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Abstract. In this paper, we consider an orientable closed 3-manifold $M$ which
admits a dihedral group $D_{2,p}(p>1)$ action such that $D_{2,p}$ contains orientation
reversing involutions, and the fixed point set consists of a finite number of points.
For such a pair $(M, D_{2,p})$ , we study the problem that which integer can occur as
the first Betti number $q=\beta_{1}(M)$ of $M$ . For a pair $(M, D_{2,p})$ as above we have
(1) $q$ is odd, or (2) $p$ is odd and $q$ is even integer greater than or equal to $p-1$ .
Furthermore, for any pair of integers $(p, q)$ with condition (1) or (2), there is a
pair $(M, D_{2,p})$ as above with $\beta_{1}(M)=q$ .

1. Introduction

Throughout this paper we work in the piecewise-linear category.
Suppose a finite group $G$ acts on a space $X$ . The fixed point set of an action

of $G$ on $M$ is the set {$x|x\in X,$ $g(x)=x$ for some $g\in G,$ $g\neq id$}.
In 1961, D.B.A.Epstein [3] proved that a finite group acting on a homotopy

3-sphere with O-dimensional fixed point set must be $Z_{2}$ (see [3] or [4]). In 1988,
Mess observed that “ homotopy 3-phere” can be replaced by “ integral homology
sphere”. A proof of Mess’s observation can be found in [11]. In [6] the followings
are proved.

Theorem A. [6] $A$ finite group acting on a rational homology 3-sphere with
O-dimensional fixed point set must be $Z_{2}$ .

Theorem A immediately follows from the following two results.

Theorem B. [6] If a finite group $G\neq Z_{2}$ acts on a rational homology 3-
sphere with O-dimensional fixed point set, then $G$ mvst contain a dihedral group
$ D_{2,n}=\langle g, h|g^{2}=h^{n}=(gh)^{2}=1\rangle$ with $n>1$ odd as a subgroup where $g$ is
orientation reversing and $h$ is omentation preserving.
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Theorem C. [6] A dihedml group $D_{2,n}$ with odd $n>1$ can not act on a
rational homology 3-sphere with O-dimensional fixed point set.

At first, we give an extension of Theorem $C$ for general closed orientable
3-manifolds.

Let $\beta_{1}(M)$ be the first Betti number of $M$ . We prove the following.

Theorem 1. Suppose that a dihedral group $D_{2,p}(p>1)$ acts on a closed
orientable 3-manifold $M$ so that

$(a)$ $ D_{2,p}=(g, h|g^{2}=h^{p}=(gh)^{2}=1\rangle$ , $g$ reverses the orientation of $M$ , and
$h$ preserves the orientation of $M$ ,

$(b)$ the fixed point set of the action of $D_{2,p}$ consists of a finite number of poin$ts$

(possibly empty).

Then one of the following statements is hold:

(1) $\beta_{1}(M)$ is odd.
(2) $p$ is odd and $\beta_{1}(M)$ is even integer greater than or equal to $p-1$ .

Note that Theorem 1 implies that if $M$ satisfy the conditions (a) and (b),
then $\beta_{1}(M)$ can not be $0$ . This is just the assertion of Theorem C.

Then we show that the conditions (1) and (2) in Theorem 1 are sufficient for
the existence of $M$ and $D_{2,p}$ with the conditions (a), (b) and the prescribed first
Betti number.

Theorem 2. For any pair of integers $(p, b)(p>1)$ such that

(1) $b$ is odd, $or$

(2) pis odd andb is an even number greater than or equal top-l,

there exists an orientable 3-manifold $M$ such that

(i) $\beta_{1}(M)=b$, and
(ii) $M$ admits an action of a dihedral group $ D_{2,p}=\langle g, h|g^{2}=h^{p}=(gh)^{2}=1\rangle$

such that
$(a)$ $g$ reverses the orientation of $M$ and $h$ preserves the orientation of $M$ ,
$(b)$ the fixed point set of the action of $D_{2,p}$ on $M$ consists of a finite

number of points.

Remark. In case of orientation preseniing group actions, F.Davis and
R.J. Milgram [$2J$ noted that for any finite group $G$ there is a rational homology
3-sphere admitting an orientation preserving free $G$ action.
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2. Proof of Theorem 1

For the proof of Theorem 1, we use Heegaard splittings of 3-manifolds. We
say that a triple $(M_{1}, M_{2} : F)$ is a Heegaard splitting of a closed 3-manifold $M$ if
$M_{1}\cup M_{2}=M,$ $\partial M_{1}=\partial M_{2}=M_{1}\cap M_{2}=F$ and $M_{1}$ and $M_{2}$ are handlebodies.

Proposition 1. Suppose that a dihedral group $D_{2,p}=(g,$ $h|g^{2}=h^{p}=$
$(gh)^{2}=1\rangle$ acts on an orientable closed 3-manifold $M$ so that
(1) $g$ reverses the $or\dot{\tau}entation$ of $M$ ,
(2) $h$ preserues the orientation of $M$ , and
(3) the fixed point set of the action of $D_{2,p}$ on $M$ consists of a finite number

of points (possibly empty).

Then there exists a Heegaard splitting $(M_{1}, M_{2} : F)$ of $M$ such that $g(M_{i})=$

$M_{3-i}$ and $h(M_{1})=M_{i}(i=1,2)$ .

To prove Proposition 1, we use the following lemma (cf. Proposition 2.2 [6],
see also [9]).

Lemma. Let $M$ be a closed omentable 3-manifold admitting an orientation
reversing involution $g$ ($i.e$ . $g^{2}=$ id.) such that the fixed poin $t$ set of $g$ on $M$

consists of a finite number ofpoints. Then there is a Heegaard splitting ($M_{1},$ $M_{2}$ :
$F)$ of $M$ such that $g(M_{1})=M_{2}$ .

Proof. We show that there are two (possibly disconnected) submanifolds
$M_{1}^{*},$ $M_{2}^{*}$ of $M$ and an embedded 2-manifold $F^{*}$ such that $M=M_{1}^{*}\cup M_{2}^{*}$ ,
$M_{1}^{*}\cap M_{2}^{*}=\partial M_{1}^{*}=\partial M_{2}^{*}=F^{*}$ , and $g(M_{1}^{*})=M_{2}^{*},$ $g(F^{*})=F^{*}$ . Then by
trading l-handles of $M_{1}^{*}$ and $M_{2}^{*}$ g-equivariantly as in the proof of Proposition
2.4 in [8] or in the proof of Theorem 1 in [10], we can obtain a Heegaard splitting
$(M_{1}, M_{2} : F)$ of $M$ such that $g(M_{i})=M_{3-i}(i=1,2)$ .

Hence in the rest of the proof of Lemma we give the existence of $M_{1}^{*},$ $M_{2}^{*}$ as
above.

For a triangulation $K$ of $M,$ $K^{i}$ denotes the i-skeleton of $K,$ $N_{x}$ denotes
the simplicial star neighborhood of $x$ in $K$ , and $K^{\prime}$ denotes the barycentric
subdivision of $K$ . For an involution $g$ of $M,$ $Fix(g, M)$ denotes the set $\{x\in$

$M|g(x)=x\}$ .
It is easy to see that there exists a triangulation $K$ of $M$ such that $g:K\rightarrow K$

is a simplicial isomorphism and in particular if Fix $(g, M)\neq\emptyset,$ $K$ satisfies;
(K1) Fix $(g, M)\subset K^{0}$ ,
(K2) for $x_{1},$ $x_{2}\in Fix(g, M),$ $ N_{x_{1}}\cap N_{x_{2}}=\emptyset$ .

For the proof of Lemma, we analyze the set $\partial N_{x}$ for $x\in Fix(g, M)$ .
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Claim. For each fixed point $x$ of $g$ , there exists a simplicial closed curve $\ell_{x}$

on $\partial N_{x}$ such that $g(\ell_{x})=\ell_{x},$ $\ell_{x}\subset(K^{\prime})^{1}$ and $\ell_{x}\cap K^{0}=\emptyset$ .

Proof of Claim. By conditions (K1) and (K2), we can take a subset $V$

of $(\partial N_{x})^{0}$ such that $V\cup g(V)=(\partial N_{x})^{0}$ and $ V\cap g(V)=\emptyset$ . Let $U$ be a star
neighborhood of $V$ in $(\partial N_{x})^{\prime}$ . Since $(\partial N_{x})^{\prime}$ is a barycentric subdivision of $\partial N_{x},$ $U$

is a union of planar surfaces such that $U\cup g(U)=\partial N_{x},$ $U\cap g(U)=\partial U=\partial g(U)$

and $g(U)=d(\partial N_{x}-U)$ . Hence $g(\partial U)=\partial U,$ $\partial U\subset(K^{\prime})^{1},$ $\partial U\cap K^{0}=\emptyset$ .
Assume that for any component $\ell\subset\partial U,$ $ g(\ell)\neq\ell$ . Let $p$ : $\partial N_{x}\rightarrow\partial N_{x}/g$

be the standard projection. Since $p(\partial N_{x})=\partial N_{x}/g$ is a projective plane, for
a sufficiently small annulus neighborhood $N_{\ell}$ of $\ell$ in $\partial N_{x},$ $p(N_{\ell})$ is an annulus.
Hence a small regular neighborhood of $p(\partial U)$ in $\partial N_{x}/g$ is a union of annulus
and $\partial N_{x}/g-p(\partial U)$ contains a nonorientable region $W$ . Since $\partial N_{x}$ is orientable,
$p^{-1}(W)$ is connected. Then $p^{-1}(W)\subset\partial N_{x}-\partial U$ and $g(p^{-1}(W))=p^{-1}(W)$

contradicting the above assertion $g(U)=cl(\partial N_{x}-U)$ .
Therefore there exists a simplicial closed curve $\ell_{x}\subset\partial U$ such that $g(\ell_{x})=\ell_{x}$ ,

$\ell_{x}\subset(K^{\prime})^{1}$ and $\ell\cap K^{0}=\emptyset$ .
This completes the proof of Claim. $\square $

Since $g(\ell_{x})=\ell_{x}$ , there exists a properly embedded disk $D_{x}$ in $N_{x}$ such that
$\partial D_{x}=\ell_{x}$ and $g(D_{x})=D_{x}$ (Hence $x\in D_{x}$ ). Note that the curve $\ell_{x}$ divides $\partial N_{x}$

into two 2-cells $B_{x1}$ and $B_{x2}$ with $g(B_{x1})=B_{x2}$ . Let $\mathcal{V}_{xi}$ be the vertices of $\partial N_{x}^{0}$

that lie in $B_{xi},$ $i=1,2$ . Then $\partial N_{x}^{0}=\mathcal{V}_{x1}\cup \mathcal{V}_{x2}$ and $g(\mathcal{V}_{x1})=\mathcal{V}_{x2}$ .
Since $g$ is an involution and does not fix any element in $K^{0}-Fix(g, M)$ , we

can easily see that there is a subset $\mathcal{V}$ of $K^{0}-Fix(g, M)$ such that

(1) $\mathcal{V}\cup g(\mathcal{V})=K^{0}-Fix(g, M)$ ,
(2) $\mathcal{V}\cap g(\mathcal{V})=\emptyset$ ,
(3) $\mathcal{V}_{x1}\subset \mathcal{V},$ $\mathcal{V}_{x2}\subset g(\mathcal{V})$ for each element $x\in Fix(g, M)$ .

Now we retum to the proof of Lemma. Let $e_{1},$ $e_{2},$ $\cdots,$ $e_{n}$ be the l-simplices of
$K$ which intersect both $\mathcal{V}$ and $g(\mathcal{V})$ . Let $D_{i}$ be the dual 2-cell of $e_{i}$ with respect
to $K,$ $i=1,2,$ $\cdots$ , $n$ . Note that $g(e_{i})=e_{j}$ for some $j$ and that $g(D_{i})=D_{j}$ . Let
$\mathcal{D}=\{D_{1}, D_{2}, \cdots, D_{n}\}$ . Then the elements of $\mathcal{D}$ intersect a 3-simplex of $K$ as
indicated in Figure 1.

Thus $D$ forms a (punctured) surface $F_{0}^{*}$ (not necessarily connected) in $M$ with
$g(F_{0}^{*})=F_{0}^{*}$ . Note that for each $x$ of Fix$(g, M),$ $F_{0}^{*}\cap\partial N_{x}=\ell_{x}$ . Hence $F^{*}=(F_{0}^{*}$

$\bigcup_{x\in Fix(g,M)}(F_{0}^{*}\cap N_{x}))\bigcup_{x\in Fix(g,M)}D_{x}$ is a closed surface with $g(F^{*})=F^{*}$ and

Fix $(g, M)\subset F^{*}$ . Let $M_{1}^{*}$ be the closure of all components of $M-F^{*}$ intersecting
V. If there is a vertex $v$ in a component $M^{\prime}$ of $M_{1}^{*}$ with $v\in g(\mathcal{V})$ , then there is

a vertex $v^{\prime}\in \mathcal{V}\cap M^{\prime}$ and a path $\alpha\subset K^{1}\cap M^{\prime}$ connecting $v$ and $v^{\prime}$ , but such
a path must meet $\mathcal{D}$ , a contradiction. So $M_{1}^{*}$ misses $g(\mathcal{V})$ . Now let $M_{2}^{*}$ be the
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$\in V$ ($g(\mathcal{V})$ , rasp)

$\circ\in g(\mathcal{V})$ ( $V$ , resp.)

Figure 1

closure of $M-M_{1}^{*}$ . Then $M_{1}^{*}\cap M_{2}^{*}=\partial M_{1}^{*}=\partial M_{2}^{*}=F^{*}$ , and since $V\subset M_{1}^{*}$

and $g(\mathcal{V})\subset M_{2}^{*},$ $g(M_{1}^{*})=M_{2}^{*}$ .
This completes the proof of Lemma. $\square $

Proof of Proposition 1. Let $\overline{M}=M/h$ and $q:M\rightarrow\overline{M}$ be the quotient
map. Since $h$ is a free action, $q:M\rightarrow\overline{M}$ is a regular covering. The orientation
reversing involution $g:M\rightarrow M$ induces a unique orientation reversing involution

$\overline{g}$ : $\overline{M}\rightarrow\overline{M}$ such that $qg=\overline{g}q$ .
Suppose that there is a fixed point $y\in\overline{M}$ of $\overline{g}$ . Then for $x\in M$ such

that $q(x)=y$ , we have $q(g(x))=\overline{g}q(x)=\overline{g}(y)=y$ . Therefore $h^{i}g(x)=x$
for some integer $i$ , and $x$ is a fixed point of the action of $D_{2,p}$ on $M$ . Since
the fixed point set of the action of $D_{2,p}$ on $M$ , consists of a finite number of
points, Fix $(\overline{g},\overline{M})$ also consists of a finite number of points. Hence by Lemma,
there exists a Heegaard splitting $(\overline{M}_{1},\overline{M}_{2} : \overline{F})$ of $\overline{M}$ such that $\overline{g}(\overline{M}_{1})=\overline{M}_{2}$ and
$\overline{g}(\overline{F})\sim=\overline{F}$ . Put $M_{i}=q^{-1}(\overline{M}_{1}),$ $i=1,2$ , and $F=q^{-1}(\overline{F})$ . Then $M_{1}$ amd $M_{2}$ are
handlebodies. Hence $(M_{1}, M_{2} : F)$ is a Heegaard splitting of $M$ satisfying the
equations $g(M_{i})=M_{3-i}$ and $h(M_{1})=M_{1}(i=1,2)$ by construction.

This completes the proof of Proposition 1. $\square $

Let $g$ be an involution of a 3-manifold $M$ and $(M_{1}, M_{2} : F)$ a Heegaard
splitting of $M$ such that $g(M_{1})=M_{3-i}(i=1,2)$ . Let $x_{1},$ $x_{2},$ $\cdots,$ $x_{n},$ $y_{1},$ $y_{2},$ $\cdots$ ,
$y_{n}$ be a basis of $H_{1}(F)$ so that $I(x_{1}),$ $I(x_{2}),$

$\cdots,$ $I(x_{n})$ is a basis of $H_{1}(M_{1})$

and $I(y_{i})=0(i=1,2, \cdots, n)$ , where $I$ is the homomorphism from $H_{1}(F)$ to
$H_{1}(M_{1})$ induced by the inclusion map from $F$ to $M_{1}$ . Then we have a matrix
representation $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ of $(g|_{F})_{*}$ corresponding to the basis $x_{1},$ $x_{2},$ $\cdots,$ $x_{n},y_{1}$ ,
$y_{2},$ $\cdots,$ $y_{n}$ , where $A,$ $B,$ $C,$ $D$ are $\dim H_{1}(M_{1})\times\dim H_{1}(M_{1})$ matrices.
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Proposition 2. Let $M,$ $M_{1},$ $M_{2},$ $A,$ $B,$ $C,$ $D$ be as above, then

$\beta_{1}(M)=\dim H_{1}(M_{1})-rankB$ .

Proof. There is the following exact sequence of homology groups.

. $..\rightarrow H_{2}(M)\rightarrow H_{1}(F)^{I\bigoplus_{\rightarrow}J}H_{1}(M_{1})\oplus H_{1}(M_{2})\rightarrow H_{1}(M)\rightarrow\cdots$

where $J$ is the homomorphism from $H_{1}(F)$ to $H_{1}(M_{2})$ induced by the inclusion
map $F$ to $M_{2}$ . Therefore $H_{1}(M)\cong H_{1}(M_{1})\oplus H_{1}(M_{2})/{\rm Im}(I\oplus J)$ . Note that the
elements $g_{*}I(x_{1}),$ $g_{*}I(x_{2}),$

$\cdots,$
$g_{*}I(x_{n})$ are a basis for $H_{1}(M_{2})$ and $g_{*}I(y_{i})=$

$0(i=1,2, \cdots,n)$ . The elements $g_{*}(x_{1}),$ $g_{*}(x_{2}),$ $\cdots$ , $g_{*}(x_{n}),$ $g_{*}(y_{1}),$ $g_{*}(y_{2})$ ,
. . . , $g_{*}(y_{n})$ are also a basis for $H_{1}(F)$ . Let $a_{ij}$ ( $b_{ij},$ $c_{ij},$ $d_{ij}$ , resp.) be the ij-
element of the matrix $A$ ( $B,$ $C,$ $D$ , resp.). Then $H_{1}(M)$ has a group presentation
as follows;

$H_{1}(M)=\langle x_{1},x_{2},$ $\cdots,$ $x_{n},$ $y_{1},$ $y_{2},$ $\cdots,$ $y_{n}$ ,
$g_{*}(x_{1}),$ $g_{*}(x_{2}),$ $\cdots,g_{*}(x_{n}),g_{*}(y_{1}),$ $g_{*}(y_{2}),$ $\cdots,g_{*}(y_{n})$

$|y_{i}=0,$ $g_{*}(y_{i})=0$ ,
$\Sigma_{j=1}^{n}a_{ji}x_{j}+\Sigma_{j=1}^{n}c_{ji}y_{j}=g_{*}(x_{i})$ ,

$\Sigma_{j=1}^{n}b_{ji}x_{j}+\Sigma_{j=1}^{n}d_{ji}y_{j}=g_{*}(y_{i})$

$(i=1,2, \cdots, n)\rangle$

$=\langle x_{1},x_{2},$
$\cdots,$

$x_{n},g_{*}(x_{1}),g_{*}(x_{2}),$ $\cdots,$
$g_{*}(x_{n})$

$|\Sigma_{j=1}^{n}a_{ji}x_{j}=g_{*}(x_{i})$ ,
$\Sigma_{j=1}^{n}b_{ji}x_{j}=0$

$(i=1,2, \cdots, n)>$

$=<x_{1},$ $x_{2},$ $\cdots,$ $ x_{n}|\Sigma_{j=1}^{n}b_{ji}x_{j}=0(i=1,2, \cdots,n)\rangle$ .

Therefore we have $\beta_{1}(M)=n-rankB=\dim H_{1}(M_{1})-rankB$ .
This completes the proof of Proposition 2. $\square $

Proof of Theorem 1. By Proposition 1, there exists a Heegaard splitting
$(M_{1}, M_{2} : F)$ of $M$ such that $g(M_{i})=M_{3-i}(i=1,2)$ . Note that $g|_{F}$ is an
orientation preserving involution of $F$ , and $h|_{F}$ is an orientation preserving fixed
point free homeomorphism of $F$ with period $p$ .

In [7] [5] cyclic actions of a 3-dimensional handlebody are studied, and their
results imply that the homeomorphism $h|_{M_{1}}$ is conjugate to a homeomorphism
which is a restriction of $ 2\pi/\mu$-rotation with respect to z-axis of $R^{3}$ to a handle-
body in equivariant position as indicated in Figure 2. Therefore we may assume
that $h|_{M_{1}}$ is as indicated in Figure 2.
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Figure 2

In Figure 2, $m$ is an integer with genus$(M_{1})=pm+1$ . Let $x_{0},$ $x_{1},$ $x_{2}$ ,
’ $x_{m},$ $y_{0},$ $y_{1},$ $y_{2},$ $\cdots$ , $y_{m}$ be cycles represented by essential simple closed

curves as indicated in Figure 2.
Define the vectors

$X_{i,k}=\frac{1}{\sqrt{p}}\Sigma_{j=0}^{p-1}\eta^{-kj}h_{*}^{j}(x_{i})$ , $i=1,2,$ $\cdots,$ $m;k=0,1,$ $\cdots,p-1$

and

$Y_{:,k}=\frac{1}{\sqrt{p}}\Sigma_{j=0}^{p-1}\eta^{-kj}h_{*}^{j}(y_{i})$ , $i=1,2,$ $\cdots,$ $m;k=0,1,$ $\cdots,p-1$ .

where $\eta=\exp(2\pi i/p),$ $i^{2}=-1$ .
Then $h_{*}(X_{i,k})=\eta^{k}X_{1,k},$ $h_{*}(Y_{1k})=\eta^{k}Y_{i,k}(i=1,2,$

$\cdots,$ $m;k=0,1,$ $\cdots,p-$

1), $h_{*}(x_{0})=x_{0}$ , and $h_{*}(y_{0})=y_{0}$ . By easy calculation we can see that the
eigenvalues of $h_{*}$ : $H_{1}(F;C)\rightarrow H_{1}(F;C)$ are $\eta^{k},$ $k=0,1,$ $\cdots,p-1$ . Let
$G_{0}$ ( $H_{0}$ , resp.) be the subspace generated by $x_{0},$ $X_{1,0},$ $X_{2,0},$ $\cdots$ , $X_{m,0}(y_{0}$ ,
$Y_{1,0},$ $Y_{2,0},$ $\cdots$ , $Y_{m,0}$ , resp.) and $G_{k}$ ( $H_{k}$ , resp.) the subspace generated by
$X_{1,k},$ $X_{2,k},$ $\cdots,$ $X_{m,k}$ ( $Y_{1,k},$ $Y_{2,k},$ $\cdots,Y_{m,k}$ , resp.) $(k=1,2, \cdots,p-1)$ . Then
$G=\oplus_{k=0}^{p-1}G_{k}$ is a half space of $H_{1}(F;C)$ such that $G\cong I(G)\cong I(H_{1}(F;C))$
$\cong H_{1}$ ( $M_{1}$ ; C), and $H=\oplus_{k=0}^{p-1}H_{k}\cong KerI$ . Since the generating elements of $G_{k}$ ,
$H_{k}(k=0,1,2, \cdots,p-1)$ are linearly independent, dim$G_{0}=\dim H_{0}=m+1$ and
$\dim G_{k}=d{\rm Im} H_{k}=m(k=1,2, \cdots p-1)$ . Note that $G_{k}\cup H_{k}$ is the eigenspace
of $h_{*}$ corresponding to the eigenvalue $\eta^{k},$ $k=0,1,2,$ $\cdot\cdot,p-1$ .

We define an intersection form $[, ]$ : $H_{1}(F;C)\times H_{1}(F;C)\rightarrow C$ as follows:
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Let $\phi$ be an isomorphism of $H_{1}(F;C)$ to $H_{1}(F;Z)\otimes C$ and for $x,$ $y\in H_{1}(F;C)$

with $\phi(x)=x^{\prime}\otimes\lambda$ and $\phi(y)=y^{\prime}\otimes\tau(x^{\prime}, y^{\prime}\in H_{1}(F;Z),$ $\lambda,$ $\tau\in C$), put

$[x, y]=[x^{\prime}\otimes\lambda, y^{\prime}\otimes\tau]=\lambda\tau Int(x^{\prime}, y^{\prime})$

where Int $( , )$ is the intersection form on $H_{1}(F;Z)\otimes H_{1}(F;Z)$ .
Then $[, ]$ is a skew-symmetric bilinear form over C.
We can easily see that $[, ]|_{GxG}=[, ]|_{HxH}\equiv 0,$ $[x_{0}, Y_{1,k}]=[X_{i,k}, y_{0}]=0$ ,

$[x_{0}, y_{0}]=1$ , and

$[h_{*}^{k}(x_{i}), h_{*}^{s}(y_{r})]=\left\{\begin{array}{ll}1 & if i=r and k\equiv s mod p\\0 & otherwise.\end{array}\right.$

Therefore for $i\neq r,$ $[X_{i,k},Y_{r,s}]=0(i,r=1,2, \cdots, m;k, s=0,1, \cdots,p-1)$ .
For $X_{i,k}$ and $Y_{i,s}$ $(i=1,2, \cdots, m;k, s=0,1, \cdots , p-1)$ ,

$[X_{i,k}, Y_{1,s}]=[\frac{1}{\sqrt{p}}\Sigma_{j=0}^{p-1}\eta^{-kj}h_{*}^{j}(x_{i}), \frac{1}{\sqrt{p}}\Sigma_{j=0}^{p-1}\eta^{-sj}h_{*}^{j}(y_{i})]$

$=\Sigma_{j=0}^{p-1}[\frac{1}{\sqrt{p}}\eta^{-kj}h_{*}^{j}(x_{i}), \frac{1}{\sqrt{p}}\eta^{-sj}h_{*}^{j}(y_{i})]$

$=\Sigma_{j=0}^{p-1}\frac{1}{p}\eta^{-j(k+\epsilon)}$

$=\frac{1}{p}\times\Sigma_{j=0}^{p-1}(\eta^{-(k+s)})^{j}$ .

Therefore, if $k+s\not\equiv Omod p$ , then

$[X_{i,k}, Y_{i,s}]=\frac{1}{p}\frac{1-(\eta^{-\langle k+s)})^{p}}{1-\eta^{-(k+s)}}=0$ ,

and if $k+s\equiv 0$ mod $p$ , then

$[X_{i,k}, Y_{i,s}]=\frac{1}{p}\Sigma_{j=0}^{p-1}1=\frac{p}{p}=1$ .

Hence if $k+s\not\equiv 0$ mod $p$ , then $[, ]|_{G_{k}xH_{s}}=0$ , and the intersection form
$[,]|_{G_{k}xH_{p-k}}(k=1, \cdots,p-1)$ corresponding to the above basis is represented by

the $m\times m$ identity matrix $E_{m}$ , and the intersection form $[,]|_{G_{0}xH_{0}}$ on the above
basis is represented by the $(m+1)\times(m+1)$ identity matrix $E_{m+1}$ .

Since the homomorphisms $g_{*}$ and $h_{*}SatlS\mathfrak{h}^{r}$ the relations $(g_{*}h_{*})^{2}=g_{*}^{2}=id.$ ,

for $x\in G_{k}\oplus H_{k}$ , the following holds;

$(h|_{F})_{*}((g|_{F})_{*}(x))=(g|_{F})_{*}(h|_{F})_{*}^{-1}(x)$

$=(g|_{F})_{*}(\eta^{-k}x)$

$=\eta^{-k}(g|_{F})_{*}(x)$
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and $(g|_{F})_{*}(x)\in G_{p-k}\oplus H_{p-k}$ . The representation matrix of $(g|_{F})_{*}$ corresponding
to the above basis for $G_{0}\oplus H_{0}\oplus G_{1}\oplus H_{1}\oplus\cdots\oplus G_{p-1}\oplus H_{p-1}$ is as follows;

$\left\{\begin{array}{lllll}N_{0} & 0 & & & 0\\0 & 0 & & 0 & N_{1}\\\vdots & \vdots & & N_{2} & 0\\\vdots & 0 & & & \vdots\\ 0 & N_{p-l} & 0 & & 0\end{array}\right\}$ ,

where $N_{k}$ is $\dim(G_{k}\oplus H_{k})\times\dim(G_{k}\oplus H_{k})$ matrix $(k=0,1,2, \cdots,p-1)$ . Since
$g_{*}^{2}=id.,$ $N_{p-k}=N_{k}^{-1}$ .

Put $N_{k}=\left(\begin{array}{ll}A_{k} & B_{k}\\C_{k} & D_{k}\end{array}\right)$ , where $A_{k},$ $B_{k},$ $C_{k}$ and $D_{k}$ are dim $G_{k}\times\dim G_{k}$

matrices $(k=0,1,2, \cdots , p-1)$ . Then by appropriate changes of orders of rows
and columns, we can see that the representation matrix of $(g|_{F})_{*}$ corresponding
to the above basis of $G\oplus H=G_{0}\oplus G_{1}\oplus\cdots\oplus G_{p-1}\oplus H_{0}\oplus H_{1}\oplus\cdots\oplus H_{p-1}$ is
as follows;

$\left\{\begin{array}{l}A_{0} 0 0\\0 0 0 A_{1}\\:\\: A_{2} 0\\: :\end{array}\right.$

:.
: : :.
:

$0$ :.
$0$ $A_{p-1}$ $0$ $0$

$C_{0}$ $0$ $0$

$0$ $0$ $0$ $C_{1}$

: : $C_{2}$ $0$

: : :.
: : :.
:. $0$ :.

$0$ $C_{p-1}$ $0$ $0$

$D_{0}B_{0}O000:.\cdot.::::::$

:

$D_{p-1}B_{p,.\cdot-10}0OO00:.\cdot.:::...$

:

$00$

$D_{2}B_{2}O0$

$D_{1}B_{1}O00000:.\cdot..:.\cdot.\cdot.\cdot::\ovalbox{\tt\small REJECT}$ ,

therefore for the matrix $B$ in Proposition 2, $B=\oplus_{k=0}^{p-1}B_{k}$ and rank $B=\Sigma_{k=0}^{p-1}$

rank $B_{k}$ .
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Claim 2. For the $mat_{7\dot{\eta}}xB_{k}(k=0,1,2, \cdots,p-1),$ $rankB_{k}$ is even.

Proof. Since $g|_{F}$ preserves the orientation of $F$ , for $x\in G_{k}\oplus H_{k}$ and
$y\in G_{p-k}\oplus H_{p-k},$ $[x, y]=(\deg g)[g_{*}(x),g_{*}(y)]=[g_{*}(x),g_{*}(y)]$ . And $g_{*}|_{G_{k}\oplus H_{k}}$ :
$G_{k}\oplus H_{k}\rightarrow G_{p-k}\oplus H_{p-k}$ is represented by the matrix $N_{k}(k=0,1, \cdots p-1)$ .
Since the representation matrix of $[, ]|_{G_{k}\times H_{p-k}}$ is $E_{m}(k=1,2, ’\cdot\cdot p-1)$ and
the representation matrix of $[, ]|_{G_{0}xH_{0}}$ is $E_{m+1}$ , representation matrices of $[, ]$ :
$(G_{k}\oplus H_{k})\times(G_{p-k}\oplus H_{p-k})\rightarrow C(k=1,2, \cdots , p-1)$ is $\left(\begin{array}{ll}O & E_{m}\\-E_{m} & O\end{array}\right)$ , and rep-

resentation matrices of $[, ]$ : $(G_{0}\oplus H_{0})\times(G_{0}\oplus H_{0})\rightarrow C$ is $\left(\begin{array}{ll}0 & E_{m+l}\\-E_{m+1} & 0\end{array}\right)$ .
Hence for $k=0,1,2,$ $\cdots p-1$ , we have the following relation;

$N_{k}^{T}\left(\begin{array}{ll}0 & E\\-E & 0\end{array}\right)N_{p-k}=\left(\begin{array}{ll}0 & E\\-E & 0\end{array}\right)$

where

$E=\left\{\begin{array}{ll}E_{m+1} & if k=0\\E_{m} & if k=1,2, \cdots,p-1\end{array}\right.$

and $P^{T}$ is the transpose of the matrix $P$ . By $N_{p-k}=N_{k}^{-1}$

and $N_{k}=\left(\begin{array}{ll}A_{k} & B_{k}\\C_{k} & D_{k}\end{array}\right)$ , we have

( $D_{k}^{T}C_{k}^{T}$ ) $\left(\begin{array}{ll}0 & E\\-E & O\end{array}\right)=\left(\begin{array}{ll}0 & E\\-E & O\end{array}\right)\left(\begin{array}{ll}A_{k} & B_{k}\\C_{k} & D_{k}\end{array}\right)$

and

$\left(\begin{array}{ll}-C_{k}^{T} & A_{k}^{T}\\-D_{k}^{T} & B_{k}^{T}\end{array}\right)=\left(\begin{array}{ll}C_{k} & D_{k}\\-A_{k} & -B_{k}\end{array}\right)$ .

This means the matrix $B_{k}$ is alternating. Hence $rankB_{k}$ is even.
This completes the proof of Claim 2. $\square $

By Proposition 2, $\beta_{1}(M)=\dim H_{1}(M_{1})-rankB=pm+1-\Sigma_{k=}^{p}$ rtk$B_{k}$ .
By Claim 2, $\Sigma_{k=0}^{p-1}rankB_{k}$ is even.

In the case that $p$ is even, $pm$ is even and $\beta_{1}(M)$ is an odd number.
In the case that $p$ is odd and $m$ is even, $pm$ is even and $\beta_{1}(M)$ is also an odd

number.
In the case that $p$ is odd and $m$ is odd, $\beta_{1}(M)$ is an even number. Since $B_{k}$

$(k=1,2, \cdots,p-1)$ is an $m\times m$-matrix and has even rank, we have $m$ -rank $ B_{k}\geq$

$1$ for $k=1,2,$ $\cdots$ , $p-1$ . Therefore
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$\beta_{1}(M)=pm+1-\Sigma_{k=0}^{p-1}rankB_{k}$

$=m+1$ –rank$B_{0}+\Sigma_{k=1}^{p-1}(m-rankB_{k})$

$\geq\Sigma_{k=1}^{p-1}1$

$=p-1$ .

This completes the proof of Theorem 1. $\square $

3. Proof of Theorem 2

In this section, we construct a 3-manifold $M$ such that a dihedral group acts
on $M$ and the fixed point set of the action consists of a finite number of points.

Proof of Theorem 2. To prove Theorem 2it is enough to treat the follow-
ing three cases.

Case 1) $b$ is odd and $p$ is an integer which is greater than one.
Case 2) $p$ is an odd integer and $b$ is an even integer which is greater than or

equal to $p+1$ .
Case 3) $p$ is an odd integer and $b=p-1$ .
Case 1)
Let $M=F\times S^{1}$ , where $F$ is a closed orientable surface of genus $(b-1)/2$ ,

and $S^{1}$ is a l-dimensional sphere. $F$ admits an orientation preserving involution
$g^{\prime}$ . (We can find such involution, for example, as a restriction of a $\pi$-rotation of
$R^{3}$ to the surface in a standard position in $R^{3}.$ ) We identify $S^{1}$ with $\{e^{i\theta}|\theta\in R\}$ .
Then we construct homeomorphisms $g$ and $h$ as follows;

$g$ : $F\times S^{1}\rightarrow F\times S^{1}$

$g(x, e^{i\theta})=(g^{\prime}(x), e^{-:\theta})$

$h$ : $F\times S^{1}\rightarrow F\times S^{1}$

$h(x, e^{i\theta})=(x, e^{i\langle\theta+2\pi)/p})$

Then we can see that $g$ and $h$ generate a dihedral group $D_{2,p}=\langle g,$ $h|g^{2}=$

$h^{p}=(gh)^{2}=1)$ acting on $M$ . If $g^{\prime}$ is free then $D_{2,p}$ acts freely, and if $g^{\prime}$ has
a fixed point, the fixed point set of the action of this group consists of a finite
number of points.

This completes the proof for Case 1).

Case 2)
Consider a 3-manifold $M=F\times S^{1}$ and a dihedral group $D_{2,p}=\langle g,$ $h|g^{2}=$

$ h^{p}=(gh)^{2}=1\rangle$ acting on $M$ as in the Case 1) such that $M$ and $D_{2,p}$ satisfy the
following conditions;
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(1) $p$ is the given odd number,
(2) the genus of $F$ is $(b-p-1)/2$ ,
(3) gisconstructed from g’ with Fix $(g^{\prime}, F)\neq\emptyset$ .

We consider $p$ copies $X_{0},$ $X_{1},$ $\cdots$ , $X_{p-1}$ of $S^{2}\times S^{1}$ . Let $I_{1}$ be an identification
map from $X_{0}$ to $X_{i}$ $(i=1,2, \cdots , p-1)$ . Note that $X_{0}=S^{2}\times S^{1}$ admits an
orientation reversing involution $f_{0}$ with four fixed points. Take a fixed point $x_{0}$ of
$f_{0}$ in $X_{0}$ . Let $f_{1}$ be the involution on $X_{i}$ defined by $f_{1}=I_{i}f_{0}I_{i}^{-1}$ and $x_{i}=I_{i}(x_{0})$

$(i=1,2, \cdots p-1)$ . Let $y$ be a point of $M$ with $g(y)=y$ . Then there is a g-
equivariant regular neighborhood of $y,$ $N(y)$ such that $N(y),$ $hN(y),$ $h^{2}N(y),$ $\cdots$ ,
$h^{p-1}N(y)$ are mutually disjoint. Furthermore there is an $f_{1}$ -equivariant regular
neighborhood $N(x_{i})$ of $x_{i}$ in $X_{i}(i=0,1, \cdots p-1)$ . We attach $X_{i}-int(N(x_{i}))$

$(i=0,1, \cdots,p-1)$ to $M-\bigcup_{1=0}^{p-1}inth^{i}(N(y))$ so that identifying maps satisfy the
following conditions.

(1) $\partial N(y)$ is identified with $\partial N(x_{0})$ by an identifying map $J$ : $\partial N(x_{0})\rightarrow$

$\partial N(y)$ which satisfies the relation $g|_{\partial N(y)}J=Jf_{0}|_{\partial N(x_{0})}$ .
(2) $\partial h^{i}N(y)$ is identified with $\partial N(x_{i})$ by the identifying map $h^{i}JI_{i}^{-1}|_{\partial N\langle x:}$ )

: $\partial N(x_{i})\rightarrow\partial h^{i}N(y)$ .
Then we can obtain a manifold $M^{\prime}$ which is a connected sum of $F\times S^{1}$ and

$X_{0},$ $X_{1},$
$\cdots,$ $X_{p-1}$ . There is an orientation preserving homeomorphism on $M^{\prime}$

with period $p$ induced by $h$ on $M$ . There is an orientation reversing involution
on $M$‘ induced by $g$ on $M$ and $f_{1}$ on $X_{i}(i=0,1, , \cdots,p-1)$ . We can see
that these homeomorphisms on $M^{\prime}$ generate a dihedral group. Note that $\beta_{1}(M)$

$=2\times(b-p-1)/2+1=b-p$, therefore $\beta_{1}(M^{\prime})=b$ .
This completes the proof for Case 2).

Case 3)
In this case, we construct homeomorphisms of a connected sum of $(p-1)$

$S^{2}\times S^{1}’ s$ such that the homeomorphisms generate a dihedral group.
As the first step, we define an orientation preserving dihedral group action on

$S^{3}$ . Put $S^{3}=\{(s,t, r)|s, t\in R, 0\leq r\geq 1\}/\langle(s,t, r)\sim(s+2\pi,t,r),$ $(s,t, r)\sim$

$(s,t+2\pi, r),$ $(s,t, r)\sim(s, t, r+2\pi),$ $(s, t, 0)\sim(s^{\prime}, t, 0),$ $(s, t, 1)\sim(s, t^{\prime}, 1)\rangle$ and
give an orientation. Define orientation preserving periodic homeomorphisms $k$

and $f$ by

$k(s, t, r)=(s+2\pi/p, t+2\pi/p, r)$ ,

$f(s, t, r)=(-s, -t, r)$ .

Then $k$ and $f$ generate a dihedral group $ G=\langle f, k|f^{2}=k^{p}=(fk)^{2}=1\rangle$ .
Note that $k$ is free and $f$ fixes the curve $\{(s, t, r)|s, t, =0, \pi\}$ . Let $B$ be a
regular neighborhood of the point $(0,0,0)$ such that $f(B)=B$ and $B,$ $k(B)$ ,
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$k^{2}(B),$
$\cdots,$

$k^{p-1}(B)$ are mutually disjoint. Then $\bigcup_{i=0}^{p-1}k^{i}(B)$ is G-equivariant
since $f(k^{i}(B))=k^{-i}f(B)=k^{-i}(B)$ .

Put $V_{1}=S^{3}-\bigcup_{i=0}^{p-1}intk^{i}(B)$ and $k_{1}=k|_{V_{1}},$ $f_{1}=f|_{V_{1}}$ . Let $V_{2}$ be a manifold
which is obtained from a copy of $V_{1}$ by reversing the orientation of it and $I$

the orientation reversing homeomorphism from $V_{2}$ to $V_{1}$ which is induced from
the identification map. Then $V_{2}$ also have an orientation preserving homeomor-
phisms $k_{2}=I^{-1}k_{1}I$ and $f_{2}=I^{-1}f_{1}I$ . The homeomorphisms $k_{2}$ and $f_{2}$ generate
a dihedral group.

We construct a closed 3-manifold $M$ from $V_{1}$ and $V_{2}$ by identifying $\partial V_{2}$ with
$\partial V_{1}$ through the identifying map $f_{1}I$ . Define homomorphisms $g$ and $h$ of $M$ as
follows;

$g|_{V_{1}}=I^{-1},$ $g|_{V_{2}}=I,$ $h|_{V_{1}}=k_{1},$ $h|_{V_{2}}=k_{2}^{-1}$ .

Then $M$ is a connected sum of $(p-1)S^{2}\times S^{1}’ s$ . We can check that $g$ and $h$ are
well defined by the following relations. (Note that $f_{i}^{2}=Id$ . and $k_{i}f_{1}=f_{1}k_{i}^{-1}.$ )
For $x\in\partial V_{2}$ ,

$g(f_{1}I(x))=I^{-1}f_{1}I(x)$

$=(f_{1}I)^{-1}(g(x))$

$h(f_{1}I(x))=k_{1}f_{1}I(x)=f_{1}k_{1}^{-1}I(x)=f_{1}Ik_{2}^{-1}(x)$ .
$=f_{1}I(h(x))$ .

We can check that $g$ is an orientation reversing involution and $h$ is an orienta-
tion preserving free periodic homeomorphism of period $p$ . The homeomorphisms
$g$ and $h$ generate a dihedral group $D_{2,p}$ since for $x\in V_{1},$ $ghgh(x)=Ik_{2}^{-1}I^{-1}k_{1}(x)$

$=Ik_{2}^{-1}k_{2}I^{-1}(x)=x$ , and for $x\in V_{2},$ $ghgh(x)=I^{-1}k_{1}Ik_{2}^{-1}(x)=k_{2}k_{2}^{-1}(x)=x$ .
The fixed point set of the action of this group is finite since it consists of the
points corresponding to Fix $(G, S^{3})\cap(\bigcup_{i=0}^{p-1}k^{i}(\partial B))$ . Therefore we have a dihe-
dral group $ D_{2,p}=\langle g, h|g^{2}=h^{p}=(gh)^{2}=1\rangle$ which acts on a connected sum
of $(p-1)S^{2}\times S^{1}’ s$ with the fixed point set consisting of $2p$ points.

This completes the proof for Case 3).
This completes the proof of Theorem 2. $\square $
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