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Abstract. In this paper, we consider an orientable closed 3-manifold M which
admits a dihedral group D2, (p > 1) action such that D3, contains orientation
reversing involutions, and the fixed point set consists of a finite number of points.
For such a pair (M, D2 ), we study the problem that which integer can occur as
the first Betti number ¢ = 81(M) of M. For a pair (M, D2,;,) as above we have
(1) q is odd, or (2) p is odd and q is even integer greater than or equal to p — 1.
Furthermore, for any pair of integers (p, g) with condition (1) or (2), there is a
pair (M, D2, ,) as above with 8;(M) = q.

1. Introduction

Throughout this paper we work in the piecewise-linear category.

Suppose a finite group G acts on a space X. The fixed point set of an action
of G on M is the set {z|z € X, g(z) = z for some g € G, g # id}.

In 1961, D.B.A Epstein [3] proved that a finite group acting on a homotopy
3-sphere with 0-dimensional fixed point set must be Z; (see [3] or [4]). In 1988,
Mess observed that ”homotopy 3-phere” can be replaced by ”integral homology
sphere”. A proof of Mess’s observation can be found in [11]. In [6] the followings
are proved.

Theorem A. [6] A finite group acting on a rational homology 3-sphere with
0-dimensional fized point set must be Z,.

Theorem A immediately follows from the following two results.

Theorem B. [6] If a finite group G # Z; acts on a rational homology 3-
sphere with 0-dimensional fized point set, then G must contain a dihedral group
Dyn = (g9,h | g2 = h™ = (gh)?2 = 1) withn > 1 odd as a subgroup where g is
orientation reversing and h is orientation preserving.
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Theorem C. [6] A dihedral group D,, with odd n > 1 can not act on a
rational homology 3-sphere with 0-dimensional fixed point set.

At first, we give an extension of Theorem C for general closed orientable
3-manifolds.
Let 5,(M) be the first Betti number of M. We prove the following.

Theorem 1. Suppose that a dihedral group Dy, (p > 1) acts on a closed
orientable 3-manifold M so that

(a) Dap=(g,h| g*>=hP=(gh)? =1), g reverses the orientation of M, and
h preserves the orientation of M,
(b) the fized point set of the action of D, consists of a finite number of points

(possibly empty).
Then one of the following statements is hold:
(1) B1(M) is odd.
(2) p is odd and B,(M) is even integer greater than or equal to p — 1.

Note that implies that if M satisfy the conditions (a) and (b),
then (1(M) can not be 0. This is just the assertion of Theorem C.
Then we show that the conditions (1) and (2) in are sufficient for

the existence of M and D, , with the conditions (a), (b) and the prescribed first
Betti number.

Theorem 2. For any pair of integers (p,b)(p > 1) such that

(1) b is odd, or

(2) pis odd and b is an even number greater than or equal to p—1,

there exists an orientable 3-manifold M such that

(é) B(M)=b, and

(ii1) M admits an action of a dihedral group D, , = (g, h | g2 = h? = (gh)? = 1)
such that

(a) g reverses the orientation of M and h preserves the orientation of M,
(b) the fized point set of the action of Dy, on M consists of a finite
number of points.

Remark. In case of orientation preserving group actions, F.Davis and
R.J. Milgram [2] noted that for any finite group G there is a rational homology
3-sphere admitting an orientation preserving free G action.
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2. Proof of Theorem 1

For the proof of [Theorem 1|, we use Heegaard splittings of 3-manifolds. We
say that a triple (My, M, : F) is a Heegaard splitting of a closed 3-manifold M if
M1 UM2 = M, 8M1 = 6M2 = M1 ﬂMz = F and M1 and M2 are handlebodies.

Proposition 1. Suppose that a dihedral group Dyp = (g,h | g2 = h? =
(gh)? = 1) acts on an orientable closed 3-manifold M so that

(1) g reverses the orientation of M,

(2) h preserves the orientation of M, and

(3) the fized point set of the action of D, , on M consists of a finite number
of points (possibly empty).

Then there exists a Heegaard splitting (My, M, : F) of M such that g(M;) =
M3_..,' and h(M,,) = Mi (1, = 1,2).

To prove [Proposition 1], we use the following lemma (cf. Proposition 2.2 ,
see also [9]).

Lemma. Let M be a closed orientable 3-manifold admitting an orientation
reversing involution g (i.e. g2 = id.) such that the fized point set of g on M
consists of a finite number of points. Then there is a Heegaard splitting (M, , M, :
F) of M such that g(M,) = M.

Proof. We show that there are two (possibly disconnected) submanifolds
M3}, M3 of M and an embedded 2-manifold F* such that M = M} U M3,
M{ 0O M3 = OM} = OMy = F*, and g(M}) = M}, g(F*) = F*. Then by
trading 1-handles of M} and Mj g-equivariantly as in the proof of Proposition
2.4 in [8] or in the proof of in [10], we can obtain a Heegaard splitting
(Ml,Mg : F) of M such that g(M,;) = M3_,’ (Z = ]., 2)

Hence in the rest of the proof of we give the existence of M}, M3 as
above.

For a triangulation K of M, K* denotes the i-skeleton of K , N, denotes
the simplicial star neighborhood of z in K, and K’ denotes the barycentric
subdivision of K. For an involution g of M, Fix(g, M) denotes the set {z €
M | g(z) = z}.

It is easy to see that there exists a triangulation K of M such that g:K— K
is a simplicial isomorphism and in particular if Fix(g, M) # 0, K satisfies;

(K1) Fix(g, M) c K°,
(K2) for z1,z, € Fix(g, M), Nz, NN, =0.

For the proof of we analyze the set N, for z € Fix(g, M).



76 M. KOBAYASHI

Claim. For each fized point x of g, there ezists a simplicial closed curve {5
on ON, such that g(£z) = Ly, €z C (K')* and & N K® = 0.

Proof of Claim. By conditions (K1) and (K2), we can take a subset V
of (ON,)° such that V U g(V) = (ON;)°? and V N g(V) = 0. Let U be a star
neighborhood of V in (ON,)’. Since (ON;)' is a barycentric subdivision of 0Nz, U
is a union of planar surfaces such that UUg(U) = 8N, UNg(U) = 0U = 8g(U)
- and g(U) = cl(8N, — U). Hence g(0U) = 0U, 0U C (K')1, 8UNK° = 0.

Assume that for any component £ C 8U, g(¢) # £. Let p: ON, — ON;/g
be the standard projection. Since p(0N,) = ON./g is a projective plane, for
a sufficiently small annulus neighborhood N; of £ in N, p(N) is an annulus.
Hence a small regular neighborhood of p(8U) in &N, /g is a union of annulus
and N, /g — p(dU) contains a nonorientable region W. Since N, is orientable,
p~L(W) is connected. Then p~}(W) C 8N, — dU and g(p~'(W)) = p~H(W)
contradicting the above assertion g(U) = cl(0N; — U).

Therefore there exists a simplicial closed curve £, C dU such that g(£;) = 45,
¢, c (K" and eNK° = 0.

This completes the proof of Claim. []

Since g(£;) = £z, there exists a properly embedded disk D, in N; such that
8D, = ¢, and g(D;) = D, (Hence x € D;). Note that the curve £, divides ON,
into two 2-cells Bg; and Bga with g(Bgz1) = Bga. Let V;; be the vertices of ON?
that lie in Bg;, i = 1,2. Then ON? = V,1 U V;2 and g(Vz1) = Vaa.

Since g is an involution and does not fix any element in K 0_Fix(g, M), we
can easily see that there is a subset V of K°—Fix(g, M) such that

(1) Vug(V) = K°-Fix(g, M),
(2) vng(V) =0,
(3) Vu1 CV, Vip C g(V) for each element z €Fix(g, M).

Now we return to the proof of Let €1, €3, - -, €, be the 1-simplices of
K which intersect both V and g{V). Let D; be the dual 2-cell of e; with respect
to K,i=1,2,---,n. Note that g(e;) = e; for some j and that g(D;) = D;. Let
D = {D;,Ds,--,Dn}. Then the elements of D intersect a 3-simplex of K as
indicated in Figure 1.

Thus D forms a (punctured) surface F§ (not necessarily connected) in M with
g(F?) = F¢. Note that for each z of Fix(g, M), F§ NON; = £,. Hence F* = (F3
UzeFix(g,M)(F§ NNz)) UzeFix(g,M) Dz is a closed surface with g(F*) = F* and
Fix(g, M) C F*. Let M} be the closure of all components of M — F™* intersecting
V. If there is a vertex v in a component M’ of M} with v € g(V), then there is
a vertex v € VN M’ and a path a € K! N M’ connecting v and v/, but such
a path must meet D, a contradiction. So M{ misses g(V). Now let M3 be the
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7
Fix(g, M)

* €V (g(V), resp,)
o € g(V) (V, resp.)

Figure 1

closure of M — M}. Then M} N M} = OM{ = OM3 = F*, and since V C M}
and g(V) € Mg, g(M}) = Mj.
This completes the proof of O

Proof of [Proposition 1. Let M = M/h and ¢ : M — M be the quotient
map. Since h is a free action, g: M — M is a regular covering. The orientation
reversing involution g : M — M induces a unique orientation reversing involution
g: M — M such that q9 = gq.

Suppose that there is a fixed point y € M of §g. Then for € M such
that g(z) = y, we have ¢(g(z)) = 99(z) = g(y) = y. Therefore hig(z) = z
for some integer i, and z is a fixed point of the action of D;, on M. Since
the fixed point set of the action of D, , on M, consists of a finite number of
points, Fix(g, M) also consists of a finite number of points. Hence by
there exists a Heegaard splitting (M, M, : F) of M such that §(M;) = M, and
§g(F)=F. Put M; = q~1(M;),i=1,2, and F = q~1(F). Then M; amd M, are
handlebodies. Hence (My, M, : F) is a Heegaard splitting of M satisfying the
equations g(M;) = Ms_; and h(M;) = M; (i = 1,2) by construction.

This completes the proof of [Proposition 1. []

Let g be an involution of a 3-manifold M and (M1, M; : F) a Heegaard
splitting of M such that g(M;) = M;_; (i=1,2). Let z1, Za,- -+, Zn, Y1, Y2, -,
Yn be a basis of H;(F) so that I(zy), I(z2), ---, I(zy) is a basis of Hy (M)
and I(y;) = 0 (i = 1,2,---,n), where I is the homomorphism from H,(F) to
H, (M) induced by the inclusion map from F to M;. Then we have a matrix

B
é D of (9|F)« corresponding to the basis z1, 3, ceo ) Tl
Y2, ***, Yn, Where A, B,C, D are dimH; (M;)xdimH, (M;) matrices.

representation
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Proposition 2. Let M, My, M2, A, B, C, D be as above, then
B1(M) = dimH;(M;) — rankB.

Proof. There is the following exact sequence of homology groups.
= Hy(M) — Hy(F) & Hy(My) @ Hy(My) — Hy(M) — -

where J is the homomorphism from H;(F) to Hy(M;) induced by the inclusion
map F to M,. Therefore H,(M) = Hy(M;)® H1(M3)/Im(I & J). Note that the
elements g.I(x1), g«I(x2), -+, g«I(zy) are a basis for Hy(Mz) and g.[(y:) =
0 (Z = 1)2""’")' The elements g*(zl)’ g*(1:2), R g*(xn)’ g*(yl)’ g*(yZ)a
.-+, gx(yn) are also a basis for Hy(F). Let ai; (bij, cij, dij, resp.) be the ij-
element of the matrix A (B, C, D, resp.). Then H;(M) has a group presentation
as follows;

Hi(M) = (x1,Z2, 1 Tn, Y1, Y2, " "y Yns
9+ (1), g+ (z2), - -+ 1 94 (Tn), 9x (Y1), 9u (¥2), - - - y 9% (Yn)
|4 =0, g.«(x:) =0,
Y1052 + X716l = 9x(Zi),
2T 1bjizy + E7oqd5iy5 = g4 (vi)
(i=1,2,---,n))
= (21,Z2," " Tn, 9x(T1), 9x(%2), -, gx(zn)
| Ti105iz; = ge (),
Yl 1bjiz; =0
(:i=1,2,---,n) >

=< T1,%2,°**,Tn | Eg?zlbj,-xj =0 ('L = 1,2,-~,n)).

Therefore we have 8;(M) = n — rankB = dimH,(M,) — rankB.
This completes the proof of [Proposition 2. [

Proof of Theorem 1. By [Proposition 1], there exists a Heegaard splitting
(My, M, : F) of M such that g(M;) = Ms_; (i = 1,2). Note that g|r is an
orientation preserving involution of F', and h|F is an orientation preserving fixed
point free homeomorphism of F with period p.

In cyclic actions of a 3-dimensional handlebody are studied, and their
results imply that the homeomorphism h|ys, is conjugate to a homeomorphism
which is a restriction of 27 /p-rotation with respect to z-axis of R3 to a handle-
body in equivariant position as indicated in Figure 2. Therefore we may assume
that h|ps, is as indicated in Figure 2.
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Figure 2

In Figure 2, m is an integer with genus(M;) = pm + 1. Let zq, z1, o,
" Tmy Yo, Y15 Y2, *°+, Ym be cycles represented by essential simple closed
curves as indicated in Figure 2.

Define the vectors

1
Xik = —=SPon7Mhi(z;), i=1,2,---,m; k=0,1,---,p—1

/2
and
Yie = 72521 nhi(y), i=1,2,---,m; k=0,1,---,p—1.
where 7 = exp(2mi/p), i2 = —1.

Thenh(X:k)—ﬂkxtk,h(sz)—ﬂksz(Z—12 ,mk‘"OI P~
1), hu(zo) = 20, and h.(y) = ypo. By easy calculatlon we can see that the
eigenvalues of h, : Hj(F;C) — Hy(F;C) are n*, k = 0,1,---,p— 1. Let

Go (Hy, resp.) be the subspace generated by zo, X; 0, X» 05y Xmo (vo,
Y10, Y2,0, --+, Yo, resp.) and G (H, resp.) the subspace generated by
Xlk,ng, s Xmk (Y10, Y25, Yo, resp) (kK = 1,2, -wp—1). Then
G = @k—o Gk is a half spa.ce of Hy(F;C) such that G = I(G) = I(Hy(F;C))
&~ Hy(M;;C),and H = Hk = Ker/ . Since the generating elements of G,
Hy (k=0,1,2,--- ,p—1) are lmearly independent, dimGy = dimHy = m+1 and
dimGy = dlrnH,c =m(k=1,2,. —1). Note that Gk U Hj is the eigenspace

of h, corresponding to the elgenvalue n*, k=0,1,2,---p—1.
We define an intersection form [,] : H;(F; C) x Hl(F, C) — C as follows:
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Let ¢ be an isomorphism of H; (F; C) to Hy(F;Z)®C and for z,y € H1(F; C)
with ¢(z) =2’ ® A and ¢(y) =y ® 7 (¢',y' € Hi(F;Z), A\, 7 € C), put
[z,9] = [z’ ® A\, ¢ ® 7] = ArInt(a’,y')

where Int( , ) is the intersection form on Hy(F;Z) ® H1(F;Z).

Then [,] is a skew-symmetric bilinear form over C.

We can easily see that [,]lexe = [,]luxz = 0, [0, Yix] = [Xik,%] =0,
[170, yO] = 1, and

(R (z2), B ()] = {

Therefore for i # r, [Xik, Yrs) =0 (4,7 =1,2,---,m; k,s =0,1,---,p—1).
For Xi,k and )/i,s (l: 1,2,"',m; ka3=071a"'ap—1)a

1 fi=rand k=smodp
0 otherwise.

(X, Yis] = [—= L se-ly—kipi(ay), 2"‘ 0~ hi ()]

VB 7 =0
= SP_ =0 hi(z:), —=n"*hi (v
,_o[ﬁn () \/1577 (v:))
= ypmilyitkrs) |
P

— _]_‘ x Ef:é (n—(k+8))j.
p =

Therefore, if k + s # 0 mod p, then

1 1— (p~(kt+a))p
1 — n (k+3) - 0’

[X'L k) L1 a]
and if kK + s = 0 mod p, then

1 o |
[Xik, Yol = 2T501 = Pt

=

Hence if k + s # 0 mod p, then [, ]lgyxz, = 0, and the intersection form
[NlGexH,_x (k=1,---,p—1) corresponding to the above basis is represented by
the m xm 1dent1ty matrix E,,, and the intersection form [, ]|G,x x, on the above
basis is represented by the (m + 1) x (m + 1) identity matrix Ep 4.

Since the homomorphisms g, and h, satisfy the relations (g.h. )2 =g2=id,
for € G ® Hi, the following holds;

(hlF)«((glF)s (@) = (glF)« (hlF) ()
= (glF)«(n"*z)
=n"%(g|F)«(z)
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and (g|r)«(r) € Gp—x®Hp—k. The representation matrix of (g|r). corresponding
to the above basis for Go @ Hy ®G1® H; ®--- ® Gp—1 ® Hp_1 is as follows;

(No 0 e 0 \
0 0 0 M
: N, 0
E 0 : E
\0 N,_; 0 0/

where Ni is dim(Gg & Hy) xdim(Gy & Hy) matrix (k=0,1,2,---,p— 1). Since
g2 =id.,, Np_x = N ..

A By

Put N, = C. Dy

matrices (k = 0,1,2,---,p — 1). Then by appropriate changes of orders of rows

and columns, we can see that the representation matrix of (g|r). corresponding

to the above basis f GO H =Gy ®G1 & ®Gp—1 PHy @ H, ®--- D Hp_1 is

, where Ay, By, Cr and Dy are dim Gy X dim G

as follows;

(Ao 0 0 By O o 00
0 O 0 A4, O 0 0 B;
: Ay, 0 : B, 0
: 0 . D 0 : :
0 Ap_1 O 0 0 B,y 0 0
Co O - 0 Dy O o0 |
0 0 0 ¢ O 0 0 D,
: : C, 0 : D, 0
0 o0 - ;
\0 C,.1 O 0 0 Dy 0 0 )

therefore for the matrix B in [Proposition 2, B = ®2_{ By and rank B = ££_}

rank By.
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Claim 2. For the matriz By, (k=0,1,2,---,p— 1), rankBy, is even.

Proof. Since g|r preserves the orientation of F, for z € Gy ©® Hj and
Y € Gp—k ® Hp_t, [z,y] = (degg)[9+(z), 9« (¥)] = [9+(z), 9« (¥)]. And gu|c,0H, :
Gr ® Hx — Gp_ ® Hp— is represented by the matrix Ny (k=0,1,:--p—1).
Since the representation matrix of [ , lleixH,_, is Em (k=1,2,---p—1) and
the representation matrix of [, ]|g,xH, iS Em+1, representation matrices of [,]:

(Ge® He) X G-k @ Hpt) = C (k= 1,2,---,p=1)is (g ), and rep
resentation matrices of [ , | : (Go® Hp) X (Go® Hy) — C is ( EO E'S“).
—Lm+1

Hence for k = 0,1,2,.--p — 1, we have the following relation;

0 E 0 E
(5 0) %= (5 D),

where

E = Em+1 1fk=0
"\ En  ifk=1,2..-.,p—1

and PT is the transpose of the matrix P. By N,_; = N

and Nj = (é: g:), we have

Al cf 0 E\_ (0 E\[A: B
Bl DI J\-E 0) \-E 0)\C: Dy

-G A\ _[( G Dy
-Df Bl ) \-4A -B.)’
This means the matrix By, is alternating. Hence rank By is even.
This completes the proof of Claim 2. [J

By [Proposition 2, 81 (M) = dim Hy(M;) — rankB = pm + 1 — Ei;(l,ra.nkBk.
By Claim 2, £2_lrankBy, is even.

In the case that p is even, pm is even and 3;(M) is an odd number.

In the case that p is odd and m is even, pm is even and 3, (M) is also an odd
number.

In the case that p is odd and m is odd, 3;(M) is an even number. Since By,
(k=1,2,...,p—1) is an m X m-matrix and has even rank, we have m—rankBj, >

1for k=1,2,---,p— 1. Therefore

and
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B1(M) = pm + 1 — TP lrankBy,
=m+ 1 —rankBg + X2~} (m — rankBy)
-1
>¥rl
=p-—1.
This completes the proof of [Theorem 1. []

3. Proof of Theorem 2

In this section, we construct a 3-manifold M such that a dihedral group acts
on M and the fixed point set of the action consists of a finite number of points.

Proof of Theorem 2. To prove it is enough to treat the follow-
ing three cases.

Case 1) b is odd and p is an integer which is greater than one.

Case 2) p is an odd integer and b is an even integer which is greater than or
equal to p+ 1.

Case 3) p is an odd integer and b = p — 1.

Case 1)

Let M = F x S1, where F is a closed orientable surface of genus (b —1)/2,
and S is a 1-dimensional sphere. F' admits an orientation preserving involution
g’. (We can find such involution, for example, as a restriction of a 7-rotation of
R? to the surface in a standard position in R3.) We identify S! with {e*’|§ € R}.
Then we construct homeomorphisms g and h as follows;

g :Fx8'— FxS§!
g(z,e?) = (¢'(z),e~%)
h :F xSl FxSt

h(z, ) = (z, HC+27/7)

Then we can see that g and h generate a dihedral group D;p, = (g,h | g2 =
h? = (gh)? = 1) acting on M. If ¢’ is free then D, , acts freely, and if ¢’ has
a fixed point, the fixed point set of the action of this group consists of a finite
number of points.

This completes the proof for Case 1).

Case 2)

Consider a 3-manifold M = F x S! and a dihedral group D, , = (g,h | g2 =
h? = (gh)? = 1) acting on M as in the Case 1) such that M and D, ,, satisfy the
following conditions;
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(1) pis the given odd number,
(2) the genus of Fis (b—p—1)/2,
(3) g is constructed from ¢’ with Fix(¢', F) # 0.

We consider p copies Xo, X1, -+, Xp—1 of S2 x S1. Let I; be an identification
map from Xo to X; (i = 1,2,---,p — 1). Note that Xp = $2 x S! admits an
orientation reversing involution fo with four fixed points. Take a fixed point xo of
fo in Xp. Let f; be the involution on X; defined by f; = I; fol;” land z; = I;(zo)
(i =1,2,---p—1). Let y be a point of M with g(y) = y. Then there is a g-
equivariant regular neighborhood of y, N(y) such that N(y), hN(y), R?N(y), - - -,
hP~!N(y) are mutually disjoint. Furthermore there is an f;-equivariant regular
neighborhood N(z;) of z; in X; (: =0,1,---p—1). We attach X; — int(N(z;))
(:=0,1,---,p—1) to M — Uf__f()linth‘(N (y)) so that identifying maps satisfy the
following conditions.

(1) ON(y) is identified with ON(xo) by an identifying map J : ON(zg) —
ON (y) which satisfies the relation glan(y)J = J folan (zo)-

(2) OR'N(y) is identified with ON(z;) by the identifying map h*JI Yon(z:)
: ON(z;) — Oh*N(y).

Then we can obtain a manifold M’ which is a connected sum of F x S! and
Xo, X1, -y Xp—1. There is an orientation preserving homeomorphism on M !
with period p induced by h on M. There is an orientation reversing involution
on M’ induced by g on M and f; on X; (¢ = 0,1,,---,p —1). We can see
that these homeomorphisms on M’ generate a dihedral group. Note that (8,(M)
=2x (b—p—1)/2+1=b— p, therefore 5;(M') =b.

This completes the proof for Case 2).

Case 3)

In this case, we construct homeomorphisms of a connected sum of (p — 1)
52 x S1’s such that the homeomorphisms generate a dihedral group.

As the first step, we define an orientation preserving dihedral group action on
S3. Put S3 = {(s,t,7)|s,t € R, 0 <7 >1} /{(s,t,7) ~ (s +2m,t,7), (5,1,7) ~
(s,t + 2m,7), (s,t,7) ~ (s,t,7 + 2m), (s,¢,0) ~ (§,,0), (s,¢,1) ~ (s,t',1)) and
give an orientation. Define orientation preserving periodic homeomorphisms k&
and f by

k(s, t, ) = (s+2n/p, t+2m/p, 1),
f(s, t, )= (—s, —t, 7).

Then k and f generate a dihedral group G = (f,k |f2 = kP = (fk)? = 1).
Note that k is free and f fixes the curve {(s,t,7)|s,t,= 0,7}. Let B be a
regular neighborhood of the point (0,0,0) such that f(B) = B and B, k(B),
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k*(B), ---, kP~1(B) are mutually disjoint. Then UP_Jk*(B) is G-equivariant
since f(k*(B)) = k~if(B) = k~%(B).

Put Vi = S3 — UP—intk*(B) and k; = k|v;, f1 = flv,. Let V3 be a manifold
which is obtained from a copy of V; by reversing the orientation of it and I
the orientation reversing homeomorphism from V; to V3 which is induced from
the identification map. Then V; also have an orientation preserving homeomor-
phisms k; = I7'k; 1 and f, = I~ f;I. The homeomorphisms k, and f, generate
a dihedral group.

We construct a closed 3-manifold M from V; and V; by identifying 9V, with
0V through the identifying map f1I. Define homomorphisms g and h of M as
follows;

g|V1 = 1_1’ g'Vz =1, h’lvl = ki, h'V'z = kz—l-

Then M is a connected sum of (p— 1) S? x S!’s. We can check that g and h are
well defined by the following relations. (Note that f2 =id. and kif; = fik;!.)
For z € 9V,,

9(fil(z)) =I"' f1I(z)
= (AD) (g(z))

h(fil(2)) = k1fil(z) = fik7 ' I(z) = f1lk3 ().
= fil(h(x)).

We can check that g is an orientation reversing involution and h is an orienta-
tion preserving free periodic homeomorphism of period p. The homeomorphisms
g and h generate a dihedral group D, , since for z € V4, ghgh(z) = ITk; ' I~ 1k, (z)
= Iky'koI~'(z) = z, and for z € V,, ghgh(z) = Ik Ik Y (z) = koky  (z) = =
The fixed point set of the action of this group is finite since it consists of the
points corresponding to Fix(G, S%) N (UPZ1k#(8B)). Therefore we have a dihe-
dral group Djp, = (g,h | g2 = h? = (gh)? = 1) which acts on a connected sum
of (p — 1) §2 x S'’s with the fixed point set consisting of 2p points.

This completes the proof for Case 3).

This completes the proof of [Theorem 2. []
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