)32“1/2n‘3/2) 1ltn+1)/4-k _ 4
k=1
e\ [/ -
=(1+W) —1—0, as n — oo,

where (k] denotes the integer part of k. Thus, the assumptions of are
satisfied, and in consequence CLT holds.

Remark 3.
(i) "Since E(&xy€rg1180u42) =272 40, as | — oo, it follows that

(s.°]

Z |E(§)‘,-1€)\62 "'5’\";:)' = 00

1<i1<i2<... <1

for k divided 3. The sequence defined in our example is not, in conse-
quence, strong multiplicative system in a sense of Kratz W. and Trautner R.

(cf. [9]).

(ii) The sequence {£,,, i > 1} is not stationary.
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