ORIENTATION REVERSING DIHEDRAL GROUP ACTIONS ON 3-MANIFOLDS

By
MASAKO KOBAYASHI
(Received November 8, 1994, Revised October 30, 1997)

Abstract

In this paper, we consider an orientable closed 3-manifold M which admits a dihedral group $D_{2, p}(p>1)$ action such that $D_{2, p}$ contains orientation reversing involutions, and the fixed point set consists of a finite number of points. For such a pair ($M, D_{2, p}$), we study the problem that which integer can occur as the first Betti number $q=\beta_{1}(M)$ of M. For a pair ($M, D_{2, p}$) as above we have (1) q is odd, or (2) p is odd and q is even integer greater than or equal to $p-1$. Furthermore, for any pair of integers (p, q) with condition (1) or (2), there is a pair $\left(M, D_{2, p}\right)$ as above with $\beta_{1}(M)=q$.

1. Introduction

Throughout this paper we work in the piecewise-linear category.
Suppose a finite group G acts on a space X. The fixed point set of an action of G on M is the set $\{x \mid x \in X, g(x)=x$ for some $g \in G, g \neq i d\}$.

In 1961, D.B.A.Epstein [3] proved that a finite group acting on a homotopy 3 -sphere with 0-dimensional fixed point set must be Z_{2} (see [3] or [4]). In 1988, Mess observed that "homotopy 3-phere" can be replaced by "integral homology sphere". A proof of Mess's observation can be found in [11]. In [6] the followings are proved.

Theorem A. [6] A finite group acting on a rational homology 3-sphere with 0 -dimensional fixed point set must be Z_{2}.

Theorem A immediately follows from the following two results.
Theorem B. [6] If a finite group $G \neq Z_{2}$ acts on a rational homology 3sphere with 0-dimensional fixed point set, then G must contain a dihedral group $D_{2, n}=\left\langle g, h \mid g^{2}=h^{n}=(g h)^{2}=1\right\rangle$ with $n>1$ odd as a subgroup where g is orientation reversing and h is orientation preserving.

[^0]Theorem C. [6] A dihedral group $D_{2, n}$ with odd $n>1$ can not act on a rational homology 3 -sphere with 0 -dimensional fixed point set.

At first, we give an extension of Theorem C for general closed orientable 3-manifolds.

Let $\beta_{1}(M)$ be the first Betti number of M. We prove the following.
Theorem 1. Suppose that a dihedral group $D_{2, p}(p>1)$ acts on a closed orientable 3-manifold M so that
(a) $D_{2, p}=\left\langle g, h \mid g^{2}=h^{p}=(g h)^{2}=1\right\rangle, g$ reverses the orientation of M, and h preserves the orientation of M,
(b) the fixed point set of the action of $D_{2, p}$ consists of a finite number of points (possibly empty).
Then one of the following statements is hold:
(1) $\beta_{1}(M)$ is odd.
(2) p is odd and $\beta_{1}(M)$ is even integer greater than or equal to $p-1$.

Note that Theorem 1 implies that if M satisfy the conditions (a) and (b), then $\beta_{1}(M)$ can not be 0 . This is just the assertion of Theorem C.

Then we show that the conditions (1) and (2) in Theorem 1 are sufficient for the existence of M and $D_{2, p}$ with the conditions (a), (b) and the prescribed first Betti number.

Theorem 2. For any pair of integers $(p, b)(p>1)$ such that
(1) b is odd, or
(2) p is odd and b is an even number greater than or equal to $p-1$, there exists an orientable 3 -manifold M such that
(i) $\beta_{1}(M)=b$, and
(ii) M admits an action of a dihedral group $D_{2, p}=\left\langle g, h \mid g^{2}=h^{p}=(g h)^{2}=1\right\rangle$ such that
(a) g reverses the orientation of M and h preserves the orientation of M,
(b) the fixed point set of the action of $D_{2, p}$ on M consists of a finite number of points.

Remark. In case of orientation preserving group actions, F.Davis and R.J. Milgram [2] noted that for any finite group G there is a rational homology 3 -sphere admitting an orientation preserving free G action.

2. Proof of Theorem 1

For the proof of Theorem 1, we use Heegaard splittings of 3-manifolds. We say that a triple ($\left.M_{1}, M_{2}: F\right)$ is a Heegaard splitting of a closed 3-manifold M if $M_{1} \cup M_{2}=M, \partial M_{1}=\partial M_{2}=M_{1} \cap M_{2}=F$ and M_{1} and M_{2} are handlebodies.

Proposition 1. Suppose that a dihedral group $D_{2, p}=\langle g, h| g^{2}=h^{p}=$ $\left.(g h)^{2}=1\right\rangle$ acts on an orientable closed 3 -manifold M so that
(1) g reverses the orientation of M,
(2) h preserves the orientation of M, and
(3) the fixed point set of the action of $D_{2, p}$ on M consists of a finite number of points (possibly empty).
Then there exists a Heegaard splitting ($\left.M_{1}, M_{2}: F\right)$ of M such that $g\left(M_{i}\right)=$ M_{3-i} and $h\left(M_{i}\right)=M_{i}(i=1,2)$.

To prove Proposition 1, we use the following lemma (cf. Proposition 2.2 [6], see also [9]).

Lemma. Let M be a closed orientable 3-manifold admitting an orientation reversing involution g (i.e. $g^{2}=\mathrm{id}$.) such that the fixed point set of g on M consists of a finite number of points. Then there is a Heegaard splitting (M_{1}, M_{2} : F) of M such that $g\left(M_{1}\right)=M_{2}$.

Proof. We show that there are two (possibly disconnected) submanifolds M_{1}^{*}, M_{2}^{*} of M and an embedded 2 -manifold F^{*} such that $M=M_{1}^{*} \cup M_{2}^{*}$, $M_{1}^{*} \cap M_{2}^{*}=\partial M_{1}^{*}=\partial M_{2}^{*}=F^{*}$, and $g\left(M_{1}^{*}\right)=M_{2}^{*}, g\left(F^{*}\right)=F^{*}$. Then by trading 1-handles of M_{1}^{*} and $M_{2}^{*} g$-equivariantly as in the proof of Proposition 2.4 in [8] or in the proof of Theorem 1] in [10], we can obtain a Heegaard splitting $\left(M_{1}, M_{2}: F\right)$ of M such that $g\left(M_{i}\right)=M_{3-i}(i=1,2)$.

Hence in the rest of the proof of Lemma we give the existence of M_{1}^{*}, M_{2}^{*} as above.

For a triangulation K of M, K^{i} denotes the i-skeleton of K, N_{x} denotes the simplicial star neighborhood of x in K, and K^{\prime} denotes the barycentric subdivision of K. For an involution g of $M, \operatorname{Fix}(g, M)$ denotes the set $\{x \in$ $M \mid g(x)=x\}$.

It is easy to see that there exists a triangulation K of M such that $g: K \rightarrow K$ is a simplicial isomorphism and in particular if $\operatorname{Fix}(g, M) \neq \emptyset, K$ satisfies;
(K1) $\operatorname{Fix}(g, M) \subset K^{0}$,
(K2) for $x_{1}, x_{2} \in \operatorname{Fix}(g, M), N_{x_{1}} \cap N_{x_{2}}=\emptyset$.
For the proof of Lemma, we analyze the set ∂N_{x} for $x \in \operatorname{Fix}(g, M)$.

Claim. For each fixed point x of g, there exists a simplicial closed curve ℓ_{x} on ∂N_{x} such that $g\left(\ell_{x}\right)=\ell_{x}, \ell_{x} \subset\left(K^{\prime}\right)^{1}$ and $\ell_{x} \cap K^{0}=\emptyset$.

Proof of Claim. By conditions (K1) and (K2), we can take a subset V of $\left(\partial N_{x}\right)^{0}$ such that $V \cup g(V)=\left(\partial N_{x}\right)^{0}$ and $V \cap g(V)=\emptyset$. Let U be a star neighborhood of V in $\left(\partial N_{x}\right)^{\prime}$. Since $\left(\partial N_{x}\right)^{\prime}$ is a barycentric subdivision of $\partial N_{x}, U$ is a union of planar surfaces such that $U \cup g(U)=\partial N_{x}, U \cap g(U)=\partial U=\partial g(U)$ and $g(U)=c l\left(\partial N_{x}-U\right)$. Hence $g(\partial U)=\partial U, \partial U \subset\left(K^{\prime}\right)^{1}, \partial U \cap K^{0}=\emptyset$.

Assume that for any component $\ell \subset \partial U, g(\ell) \neq \ell$. Let $p: \partial N_{x} \rightarrow \partial N_{x} / g$ be the standard projection. Since $p\left(\partial N_{x}\right)=\partial N_{x} / g$ is a projective plane, for a sufficiently small annulus neighborhood N_{ℓ} of ℓ in $\partial N_{x}, p\left(N_{\ell}\right)$ is an annulus. Hence a small regular neighborhood of $p(\partial U)$ in $\partial N_{x} / g$ is a union of annulus and $\partial N_{x} / g-p(\partial U)$ contains a nonorientable region W. Since ∂N_{x} is orientable, $p^{-1}(W)$ is connected. Then $p^{-1}(W) \subset \partial N_{x}-\partial U$ and $g\left(p^{-1}(W)\right)=p^{-1}(W)$ contradicting the above assertion $g(U)=\operatorname{cl}\left(\partial N_{x}-U\right)$.

Therefore there exists a simplicial closed curve $\ell_{x} \subset \partial U$ such that $g\left(\ell_{x}\right)=\ell_{x}$, $\ell_{x} \subset\left(K^{\prime}\right)^{1}$ and $\ell \cap K^{0}=\emptyset$.

This completes the proof of Claim.
Since $g\left(\ell_{x}\right)=\ell_{x}$, there exists a properly embedded disk D_{x} in N_{x} such that $\partial D_{x}=\ell_{x}$ and $g\left(D_{x}\right)=D_{x}$ (Hence $\left.x \in D_{x}\right)$. Note that the curve ℓ_{x} divides ∂N_{x} into two 2-cells $B_{x 1}$ and $B_{x 2}$ with $g\left(B_{x 1}\right)=B_{x 2}$. Let $\mathcal{V}_{x i}$ be the vertices of ∂N_{x}^{0} that lie in $B_{x i}, i=1,2$. Then $\partial N_{x}^{0}=\mathcal{V}_{x 1} \cup \mathcal{V}_{x 2}$ and $g\left(\mathcal{V}_{x 1}\right)=\mathcal{V}_{x 2}$.

Since g is an involution and does not fix any element in $K^{0}-\operatorname{Fix}(g, M)$, we can easily see that there is a subset \mathcal{V} of $K^{0}-\operatorname{Fix}(g, M)$ such that
(1) $\mathcal{V} \cup g(\mathcal{V})=K^{0}-\operatorname{Fix}(g, M)$,
(2) $\mathcal{V} \cap g(\mathcal{V})=\emptyset$,
(3) $\mathcal{V}_{x 1} \subset \mathcal{V}, \mathcal{V}_{x 2} \subset g(\mathcal{V})$ for each element $x \in \operatorname{Fix}(g, M)$.

Now we return to the proof of Lemma, Let $e_{1}, e_{2}, \cdots, e_{n}$ be the 1 -simplices of K which intersect both \mathcal{V} and $g(\mathcal{V})$. Let D_{i} be the dual 2-cell of e_{i} with respect to $K, i=1,2, \cdots, n$. Note that $g\left(e_{i}\right)=e_{j}$ for some j and that $g\left(D_{i}\right)=D_{j}$. Let $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots, D_{n}\right\}$. Then the elements of \mathcal{D} intersect a 3 -simplex of K as indicated in Figure 1.

Thus \mathcal{D} forms a (punctured) surface F_{0}^{*} (not necessarily connected) in M with $g\left(F_{0}^{*}\right)=F_{0}^{*}$. Note that for each x of $\operatorname{Fix}(g, M), F_{0}^{*} \cap \partial N_{x}=\ell_{x}$. Hence $F^{*}=\left(F_{0}^{*}\right.$ $\left.\cup_{x \in \operatorname{Fix}(g, M)}\left(F_{0}^{*} \cap N_{x}\right)\right) \cup_{x \in \operatorname{Fix}(g, M)} D_{x}$ is a closed surface with $g\left(F^{*}\right)=F^{*}$ and $\operatorname{Fix}(g, M) \subset F^{*}$. Let M_{1}^{*} be the closure of all components of $M-F^{*}$ intersecting \mathcal{V}. If there is a vertex v in a component M^{\prime} of M_{1}^{*} with $v \in g(\mathcal{V})$, then there is a vertex $v^{\prime} \in \mathcal{V} \cap M^{\prime}$ and a path $\alpha \subset K^{1} \cap M^{\prime}$ connecting v and v^{\prime}, but such a path must meet \mathcal{D}, a contradiction. So M_{1}^{*} misses $g(\mathcal{V})$. Now let M_{2}^{*} be the

- $\in \mathcal{V}(g(\mathcal{V})$, resp. $)$
$0 \in g(\mathcal{V})(\mathcal{V}$, resp. $)$
Figure 1
closure of $M-M_{1}^{*}$. Then $M_{1}^{*} \cap M_{2}^{*}=\partial M_{1}^{*}=\partial M_{2}^{*}=F^{*}$, and since $\mathcal{V} \subset M_{1}^{*}$ and $g(\mathcal{V}) \subset M_{2}^{*}, g\left(M_{1}^{*}\right)=M_{2}^{*}$.

This completes the proof of Lemma,
Proof of Proposition 1. Let $\bar{M}=M / h$ and $q: M \rightarrow \bar{M}$ be the quotient map. Since h is a free action, $q: M \rightarrow \bar{M}$ is a regular covering. The orientation reversing involution $g: M \rightarrow M$ induces a unique orientation reversing involution $\bar{g}: \bar{M} \rightarrow \bar{M}$ such that $q g=\bar{g} q$.

Suppose that there is a fixed point $y \in \bar{M}$ of \bar{g}. Then for $x \in M$ such that $q(x)=y$, we have $q(g(x))=\bar{g} q(x)=\bar{g}(y)=y$. Therefore $h^{i} g(x)=x$ for some integer i, and x is a fixed point of the action of $D_{2, p}$ on M. Since the fixed point set of the action of $D_{2, p}$ on M, consists of a finite number of points, $\operatorname{Fix}(\bar{g}, \bar{M})$ also consists of a finite number of points. Hence by Lemma, there exists a Heegaard splitting ($\left.\bar{M}_{1}, \bar{M}_{2}: \bar{F}\right)$ of \bar{M} such that $\bar{g}\left(\bar{M}_{1}\right)=\bar{M}_{2}$ and $\bar{g}(\bar{F}) \equiv \bar{F}$. Put $M_{i}=q^{-1}\left(\bar{M}_{i}\right), i=1,2$, and $F=q^{-1}(\bar{F})$. Then M_{1} amd M_{2} are handlebodies. Hence ($\left.M_{1}, M_{2}: F\right)$ is a Heegaard splitting of M satisfying the equations $g\left(M_{i}\right)=M_{3-i}$ and $h\left(M_{i}\right)=M_{i}(i=1,2)$ by construction.

This completes the proof of Proposition 1.
Let g be an involution of a 3 -manifold M and ($\left.M_{1}, M_{2}: F\right)$ a Heegaard splitting of M such that $g\left(M_{i}\right)=M_{3-i}(i=1,2)$. Let $x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots$, y_{n} be a basis of $H_{1}(F)$ so that $I\left(x_{1}\right), I\left(x_{2}\right), \cdots, I\left(x_{n}\right)$ is a basis of $H_{1}\left(M_{1}\right)$ and $I\left(y_{i}\right)=0(i=1,2, \cdots, n)$, where I is the homomorphism from $H_{1}(F)$ to $H_{1}\left(M_{1}\right)$ induced by the inclusion map from F to M_{1}. Then we have a matrix representation $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ of $\left(\left.g\right|_{F}\right)_{*}$ corresponding to the basis $x_{1}, x_{2}, \cdots, x_{n}, y_{1}$, y_{2}, \cdots, y_{n}, where A, B, C, D are $\operatorname{dim} H_{1}\left(M_{1}\right) \times \operatorname{dim} H_{1}\left(M_{1}\right)$ matrices.

Proposition 2. Let $M, M_{1}, M_{2}, A, B, C, D$ be as above, then

$$
\beta_{1}(M)=\operatorname{dim} H_{1}\left(M_{1}\right)-\operatorname{rank} B .
$$

Proof. There is the following exact sequence of homology groups.

$$
\cdots \rightarrow H_{2}(M) \rightarrow H_{1}(F) \stackrel{I \oplus}{\rightarrow} J H_{1}\left(M_{1}\right) \oplus H_{1}\left(M_{2}\right) \rightarrow H_{1}(M) \rightarrow \cdots
$$

where J is the homomorphism from $H_{1}(F)$ to $H_{1}\left(M_{2}\right)$ induced by the inclusion $\operatorname{map} F$ to M_{2}. Therefore $H_{1}(M) \cong H_{1}\left(M_{1}\right) \oplus H_{1}\left(M_{2}\right) / \operatorname{Im}(I \oplus J)$. Note that the elements $g_{*} I\left(x_{1}\right), g_{*} I\left(x_{2}\right), \cdots, g_{*} I\left(x_{n}\right)$ are a basis for $H_{1}\left(M_{2}\right)$ and $g_{*} I\left(y_{i}\right)=$ $0(i=1,2, \cdots, n)$. The elements $g_{*}\left(x_{1}\right), g_{*}\left(x_{2}\right), \cdots, g_{*}\left(x_{n}\right), g_{*}\left(y_{1}\right), g_{*}\left(y_{2}\right)$, $\cdots, g_{*}\left(y_{n}\right)$ are also a basis for $H_{1}(F)$. Let $a_{i j}\left(b_{i j}, c_{i j}, d_{i j}\right.$, resp.) be the $i j-$ element of the matrix $A\left(B, C, D\right.$, resp.). Then $H_{1}(M)$ has a group presentation as follows;

$$
\begin{aligned}
& H_{1}(M)=\left\langle x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{n},\right. \\
& g_{*}\left(x_{1}\right), g_{*}\left(x_{2}\right), \cdots, g_{*}\left(x_{n}\right), g_{*}\left(y_{1}\right), g_{*}\left(y_{2}\right), \cdots, g_{*}\left(y_{n}\right) \\
& \mid y_{i}=0, g_{*}\left(y_{i}\right)=0 \\
& \Sigma_{j=1}^{n} a_{j i} x_{j}+\Sigma_{j=1}^{n} c_{j i} y_{j}=g_{*}\left(x_{i}\right), \\
& \Sigma_{j=1}^{n} b_{j i} x_{j}+\Sigma_{j=1}^{n} d_{j i} y_{j}=g_{*}\left(y_{i}\right) \\
&(i=1,2, \cdots, n)\rangle \\
&=\left\langle x_{1}, x_{2}, \cdots, x_{n}, g_{*}\left(x_{1}\right), g_{*}\left(x_{2}\right), \cdots, g_{*}\left(x_{n}\right)\right. \\
& \mid \Sigma_{j=1}^{n} a_{j i} x_{j}=g_{*}\left(x_{i}\right), \\
& \Sigma_{j=1}^{n} b_{j i} x_{j}=0 \\
&(i=1,2, \cdots, n)> \\
&=<x_{1}, x_{2}, \cdots, x_{n}\left|\Sigma_{j=1}^{n} b_{j i} x_{j}=0(i=1,2, \cdots, n)\right\rangle .
\end{aligned}
$$

Therefore we have $\beta_{1}(M)=n-\operatorname{rank} B=\operatorname{dim} H_{1}\left(M_{1}\right)-\operatorname{rank} B$.
This completes the proof of Proposition 2.
Proof of Theorem 1. By Proposition 1, there exists a Heegaard splitting $\left(M_{1}, M_{2}: F\right)$ of M such that $g\left(M_{i}\right)=M_{3-i}(i=1,2)$. Note that $\left.g\right|_{F}$ is an orientation preserving involution of F, and $\left.h\right|_{F}$ is an orientation preserving fixed point free homeomorphism of F with period p.

In [7] [5] cyclic actions of a 3-dimensional handlebody are studied, and their results imply that the homeomorphism $\left.h\right|_{M_{1}}$ is conjugate to a homeomorphism which is a restriction of $2 \pi / p$-rotation with respect to z-axis of R^{3} to a handlebody in equivariant position as indicated in Figure 2. Therefore we may assume that $\left.h\right|_{M_{1}}$ is as indicated in Figure 2.

Figure 2
In Figure 2, m is an integer with genus $\left(M_{1}\right)=p m+1$. Let x_{0}, x_{1}, x_{2}, $\cdots, x_{m}, y_{0}, y_{1}, y_{2}, \cdots, y_{m}$ be cycles represented by essential simple closed curves as indicated in Figure 2.

Define the vectors

$$
X_{i, k}=\frac{1}{\sqrt{p}} \Sigma_{j=0}^{p-1} \eta^{-k j} h_{*}^{j}\left(x_{i}\right), \quad i=1,2, \cdots, m ; k=0,1, \cdots, p-1
$$

and

$$
Y_{i, k}=\frac{1}{\sqrt{p}} \Sigma_{j=0}^{p-1} \eta^{-k j} h_{*}^{j}\left(y_{i}\right), \quad i=1,2, \cdots, m ; k=0,1, \cdots, p-1 .
$$

where $\eta=\exp (2 \pi i / p), i^{2}=-1$.
Then $h_{*}\left(X_{i, k}\right)=\eta^{k} X_{i, k}, h_{*}\left(Y_{i, k}\right)=\eta^{k} Y_{i, k}(i=1,2, \cdots, m ; k=0,1, \cdots, p-$ 1), $h_{*}\left(x_{0}\right)=x_{0}$, and $h_{*}\left(y_{0}\right)=y_{0}$. By easy calculation we can see that the eigenvalues of $h_{*}: H_{1}(F ; \mathbf{C}) \rightarrow H_{1}(F ; \mathbf{C})$ are $\eta^{k}, k=0,1, \cdots, p-1$. Let G_{0} (H_{0}, resp.) be the subspace generated by $x_{0}, X_{1,0}, X_{2,0}, \cdots, X_{m, 0}\left(y_{0}\right.$, $Y_{1,0}, Y_{2,0}, \cdots, Y_{m, 0}$, resp.) and G_{k} (H_{k}, resp.) the subspace generated by $X_{1, k}, X_{2, k}, \cdots, X_{m, k}\left(Y_{1, k}, Y_{2, k}, \cdots, Y_{m, k}\right.$, resp.) $\quad(k=1,2, \cdots, p-1)$. Then $G=\bigoplus_{k=0}^{p-1} G_{k}$ is a half space of $H_{1}(F ; \mathbf{C})$ such that $G \cong I(G) \cong I\left(H_{1}(F ; \mathbf{C})\right)$ $\cong H_{1}\left(M_{1} ; \mathbf{C}\right)$, and $H=\bigoplus_{k=0}^{p-1} H_{k} \cong \operatorname{Ker} I$. Since the generating elements of G_{k}, $H_{k}(k=0,1,2, \cdots, p-1)$ are linearly independent, $\operatorname{dim} G_{0}=\operatorname{dim} H_{0}=m+1$ and $\operatorname{dim} G_{k}=\operatorname{dim} H_{k}=m(k=1,2, \cdots p-1)$. Note that $G_{k} \cup H_{k}$ is the eigenspace of h_{*} corresponding to the eigenvalue $\eta^{k}, k=0,1,2, \cdots p-1$.

We define an intersection form [,]: $H_{1}(F ; \mathbf{C}) \times H_{1}(F ; \mathbf{C}) \rightarrow \mathbf{C}$ as follows:

Let ϕ be an isomorphism of $H_{1}(F ; \mathbf{C})$ to $H_{1}(F ; \mathbf{Z}) \otimes \mathbf{C}$ and for $x, y \in H_{1}(F ; \mathbf{C})$ with $\phi(x)=x^{\prime} \otimes \lambda$ and $\phi(y)=y^{\prime} \otimes \tau\left(x^{\prime}, y^{\prime} \in H_{1}(F ; \mathbf{Z}), \lambda, \tau \in \mathbf{C}\right)$, put

$$
[x, y]=\left[x^{\prime} \otimes \lambda, y^{\prime} \otimes \tau\right]=\lambda \tau \operatorname{Int}\left(x^{\prime}, y^{\prime}\right)
$$

where $\operatorname{Int}($,$) is the intersection form on H_{1}(F ; \mathbf{Z}) \otimes H_{1}(F ; \mathbf{Z})$.
Then [,] is a skew-symmetric bilinear form over C.
We can easily see that $\left.[]\right|_{,G \times G}=\left.[]\right|_{,H \times H} \equiv 0,\left[x_{0}, Y_{i, k}\right]=\left[X_{i, k}, y_{0}\right]=0$, $\left[x_{0}, y_{0}\right]=1$, and

$$
\left[h_{*}^{k}\left(x_{i}\right), h_{*}^{s}\left(y_{r}\right)\right]= \begin{cases}1 & \text { if } i=r \text { and } k \equiv s \bmod p \\ 0 & \text { otherwise }\end{cases}
$$

Therefore for $i \neq r,\left[X_{i, k}, Y_{r, s}\right]=0(i, r=1,2, \cdots, m ; k, s=0,1, \cdots, p-1)$. For $X_{i, k}$ and $Y_{i, s}(i=1,2, \cdots, m ; k, s=0,1, \cdots, p-1)$,

$$
\begin{aligned}
{\left[X_{i, k}, Y_{i, s}\right] } & =\left[\frac{1}{\sqrt{p}} \Sigma_{j=0}^{p-1} \eta^{-k j} h_{*}^{j}\left(x_{i}\right), \frac{1}{\sqrt{p}} \Sigma_{j=0}^{p-1} \eta^{-s j} h_{*}^{j}\left(y_{i}\right)\right] \\
& =\Sigma_{j=0}^{p-1}\left[\frac{1}{\sqrt{p}} \eta^{-k j} h_{*}^{j}\left(x_{i}\right), \frac{1}{\sqrt{p}} \eta^{-s j} h_{*}^{j}\left(y_{i}\right)\right] \\
& =\Sigma_{j=0}^{p-1} \frac{1}{p} \eta^{-j(k+s)} \\
& =\frac{1}{p} \times \Sigma_{j=0}^{p-1}\left(\eta^{-(k+s)}\right)^{j}
\end{aligned}
$$

Therefore, if $k+s \not \equiv 0 \bmod p$, then

$$
\left[X_{i, k}, Y_{i, s}\right]=\frac{1}{p} \frac{1-\left(\eta^{-(k+s)}\right)^{p}}{1-\eta^{-(k+s)}}=0
$$

and if $k+s \equiv 0 \bmod p$, then

$$
\left[X_{i, k}, Y_{i, s}\right]=\frac{1}{p} \Sigma_{j=0}^{p-1} 1=\frac{p}{p}=1
$$

Hence if $k+s \not \equiv 0 \bmod p$, then $\left.[]\right|_{,G_{k} \times H_{s}}=0$, and the intersection form $\left.[]\right|_{,G_{k} \times H_{p-k}}(k=1, \cdots, p-1)$ corresponding to the above basis is represented by the $m \times m$ identity matrix E_{m}, and the intersection form [, $]\left.\right|_{G_{0} \times H_{0}}$ on the above basis is represented by the $(m+1) \times(m+1)$ identity matrix E_{m+1}.

Since the homomorphisms g_{*} and h_{*} satisfy the relations $\left(g_{*} h_{*}\right)^{2}=g_{*}^{2}=\mathrm{id}$., for $x \in G_{k} \oplus H_{k}$, the following holds;

$$
\begin{aligned}
\left(\left.h\right|_{F}\right)_{*}\left(\left(\left.g\right|_{F}\right)_{*}(x)\right) & =\left(\left.g\right|_{F}\right)_{*}\left(\left.h\right|_{F}\right)_{*}^{-1}(x) \\
& =\left(\left.g\right|_{F}\right)_{*}\left(\eta^{-k} x\right) \\
& =\eta^{-k}\left(\left.g\right|_{F}\right)_{*}(x)
\end{aligned}
$$

and $\left(\left.g\right|_{F}\right)_{*}(x) \in G_{p-k} \oplus H_{p-k}$. The representation matrix of $\left(\left.g\right|_{F}\right)_{*}$ corresponding to the above basis for $G_{0} \oplus H_{0} \oplus G_{1} \oplus H_{1} \oplus \cdots \oplus G_{p-1} \oplus H_{p-1}$ is as follows;

$$
\left(\begin{array}{ccccccc}
N_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 & N_{1} \\
\vdots & \vdots & & & . & N_{2} & 0 \\
\vdots & \vdots & & . & . & . & \vdots \\
\vdots & \vdots & . & . & . & & \vdots \\
\vdots & 0 & . & . & & & \vdots \\
0 & N_{p-1} & 0 & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

where N_{k} is $\operatorname{dim}\left(G_{k} \oplus H_{k}\right) \times \operatorname{dim}\left(G_{k} \oplus H_{k}\right)$ matrix $(k=0,1,2, \cdots, p-1)$. Since $g_{*}^{2}=\mathrm{id} ., N_{p-k}=N_{k}^{-1}$.

Put $N_{k}=\left(\begin{array}{ll}A_{k} & B_{k} \\ C_{k} & D_{k}\end{array}\right)$, where A_{k}, B_{k}, C_{k} and D_{k} are $\operatorname{dim} G_{k} \times \operatorname{dim} G_{k}$ matrices ($k=0,1,2, \cdots, p-1$). Then by appropriate changes of orders of rows and columns, we can see that the representation matrix of $\left(\left.g\right|_{F}\right)_{*}$ corresponding to the above basis of $G \oplus H=G_{0} \oplus G_{1} \oplus \cdots \oplus G_{p-1} \oplus H_{0} \oplus H_{1} \oplus \cdots \oplus H_{p-1}$ is as follows;

$$
\left(\begin{array}{cccccccccccccc}
A_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 & B_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 & A_{1} & 0 & 0 & \cdots & \cdots & \cdots & 0 & B_{1} \\
\vdots & \vdots & & & . & A_{2} & 0 & \vdots & \vdots & & & . & B_{2} & 0 \\
\vdots & \vdots & & . & . & . & \vdots & \vdots & \vdots & & . & . & . & \vdots \\
\vdots & \vdots & . & . & . & & \vdots & \vdots & \vdots & . & . & . & & \vdots \\
\vdots & 0 & . & . & & & \vdots & \vdots & 0 & . & . & & & \vdots \\
0 & A_{p-1} & 0 & \cdots & \cdots & \cdots & 0 & 0 & B_{p-1} & 0 & \cdots & \cdots & \cdots & 0 \\
C_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 & D_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 & C_{1} & 0 & 0 & \cdots & \cdots & \cdots & 0 & D_{1} \\
\vdots & \vdots & & & . & C_{2} & 0 & \vdots & \vdots & & & . & D_{2} & 0 \\
\vdots & \vdots & & . & . & . & \vdots & \vdots & \vdots & & . & . & . & \vdots \\
\vdots & \vdots & . & . & . & & \vdots & \vdots & \vdots & . & . & . & & \vdots \\
\vdots & 0 & . & . & & & \vdots & \vdots & 0 & . & . & & & \vdots \\
0 & C_{p-1} & 0 & \cdots & \cdots & \cdots & 0 & 0 & D_{p-1} & 0 & \cdots & \cdots & \cdots & 0
\end{array}\right),
$$

therefore for the matrix B in Proposition 2, $B=\oplus_{k=0}^{p-1} B_{k}$ and rank $B=\Sigma_{k=0}^{p-1}$ rank B_{k}.

Claim 2. For the matrix $B_{k}(k=0,1,2, \cdots, p-1)$, $\operatorname{rank} B_{k}$ is even.
Proof. Since $\left.g\right|_{F}$ preserves the orientation of F, for $x \in G_{k} \oplus H_{k}$ and $y \in G_{p-k} \oplus H_{p-k},[x, y]=(\operatorname{deg} g)\left[g_{*}(x), g_{*}(y)\right]=\left[g_{*}(x), g_{*}(y)\right]$. And $\left.g_{*}\right|_{G_{k} \oplus H_{k}}:$ $G_{k} \oplus H_{k} \rightarrow G_{p-k} \oplus H_{p-k}$ is represented by the matrix $N_{k}(k=0,1, \cdots p-1)$. Since the representation matrix of $\left.[]\right|_{,G_{k} \times H_{p-k}}$ is $E_{m}(k=1,2, \cdots p-1)$ and the representation matrix of $\left.[]\right|_{,G_{0} \times H_{0}}$ is E_{m+1}, representation matrices of [,]: $\left(G_{k} \oplus H_{k}\right) \times\left(G_{p-k} \oplus H_{p-k}\right) \rightarrow \mathbf{C}(k=1,2, \cdots, p-1)$ is $\left(\begin{array}{cc}0 & E_{m} \\ -E_{m} & 0\end{array}\right)$, and representation matrices of $[]:,\left(G_{0} \oplus H_{0}\right) \times\left(G_{0} \oplus H_{0}\right) \rightarrow \mathbf{C}$ is $\left(\begin{array}{cc}0 & E_{m+1} \\ -E_{m+1} & 0\end{array}\right)$.

Hence for $k=0,1,2, \cdots p-1$, we have the following relation;

$$
N_{k}^{\top}\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right) N_{p-k}=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)
$$

where

$$
E= \begin{cases}E_{m+1} & \text { if } k=0 \\ E_{m} & \text { if } k=1,2, \cdots, p-1\end{cases}
$$

and P^{\top} is the transpose of the matrix P. By $N_{p-k}=N_{k}^{-1}$ and $N_{k}=\left(\begin{array}{ll}A_{k} & B_{k} \\ C_{k} & D_{k}\end{array}\right)$, we have

$$
\left(\begin{array}{ll}
A_{k}^{\top} & C_{k}^{\top} \\
B_{k}^{\top} & D_{k}^{\top}
\end{array}\right)\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)\left(\begin{array}{ll}
A_{k} & B_{k} \\
C_{k} & D_{k}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
-C_{k}^{\top} & A_{k}^{\top} \\
-D_{k}^{\top} & B_{k}^{\top}
\end{array}\right)=\left(\begin{array}{cc}
C_{k} & D_{k} \\
-A_{k} & -B_{k}
\end{array}\right)
$$

This means the matrix B_{k} is alternating. Hence $\operatorname{rank} B_{k}$ is even.
This completes the proof of Claim 2.
By Proposition 2, $\beta_{1}(M)=\operatorname{dim} H_{1}\left(M_{1}\right)-\operatorname{rank} B=p m+1-\Sigma_{k=0}^{p-1} \operatorname{rank} B_{k}$. By Claim 2, $\Sigma_{k=0}^{p-1} \mathrm{rank} B_{k}$ is even.

In the case that p is even, $p m$ is even and $\beta_{1}(M)$ is an odd number.
In the case that p is odd and m is even, $p m$ is even and $\beta_{1}(M)$ is also an odd number.

In the case that p is odd and m is odd, $\beta_{1}(M)$ is an even number. Since B_{k} $(k=1,2, \cdots, p-1)$ is an $m \times m$-matrix and has even rank, we have $m-\operatorname{rank} B_{k} \geq$ 1 for $k=1,2, \cdots, p-1$. Therefore

$$
\begin{aligned}
\beta_{1}(M) & =p m+1-\Sigma_{k=0}^{p-1} \operatorname{rank} B_{k} \\
& =m+1-\operatorname{rank} B_{0}+\Sigma_{k=1}^{p-1}\left(m-\operatorname{rank} B_{k}\right) \\
& \geq \Sigma_{k=1}^{p-1} 1 \\
& =p-1 .
\end{aligned}
$$

This completes the proof of Theorem 1.

3. Proof of Theorem 2

In this section, we construct a 3 -manifold M such that a dihedral group acts on M and the fixed point set of the action consists of a finite number of points.

Proof of Theorem 2. To prove Theorem 2 it is enough to treat the following three cases.

Case 1) b is odd and p is an integer which is greater than one.
Case 2) p is an odd integer and b is an even integer which is greater than or equal to $p+1$.

Case 3) p is an odd integer and $b=p-1$.
Case 1)
Let $M=F \times S^{1}$, where F is a closed orientable surface of genus $(b-1) / 2$, and S^{1} is a 1 -dimensional sphere. F admits an orientation preserving involution g^{\prime}. (We can find such involution, for example, as a restriction of a π-rotation of R^{3} to the surface in a standard position in R^{3}.) We identify S^{1} with $\left\{e^{i \theta} \mid \theta \in R\right\}$. Then we construct homeomorphisms g and h as follows;

$$
\begin{array}{cc}
g & : F \times S^{1} \rightarrow F \times S^{1} \\
& g\left(x, e^{i \theta}\right)=\left(g^{\prime}(x), e^{-i \theta}\right) \\
h & : F \times S^{1} \rightarrow F \times S^{1} \\
& h\left(x, e^{i \theta}\right)=\left(x, e^{i(\theta+2 \pi) / p}\right)
\end{array}
$$

Then we can see that g and h generate a dihedral group $D_{2, p}=\langle g, h| g^{2}=$ $\left.h^{p}=(g h)^{2}=1\right\rangle$ acting on M. If g^{\prime} is free then $D_{2, p}$ acts freely, and if g^{\prime} has a fixed point, the fixed point set of the action of this group consists of a finite number of points.

This completes the proof for Case 1).

Case 2)

Consider a 3-manifold $M=F \times S^{1}$ and a dihedral group $D_{2, p}=\langle g, h| g^{2}=$ $\left.h^{p}=(g h)^{2}=1\right\rangle$ acting on M as in the Case 1) such that M and $D_{2, p}$ satisfy the following conditions;
(1) p is the given odd number,
(2) the genus of F is $(b-p-1) / 2$,
(3) g is constructed from g^{\prime} with $\operatorname{Fix}\left(g^{\prime}, F\right) \neq \emptyset$.

We consider p copies $X_{0}, X_{1}, \cdots, X_{p-1}$ of $S^{2} \times S^{1}$. Let I_{i} be an identification map from X_{0} to $X_{i}(i=1,2, \cdots, p-1)$. Note that $X_{0}=S^{2} \times S^{1}$ admits an orientation reversing involution f_{0} with four fixed points. Take a fixed point x_{0} of f_{0} in X_{0}. Let f_{i} be the involution on X_{i} defined by $f_{i}=I_{i} f_{0} I_{i}^{-1}$ and $x_{i}=I_{i}\left(x_{0}\right)$ ($i=1,2, \cdots p-1$). Let y be a point of M with $g(y)=y$. Then there is a g equivariant regular neighborhood of $y, N(y)$ such that $N(y), h N(y), h^{2} N(y), \cdots$, $h^{p-1} N(y)$ are mutually disjoint. Furthermore there is an f_{i}-equivariant regular neighborhood $N\left(x_{i}\right)$ of x_{i} in $X_{i}(i=0,1, \cdots p-1)$. We attach $X_{i}-\operatorname{int}\left(N\left(x_{i}\right)\right)$ ($i=0,1, \cdots, p-1$) to $M-\cup_{i=0}^{p-1} \operatorname{int}^{i}(N(y))$ so that identifying maps satisfy the following conditions.
(1) $\partial N(y)$ is identified with $\partial N\left(x_{0}\right)$ by an identifying map $J: \partial N\left(x_{0}\right) \rightarrow$ $\partial N(y)$ which satisfies the relation $\left.g\right|_{\partial N(y)} J=\left.J f_{0}\right|_{\partial N\left(x_{0}\right)}$.
(2) $\partial h^{i} N(y)$ is identified with $\partial N\left(x_{i}\right)$ by the identifying map $\left.h^{i} J I_{i}^{-1}\right|_{\partial N\left(x_{i}\right)}$ $: \partial N\left(x_{i}\right) \rightarrow \partial h^{i} N(y)$.
Then we can obtain a manifold M^{\prime} which is a connected sum of $F \times S^{1}$ and $X_{0}, X_{1}, \cdots, X_{p-1}$. There is an orientation preserving homeomorphism on M^{\prime} with period p induced by h on M. There is an orientation reversing involution on M^{\prime} induced by g on M and f_{i} on $X_{i}(i=0,1,, \cdots, p-1)$. We can see that these homeomorphisms on M^{\prime} generate a dihedral group. Note that $\beta_{1}(M)$ $=2 \times(b-p-1) / 2+1=b-p$, therefore $\beta_{1}\left(M^{\prime}\right)=b$.

This completes the proof for Case 2).

Case 3)

In this case, we construct homeomorphisms of a connected sum of ($p-1$) $S^{2} \times S^{1}$'s such that the homeomorphisms generate a dihedral group.

As the first step, we define an orientation preserving dihedral group action on S^{3}. Put $S^{3}=\{(s, t, r) \mid s, t \in R, 0 \leq r \geq 1\} /\langle(s, t, r) \sim(s+2 \pi, t, r),(s, t, r) \sim$ $\left.(s, t+2 \pi, r),(s, t, r) \sim(s, t, r+2 \pi),(s, t, 0) \sim\left(s^{\prime}, t, 0\right),(s, t, 1) \sim\left(s, t^{\prime}, 1\right)\right\rangle$ and give an orientation. Define orientation preserving periodic homeomorphisms k and f by

$$
\begin{aligned}
k(s, t, r) & =(s+2 \pi / p, t+2 \pi / p, r) \\
f(s, t, r) & =(-s,-t, r)
\end{aligned}
$$

Then k and f generate a dihedral group $G=\left\langle f, k \mid f^{2}=k^{p}=(f k)^{2}=1\right\rangle$. Note that k is free and f fixes the curve $\{(s, t, r) \mid s, t,=0, \pi\}$. Let B be a regular neighborhood of the point $(0,0,0)$ such that $f(B)=B$ and $B, k(B)$,
$k^{2}(B), \cdots, k^{p-1}(B)$ are mutually disjoint. Then $\cup_{i=0}^{p-1} k^{i}(B)$ is G-equivariant since $f\left(k^{i}(B)\right)=k^{-i} f(B)=k^{-i}(B)$.

Put $V_{1}=S^{3}-\cup_{i=0}^{p-1} \operatorname{int} k^{i}(B)$ and $k_{1}=\left.k\right|_{V_{1}}, f_{1}=\left.f\right|_{V_{1}}$. Let V_{2} be a manifold which is obtained from a copy of V_{1} by reversing the orientation of it and I the orientation reversing homeomorphism from V_{2} to V_{1} which is induced from the identification map. Then V_{2} also have an orientation preserving homeomorphisms $k_{2}=I^{-1} k_{1} I$ and $f_{2}=I^{-1} f_{1} I$. The homeomorphisms k_{2} and f_{2} generate a dihedral group.

We construct a closed 3-manifold M from V_{1} and V_{2} by identifying ∂V_{2} with ∂V_{1} through the identifying map $f_{1} I$. Define homomorphisms g and h of M as follows;

$$
\left.g\right|_{V_{1}}=I^{-1},\left.g\right|_{V_{2}}=I,\left.h\right|_{V_{1}}=k_{1},\left.h\right|_{V_{2}}=k_{2}^{-1}
$$

Then M is a connected sum of $(p-1) S^{2} \times S^{1}$ s. We can check that g and h are well defined by the following relations. (Note that $f_{i}^{2}=\mathrm{id}$. and $k_{i} f_{i}=f_{i} k_{i}^{-1}$.) For $x \in \partial V_{2}$,

$$
\begin{aligned}
g\left(f_{1} I(x)\right) & =I^{-1} f_{1} I(x) \\
& =\left(f_{1} I\right)^{-1}(g(x)) \\
h\left(f_{1} I(x)\right) & =k_{1} f_{1} I(x)=f_{1} k_{1}^{-1} I(x)=f_{1} I k_{2}^{-1}(x) . \\
& =f_{1} I(h(x))
\end{aligned}
$$

We can check that g is an orientation reversing involution and h is an orientation preserving free periodic homeomorphism of period p. The homeomorphisms g and h generate a dihedral group $D_{2, p}$ since for $x \in V_{1}, g h g h(x)=I k_{2}^{-1} I^{-1} k_{1}(x)$ $=I k_{2}^{-1} k_{2} I^{-1}(x)=x$, and for $x \in V_{2}, \operatorname{ghgh}(x)=I^{-1} k_{1} I k_{2}^{-1}(x)=k_{2} k_{2}^{-1}(x)=x$. The fixed point set of the action of this group is finite since it consists of the points corresponding to $\operatorname{Fix}\left(G, S^{3}\right) \cap\left(\cup_{i=0}^{p-1} k^{i}(\partial B)\right)$. Therefore we have a dihedral group $D_{2, p}=\left\langle g, h \mid g^{2}=h^{p}=(g h)^{2}=1\right\rangle$ which acts on a connected sum of ($p-1$) $S^{2} \times S^{1}$,s with the fixed point set consisting of $2 p$ points.

This completes the proof for Case 3).
This completes the proof of Theorem 2.

References

[1] G.E. Bredon, "Introduction to compact transformation groups", Pure and applied mathematics, \# 46, Academic press, New York, London, 1972.
[2] J.F. Davis and R.J. Milgram, Free actions on products of spheres: The rational case, Math. Z., 207 (1991), 379-390.
[3] D.B.A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc., 11 (1961), 469-484.
[4] J. Hempel, 3-MANIFOLDS, Annals of Math. Studies \# 86, Princeton Univ. Press, 1976.
[5] J. Przytycki, Free actions of Z_{n} on handlebodies and surfaces, Bull. Acad. Polon. Sci., 26 (1978), 617-624.
[6] M. Kobayashi, E. Luft and S. Wang, A finite group acting on a rational homology 3sphere with 0-dimensional fixed point set must be Z_{2}, Topology, 36 (1997), 509-518.
[7] J. Kalliongis, A. Miller, Equivalence and strong equivalence of actions on handlebodies, Trans. Amer. Math. Soc., 308 (1988), 721-745.
[8] T. Nagase, A generalization of Reidemeister-Singer theorem on Heegaard splittings, Yokohama Math. J., 27 (1979), 23-47.
[9] S. Negami, Branched coverings of PL involutions on 3-manifolds, Science Reports of the Yokohama National University Section I, 37 (1990), 1-12.
[10] J.H. Rubinstein, One-sided Heegaard splittings of 3-manifolds, Pacific J. Math., (1978),185-200.
[11] S. Wang, The virtual Z-representability of 3-manifolds which admit orientation reversing involution, Proc. Amer. Math. Soc., 110 (1990), 499-503.

Masako Kobayashi
Assumption Junior College
Nyoidani 1-13-23,
Minno, Osaka, 562-8543
Japan

[^0]: 1991 Mathematics Subject Classification: Primary 57M60; secondary 57N10, 57S17, 57S25.
 Key words and phrases: 3-manifolds, group actions, Betti number, orientation reversing homeomorphisms.

