ORIENTATION REVERSING DIHEDRAL GROUP ACTIONS ON 3-MANIFOLDS

By

MASAKO KOBAYASHI

(Received November 8, 1994, Revised October 30, 1997)

Abstract. In this paper, we consider an orientable closed 3-manifold M which admits a dihedral group $D_{2,p}$ (p > 1) action such that $D_{2,p}$ contains orientation reversing involutions, and the fixed point set consists of a finite number of points. For such a pair $(M, D_{2,p})$, we study the problem that which integer can occur as the first Betti number $q = \beta_1(M)$ of M. For a pair $(M, D_{2,p})$ as above we have (1) q is odd, or (2) p is odd and q is even integer greater than or equal to p - 1. Furthermore, for any pair of integers (p,q) with condition (1) or (2), there is a pair $(M, D_{2,p})$ as above with $\beta_1(M) = q$.

1. Introduction

Throughout this paper we work in the piecewise-linear category.

Suppose a finite group G acts on a space X. The fixed point set of an action of G on M is the set $\{x | x \in X, g(x) = x \text{ for some } g \in G, g \neq id\}$.

In 1961, D.B.A.Epstein [3] proved that a finite group acting on a homotopy 3-sphere with 0-dimensional fixed point set must be Z_2 (see [3] or [4]). In 1988, Mess observed that "homotopy 3-phere" can be replaced by "integral homology sphere". A proof of Mess's observation can be found in [11]. In [6] the followings are proved.

Theorem A. [6] A finite group acting on a rational homology 3-sphere with 0-dimensional fixed point set must be Z_2 .

Theorem A immediately follows from the following two results.

Theorem B. [6] If a finite group $G \neq Z_2$ acts on a rational homology 3sphere with 0-dimensional fixed point set, then G must contain a dihedral group $D_{2,n} = \langle g, h | g^2 = h^n = (gh)^2 = 1 \rangle$ with n > 1 odd as a subgroup where g is orientation reversing and h is orientation preserving.

¹⁹⁹¹ Mathematics Subject Classification: Primary 57M60; secondary 57N10, 57S17, 57S25. Key words and phrases: 3-manifolds, group actions, Betti number, orientation reversing homeomorphisms.

Theorem C. [6] A dihedral group $D_{2,n}$ with odd n > 1 can not act on a rational homology 3-sphere with 0-dimensional fixed point set.

At first, we give an extension of Theorem C for general closed orientable 3-manifolds.

Let $\beta_1(M)$ be the first Betti number of M. We prove the following.

Theorem 1. Suppose that a dihedral group $D_{2,p}$ (p > 1) acts on a closed orientable 3-manifold M so that

- (a) $D_{2,p} = \langle g, h | g^2 = h^p = (gh)^2 = 1 \rangle$, g reverses the orientation of M, and h preserves the orientation of M,
- (b) the fixed point set of the action of $D_{2,p}$ consists of a finite number of points (possibly empty).

Then one of the following statements is hold:

(1) $\beta_1(M)$ is odd.

(2) p is odd and $\beta_1(M)$ is even integer greater than or equal to p-1.

Note that Theorem 1 implies that if M satisfy the conditions (a) and (b), then $\beta_1(M)$ can not be 0. This is just the assertion of Theorem C.

Then we show that the conditions (1) and (2) in Theorem 1 are sufficient for the existence of M and $D_{2,p}$ with the conditions (a), (b) and the prescribed first Betti number.

Theorem 2. For any pair of integers (p,b)(p > 1) such that

- (1) b is odd, or
- (2) p is odd and b is an even number greater than or equal to p-1,

there exists an orientable 3-manifold M such that

- (i) $\beta_1(M) = b$, and
- (ii) M admits an action of a dihedral group $D_{2,p} = \langle g, h \mid g^2 = h^p = (gh)^2 = 1 \rangle$ such that
 - (a) g reverses the orientation of M and h preserves the orientation of M,
 - (b) the fixed point set of the action of $D_{2,p}$ on M consists of a finite number of points.

Remark. In case of orientation preserving group actions, F.Davis and R.J. Milgram [2] noted that for any finite group G there is a rational homology 3-sphere admitting an orientation preserving free G action.

 $\mathbf{74}$

2. Proof of Theorem 1

For the proof of Theorem 1, we use Heegaard splittings of 3-manifolds. We say that a triple $(M_1, M_2 : F)$ is a *Heegaard splitting* of a closed 3-manifold M if $M_1 \cup M_2 = M$, $\partial M_1 = \partial M_2 = M_1 \cap M_2 = F$ and M_1 and M_2 are handlebodies.

Proposition 1. Suppose that a dihedral group $D_{2,p} = \langle g, h \mid g^2 = h^p = (gh)^2 = 1 \rangle$ acts on an orientable closed 3-manifold M so that

- (1) g reverses the orientation of M,
- (2) h preserves the orientation of M, and
- (3) the fixed point set of the action of $D_{2,p}$ on M consists of a finite number of points (possibly empty).

Then there exists a Heegaard splitting $(M_1, M_2 : F)$ of M such that $g(M_i) = M_{3-i}$ and $h(M_i) = M_i$ (i = 1, 2).

To prove Proposition 1, we use the following lemma (cf. Proposition 2.2 [6], see also [9]).

Lemma. Let M be a closed orientable 3-manifold admitting an orientation reversing involution g (i.e. $g^2 = id$.) such that the fixed point set of g on M consists of a finite number of points. Then there is a Heegaard splitting $(M_1, M_2 : F)$ of M such that $g(M_1) = M_2$.

Proof. We show that there are two (possibly disconnected) submanifolds M_1^* , M_2^* of M and an embedded 2-manifold F^* such that $M = M_1^* \cup M_2^*$, $M_1^* \cap M_2^* = \partial M_1^* = \partial M_2^* = F^*$, and $g(M_1^*) = M_2^*$, $g(F^*) = F^*$. Then by trading 1-handles of M_1^* and M_2^* g-equivariantly as in the proof of Proposition 2.4 in [8] or in the proof of Theorem 1 in [10], we can obtain a Heegaard splitting $(M_1, M_2 : F)$ of M such that $g(M_i) = M_{3-i}$ (i = 1, 2).

Hence in the rest of the proof of Lemma we give the existence of M_1^* , M_2^* as above.

For a triangulation K of M, K^i denotes the *i*-skeleton of K, N_x denotes the simplicial star neighborhood of x in K, and K' denotes the barycentric subdivision of K. For an involution g of M, Fix(g, M) denotes the set $\{x \in M \mid g(x) = x\}$.

It is easy to see that there exists a triangulation K of M such that $g: K \to K$ is a simplicial isomorphism and in particular if $Fix(g, M) \neq \emptyset$, K satisfies;

(K1) $\operatorname{Fix}(g, M) \subset K^0$,

(K2) for $x_1, x_2 \in Fix(g, M), N_{x_1} \cap N_{x_2} = \emptyset$.

For the proof of Lemma, we analyze the set ∂N_x for $x \in Fix(g, M)$.

Claim. For each fixed point x of g, there exists a simplicial closed curve ℓ_x on ∂N_x such that $g(\ell_x) = \ell_x$, $\ell_x \subset (K')^1$ and $\ell_x \cap K^0 = \emptyset$.

Proof of Claim. By conditions (K1) and (K2), we can take a subset V of $(\partial N_x)^0$ such that $V \cup g(V) = (\partial N_x)^0$ and $V \cap g(V) = \emptyset$. Let U be a star neighborhood of V in $(\partial N_x)'$. Since $(\partial N_x)'$ is a barycentric subdivision of ∂N_x , U is a union of planar surfaces such that $U \cup g(U) = \partial N_x$, $U \cap g(U) = \partial U = \partial g(U)$ and $g(U) = cl(\partial N_x - U)$. Hence $g(\partial U) = \partial U$, $\partial U \subset (K')^1$, $\partial U \cap K^0 = \emptyset$.

Assume that for any component $\ell \subset \partial U$, $g(\ell) \neq \ell$. Let $p: \partial N_x \to \partial N_x/g$ be the standard projection. Since $p(\partial N_x) = \partial N_x/g$ is a projective plane, for a sufficiently small annulus neighborhood N_ℓ of ℓ in ∂N_x , $p(N_\ell)$ is an annulus. Hence a small regular neighborhood of $p(\partial U)$ in $\partial N_x/g$ is a union of annulus and $\partial N_x/g - p(\partial U)$ contains a nonorientable region W. Since ∂N_x is orientable, $p^{-1}(W)$ is connected. Then $p^{-1}(W) \subset \partial N_x - \partial U$ and $g(p^{-1}(W)) = p^{-1}(W)$ contradicting the above assertion $g(U) = cl(\partial N_x - U)$.

Therefore there exists a simplicial closed curve $\ell_x \subset \partial U$ such that $g(\ell_x) = \ell_x$, $\ell_x \subset (K')^1$ and $\ell \cap K^0 = \emptyset$.

This completes the proof of Claim. \Box

Since $g(\ell_x) = \ell_x$, there exists a properly embedded disk D_x in N_x such that $\partial D_x = \ell_x$ and $g(D_x) = D_x$ (Hence $x \in D_x$). Note that the curve ℓ_x divides ∂N_x into two 2-cells B_{x1} and B_{x2} with $g(B_{x1}) = B_{x2}$. Let \mathcal{V}_{xi} be the vertices of ∂N_x^0 that lie in B_{xi} , i = 1, 2. Then $\partial N_x^0 = \mathcal{V}_{x1} \cup \mathcal{V}_{x2}$ and $g(\mathcal{V}_{x1}) = \mathcal{V}_{x2}$.

Since g is an involution and does not fix any element in K^0 -Fix(g, M), we can easily see that there is a subset \mathcal{V} of K^0 -Fix(g, M) such that

- (1) $\mathcal{V} \cup g(\mathcal{V}) = K^0 \operatorname{Fix}(g, M),$
- (2) $\mathcal{V} \cap g(\mathcal{V}) = \emptyset$,

(3) $\mathcal{V}_{x1} \subset \mathcal{V}, \mathcal{V}_{x2} \subset g(\mathcal{V})$ for each element $x \in \operatorname{Fix}(g, M)$.

Now we return to the proof of Lemma. Let e_1, e_2, \dots, e_n be the 1-simplices of K which intersect both \mathcal{V} and $g(\mathcal{V})$. Let D_i be the dual 2-cell of e_i with respect to $K, i = 1, 2, \dots, n$. Note that $g(e_i) = e_j$ for some j and that $g(D_i) = D_j$. Let $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$. Then the elements of \mathcal{D} intersect a 3-simplex of K as indicated in Figure 1.

Thus \mathcal{D} forms a (punctured) surface F_0^* (not necessarily connected) in M with $g(F_0^*) = F_0^*$. Note that for each x of $\operatorname{Fix}(g, M), F_0^* \cap \partial N_x = \ell_x$. Hence $F^* = (F_0^* \cup_{x \in \operatorname{Fix}(g,M)} (F_0^* \cap N_x)) \cup_{x \in \operatorname{Fix}(g,M)} D_x$ is a closed surface with $g(F^*) = F^*$ and $\operatorname{Fix}(g, M) \subset F^*$. Let M_1^* be the closure of all components of $M - F^*$ intersecting \mathcal{V} . If there is a vertex v in a component M' of M_1^* with $v \in g(\mathcal{V})$, then there is a vertex $v' \in \mathcal{V} \cap M'$ and a path $\alpha \subset K^1 \cap M'$ connecting v and v', but such a path must meet \mathcal{D} , a contradiction. So M_1^* misses $g(\mathcal{V})$. Now let M_2^* be the

Figure 1

closure of $M - M_1^*$. Then $M_1^* \cap M_2^* = \partial M_1^* = \partial M_2^* = F^*$, and since $\mathcal{V} \subset M_1^*$ and $g(\mathcal{V}) \subset M_2^*$, $g(M_1^*) = M_2^*$.

This completes the proof of Lemma. \Box

Proof of Proposition 1. Let $\overline{M} = M/h$ and $q: M \to \overline{M}$ be the quotient map. Since h is a free action, $q: M \to \overline{M}$ is a regular covering. The orientation reversing involution $g: M \to M$ induces a unique orientation reversing involution $\overline{g}: \overline{M} \to \overline{M}$ such that $qg = \overline{g}q$.

Suppose that there is a fixed point $y \in \overline{M}$ of \overline{g} . Then for $x \in M$ such that q(x) = y, we have $q(g(x)) = \overline{g}q(x) = \overline{g}(y) = y$. Therefore $h^ig(x) = x$ for some integer *i*, and *x* is a fixed point of the action of $D_{2,p}$ on *M*. Since the fixed point set of the action of $D_{2,p}$ on *M*, consists of a finite number of points, $\operatorname{Fix}(\overline{g}, \overline{M})$ also consists of a finite number of points. Hence by Lemma, there exists a Heegaard splitting $(\overline{M}_1, \overline{M}_2 : \overline{F})$ of \overline{M} such that $\overline{g}(\overline{M}_1) = \overline{M}_2$ and $\overline{g}(\overline{F}) = \overline{F}$. Put $M_i = q^{-1}(\overline{M}_i)$, i = 1, 2, and $F = q^{-1}(\overline{F})$. Then M_1 and M_2 are handlebodies. Hence $(M_1, M_2 : F)$ is a Heegaard splitting of *M* satisfying the equations $g(M_i) = M_{3-i}$ and $h(M_i) = M_i$ (i = 1, 2) by construction.

This completes the proof of Proposition 1. \Box

Let g be an involution of a 3-manifold M and $(M_1, M_2 : F)$ a Heegaard splitting of M such that $g(M_i) = M_{3-i}$ (i = 1, 2). Let $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$ be a basis of $H_1(F)$ so that $I(x_1), I(x_2), \dots, I(x_n)$ is a basis of $H_1(M_1)$ and $I(y_i) = 0$ $(i = 1, 2, \dots, n)$, where I is the homomorphism from $H_1(F)$ to $H_1(M_1)$ induced by the inclusion map from F to M_1 . Then we have a matrix representation $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ of $(g|_F)_*$ corresponding to the basis $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n, y_n$, where A, B, C, D are dim $H_1(M_1) \times \dim H_1(M_1)$ matrices.

Proposition 2. Let M, M_1 , M_2 , A, B, C, D be as above, then

$$\beta_1(M) = \dim H_1(M_1) - \operatorname{rank} B.$$

Proof. There is the following exact sequence of homology groups.

$$\cdots \to H_2(M) \to H_1(F) \xrightarrow{I \oplus J} H_1(M_1) \oplus H_1(M_2) \to H_1(M) \to \cdots$$

where J is the homomorphism from $H_1(F)$ to $H_1(M_2)$ induced by the inclusion map F to M_2 . Therefore $H_1(M) \cong H_1(M_1) \oplus H_1(M_2)/\operatorname{Im}(I \oplus J)$. Note that the elements $g_*I(x_1), g_*I(x_2), \cdots, g_*I(x_n)$ are a basis for $H_1(M_2)$ and $g_*I(y_i) =$ 0 $(i = 1, 2, \cdots, n)$. The elements $g_*(x_1), g_*(x_2), \cdots, g_*(x_n), g_*(y_1), g_*(y_2),$ $\cdots, g_*(y_n)$ are also a basis for $H_1(F)$. Let a_{ij} $(b_{ij}, c_{ij}, d_{ij}, \operatorname{resp.})$ be the ijelement of the matrix $A(B, C, D, \operatorname{resp.})$. Then $H_1(M)$ has a group presentation as follows;

$$\begin{split} H_1(M) &= \langle x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n, \\ g_*(x_1), g_*(x_2), \cdots, g_*(x_n), g_*(y_1), g_*(y_2), \cdots, g_*(y_n) \\ &\mid y_i = 0, \quad g_*(y_i) = 0, \\ &\sum_{j=1}^n a_{ji}x_j + \sum_{j=1}^n c_{ji}y_j = g_*(x_i), \\ &\sum_{j=1}^n b_{ji}x_j + \sum_{j=1}^n d_{ji}y_j = g_*(y_i) \\ &\quad (i = 1, 2, \cdots, n) \rangle \\ &= \langle x_1, x_2, \cdots, x_n, g_*(x_1), g_*(x_2), \cdots, g_*(x_n) \\ &\mid \sum_{j=1}^n b_{ji}x_j = g_*(x_i), \\ &\sum_{j=1}^n b_{ji}x_j = 0 \\ &\quad (i = 1, 2, \cdots, n) > \\ &= \langle x_1, x_2, \cdots, x_n \mid \sum_{j=1}^n b_{ji}x_j = 0 \ (i = 1, 2, \cdots, n) \rangle. \end{split}$$

Therefore we have $\beta_1(M) = n - \operatorname{rank} B = \dim H_1(M_1) - \operatorname{rank} B$.

This completes the proof of Proposition 2. \Box

Proof of Theorem 1. By Proposition 1, there exists a Heegaard splitting $(M_1, M_2 : F)$ of M such that $g(M_i) = M_{3-i}$ (i = 1, 2). Note that $g|_F$ is an orientation preserving involution of F, and $h|_F$ is an orientation preserving fixed point free homeomorphism of F with period p.

In [7] [5] cyclic actions of a 3-dimensional handlebody are studied, and their results imply that the homeomorphism $h|_{M_1}$ is conjugate to a homeomorphism which is a restriction of $2\pi/p$ -rotation with respect to z-axis of R^3 to a handlebody in equivariant position as indicated in Figure 2. Therefore we may assume that $h|_{M_1}$ is as indicated in Figure 2.

Figure 2

In Figure 2, m is an integer with genus $(M_1) = pm + 1$. Let $x_0, x_1, x_2, \dots, x_m, y_0, y_1, y_2, \dots, y_m$ be cycles represented by essential simple closed curves as indicated in Figure 2.

Define the vectors

$$X_{i,k} = rac{1}{\sqrt{p}} \Sigma_{j=0}^{p-1} \eta^{-kj} h_*^j(x_i), \ \ i = 1, 2, \cdots, m; \ k = 0, 1, \cdots, p-1$$

and

$$Y_{i,k} = \frac{1}{\sqrt{p}} \sum_{j=0}^{p-1} \eta^{-kj} h_*^j(y_i), \quad i = 1, 2, \cdots, m; \ k = 0, 1, \cdots, p-1.$$

where $\eta = \exp(2\pi i/p), i^2 = -1.$

Then $h_*(X_{i,k}) = \eta^k X_{i,k}$, $h_*(Y_{i,k}) = \eta^k Y_{i,k}$ $(i = 1, 2, \dots, m; k = 0, 1, \dots, p - 1)$, $h_*(x_0) = x_0$, and $h_*(y_0) = y_0$. By easy calculation we can see that the eigenvalues of h_* : $H_1(F; \mathbb{C}) \to H_1(F; \mathbb{C})$ are η^k , $k = 0, 1, \dots, p - 1$. Let G_0 (H_0 , resp.) be the subspace generated by $x_0, X_{1,0}, X_{2,0}, \dots, X_{m,0}$ ($y_0, Y_{1,0}, Y_{2,0}, \dots, Y_{m,0}$, resp.) and G_k (H_k , resp.) the subspace generated by $X_{1,k}, X_{2,k}, \dots, X_{m,k}$ ($Y_{1,k}, Y_{2,k}, \dots, Y_{m,k}$, resp.) ($k = 1, 2, \dots, p - 1$). Then $G = \bigoplus_{k=0}^{p-1} G_k$ is a half space of $H_1(F; \mathbb{C})$ such that $G \cong I(G) \cong I(H_1(F; \mathbb{C})) \cong H_1(M_1; \mathbb{C})$, and $H = \bigoplus_{k=0}^{p-1} H_k \cong \text{Ker } I$. Since the generating elements of G_k , H_k ($k = 0, 1, 2, \dots, p - 1$) are linearly independent, $\dim G_0 = \dim H_0 = m + 1$ and $\dim G_k = \dim H_k = m$ ($k = 1, 2, \dots, p - 1$). Note that $G_k \cup H_k$ is the eigenspace of h_* corresponding to the eigenvalue $\eta^k, k = 0, 1, 2, \dots p - 1$.

We define an intersection form $[,]: H_1(F; \mathbb{C}) \times H_1(F; \mathbb{C}) \to \mathbb{C}$ as follows:

Let ϕ be an isomorphism of $H_1(F; \mathbb{C})$ to $H_1(F; \mathbb{Z}) \otimes \mathbb{C}$ and for $x, y \in H_1(F; \mathbb{C})$ with $\phi(x) = x' \otimes \lambda$ and $\phi(y) = y' \otimes \tau$ $(x', y' \in H_1(F; \mathbb{Z}), \lambda, \tau \in \mathbb{C})$, put

$$[x,y] = [x' \otimes \lambda, y' \otimes \tau] = \lambda \tau \operatorname{Int}(x',y')$$

where Int(,) is the intersection form on $H_1(F; \mathbb{Z}) \otimes H_1(F; \mathbb{Z})$.

Then [,] is a skew-symmetric bilinear form over C.

We can easily see that $[,]|_{G \times G} = [,]|_{H \times H} \equiv 0$, $[x_0, Y_{i,k}] = [X_{i,k}, y_0] = 0$, $[x_0, y_0] = 1$, and

$$[h^k_*(x_i), h^s_*(y_r)] = \begin{cases} 1 & ext{if } i = r ext{ and } k \equiv s ext{ mod } p \\ 0 & ext{otherwise.} \end{cases}$$

Therefore for $i \neq r$, $[X_{i,k}, Y_{r,s}] = 0$ ($i, r = 1, 2, \dots, m; k, s = 0, 1, \dots, p-1$). For $X_{i,k}$ and $Y_{i,s}$ ($i = 1, 2, \dots, m; k, s = 0, 1, \dots, p-1$),

$$\begin{split} [X_{i,k}, Y_{i,s}] &= \left[\frac{1}{\sqrt{p}} \sum_{j=0}^{p-1} \eta^{-kj} h_*^j(x_i), \frac{1}{\sqrt{p}} \sum_{j=0}^{p-1} \eta^{-sj} h_*^j(y_i)\right] \\ &= \sum_{j=0}^{p-1} \left[\frac{1}{\sqrt{p}} \eta^{-kj} h_*^j(x_i), \frac{1}{\sqrt{p}} \eta^{-sj} h_*^j(y_i)\right] \\ &= \sum_{j=0}^{p-1} \frac{1}{p} \eta^{-j(k+s)} \\ &= \frac{1}{p} \times \sum_{j=0}^{p-1} (\eta^{-(k+s)})^j. \end{split}$$

Therefore, if $k + s \not\equiv 0 \mod p$, then

$$[X_{i,k}, Y_{i,s}] = \frac{1}{p} \frac{1 - (\eta^{-(k+s)})^p}{1 - \eta^{-(k+s)}} = 0,$$

and if $k + s \equiv 0 \mod p$, then

$$[X_{i,k}, Y_{i,s}] = \frac{1}{p} \sum_{j=0}^{p-1} 1 = \frac{p}{p} = 1.$$

Hence if $k + s \not\equiv 0 \mod p$, then $[,]|_{G_k \times H_s} = 0$, and the intersection form $[,]|_{G_k \times H_{p-k}}$ $(k = 1, \dots, p-1)$ corresponding to the above basis is represented by the $m \times m$ identity matrix E_m , and the intersection form $[,]|_{G_0 \times H_0}$ on the above basis is represented by the $(m + 1) \times (m + 1)$ identity matrix E_{m+1} .

Since the homomorphisms g_* and h_* satisfy the relations $(g_*h_*)^2 = g_*^2 = id.$, for $x \in G_k \oplus H_k$, the following holds;

$$(h|_F)_*((g|_F)_*(x)) = (g|_F)_*(h|_F)_*^{-1}(x)$$
$$= (g|_F)_*(\eta^{-k}x)$$
$$= \eta^{-k}(g|_F)_*(x)$$

and $(g|_F)_*(x) \in G_{p-k} \oplus H_{p-k}$. The representation matrix of $(g|_F)_*$ corresponding to the above basis for $G_0 \oplus H_0 \oplus G_1 \oplus H_1 \oplus \cdots \oplus G_{p-1} \oplus H_{p-1}$ is as follows;

(N_0)	0	•••	•••	•••	• • •	0 \	
0	0	•••	•••	• • •	0	N_1	
	:			•	N_2	0	
			•	•	•	÷	
:	:	•	•	•		÷	
	0	•	•			÷	
0 /	N_{p-1}	0	•••	•••	• • •	0/	

where N_k is dim $(G_k \oplus H_k) \times \dim(G_k \oplus H_k)$ matrix $(k = 0, 1, 2, \dots, p-1)$. Since $g_*^2 = \text{id.}, N_{p-k} = N_k^{-1}$.

Put $N_k = \begin{pmatrix} A_k & B_k \\ C_k & D_k \end{pmatrix}$, where A_k , B_k , C_k and D_k are dim $G_k \times \dim G_k$ matrices $(k = 0, 1, 2, \dots, p-1)$. Then by appropriate changes of orders of rows and columns, we can see that the representation matrix of $(g|_F)_*$ corresponding to the above basis of $G \oplus H = G_0 \oplus G_1 \oplus \dots \oplus G_{p-1} \oplus H_0 \oplus H_1 \oplus \dots \oplus H_{p-1}$ is as follows;

A_0	0	•••	•••	•••	•••	0	B_0	0	•••	• • •	•••	•••	0 \
0	0	•••	•••	•••	0	A_1	0	0	•••	• • •	•••	0	B_1
:	•			•	A_2	0	:	:			•	B_2	0
:	:		•	•	•	:	:	:		•	•	•	÷
:	:	•	•	•		:	:	:	•	•	•		:
:	0	•	•			:	:	0	•	•			:
0	A_{p-1}	0	•••	• • •	•••	0	0	B_{p-1}	0	• • •	•••	•••	0
C_0	0	•••	•••	•••	•••	0	D_0	0	•••	•••	•••	•••	0
0	0	•••	•••	•••	0	C_1	0	0	•••	•••	•••	0	D_1
	:			•	C_2	0	:	•			•	D_2	0
:	:		•	•	•	:	:	•		•	•	•	:
:	÷	•	•	•		:	:	:	•	•	•		÷
	0	•	•			•	:	0	•	•			:
0	C_{p-1}	0	•••	•••	•••	0	0	D_{p-1}	0	• • •	• • •	• • •	0/

therefore for the matrix B in Proposition 2, $B = \bigoplus_{k=0}^{p-1} B_k$ and rank $B = \sum_{k=0}^{p-1} rank B_k$.

Claim 2. For the matrix B_k $(k = 0, 1, 2, \dots, p-1)$, rank B_k is even.

Proof. Since $g|_F$ preserves the orientation of F, for $x \in G_k \oplus H_k$ and $y \in G_{p-k} \oplus H_{p-k}, [x, y] = (\deg g)[g_*(x), g_*(y)] = [g_*(x), g_*(y)]$. And $g_*|_{G_k \oplus H_k} : G_k \oplus H_k \to G_{p-k} \oplus H_{p-k}$ is represented by the matrix N_k $(k = 0, 1, \dots p - 1)$. Since the representation matrix of $[,]|_{G_k \times H_{p-k}}$ is E_m $(k = 1, 2, \dots p - 1)$ and the representation matrix of $[,]|_{G_0 \times H_0}$ is E_{m+1} , representation matrices of [,]: $(G_k \oplus H_k) \times (G_{p-k} \oplus H_{p-k}) \to \mathbf{C}$ $(k = 1, 2, \dots, p-1)$ is $\begin{pmatrix} 0 & E_m \\ -E_m & 0 \end{pmatrix}$, and representation matrices of [,]: $(G_0 \oplus H_0) \times (G_0 \oplus H_0) \to \mathbf{C}$ is $\begin{pmatrix} 0 & E_{m+1} \\ -E_{m+1} & 0 \end{pmatrix}$. Hence for $k = 0, 1, 2, \dots p - 1$, we have the following relation;

$$N_{\boldsymbol{k}}^{\mathsf{T}} \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix} N_{\boldsymbol{p}-\boldsymbol{k}} = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix},$$

where

$$E = \begin{cases} E_{m+1} & \text{if } k = 0\\ E_m & \text{if } k = 1, 2, \cdots, p-1 \end{cases}$$

and P^{\top} is the transpose of the matrix P. By $N_{p-k} = N_k^{-1}$ and $N_k = \begin{pmatrix} A_k & B_k \\ C_k & D_k \end{pmatrix}$, we have $\begin{pmatrix} A_k^{\top} & C_k^{\top} \\ B_k^{\top} & D_k^{\top} \end{pmatrix} \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix} = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix} \begin{pmatrix} A_k & B_k \\ C_k & D_k \end{pmatrix}$

and

$$\begin{pmatrix} -C_{k}^{\top} & A_{k}^{\top} \\ -D_{k}^{\top} & B_{k}^{\top} \end{pmatrix} = \begin{pmatrix} C_{k} & D_{k} \\ -A_{k} & -B_{k} \end{pmatrix}.$$

This means the matrix B_k is alternating. Hence rank B_k is even.

This completes the proof of Claim 2. \Box

By Proposition 2, $\beta_1(M) = \dim H_1(M_1) - \operatorname{rank} B = pm + 1 - \sum_{k=0}^{p-1} \operatorname{rank} B_k$. By Claim 2, $\sum_{k=0}^{p-1} \operatorname{rank} B_k$ is even.

In the case that p is even, pm is even and $\beta_1(M)$ is an odd number.

In the case that p is odd and m is even, pm is even and $\beta_1(M)$ is also an odd number.

In the case that p is odd and m is odd, $\beta_1(M)$ is an even number. Since B_k $(k = 1, 2, \dots, p-1)$ is an $m \times m$ -matrix and has even rank, we have m-rank $B_k \ge 1$ for $k = 1, 2, \dots, p-1$. Therefore

$$\beta_1(M) = pm + 1 - \Sigma_{k=0}^{p-1} \operatorname{rank} B_k$$

= $m + 1 - \operatorname{rank} B_0 + \Sigma_{k=1}^{p-1} (m - \operatorname{rank} B_k)$
 $\geq \Sigma_{k=1}^{p-1} 1$
= $p - 1$.

This completes the proof of Theorem 1. \Box

3. Proof of Theorem 2

In this section, we construct a 3-manifold M such that a dihedral group acts on M and the fixed point set of the action consists of a finite number of points.

Proof of Theorem 2. To prove Theorem 2 it is enough to treat the following three cases.

Case 1) b is odd and p is an integer which is greater than one.

Case 2) p is an odd integer and b is an even integer which is greater than or equal to p + 1.

Case 3) p is an odd integer and b = p - 1.

Case 1)

Let $M = F \times S^1$, where F is a closed orientable surface of genus (b-1)/2, and S^1 is a 1-dimensional sphere. F admits an orientation preserving involution g'. (We can find such involution, for example, as a restriction of a π -rotation of R^3 to the surface in a standard position in R^3 .) We identify S^1 with $\{e^{i\theta} | \theta \in R\}$. Then we construct homeomorphisms g and h as follows;

$$g : F \times S^{1} \to F \times S^{1}$$
$$g(x, e^{i\theta}) = (g'(x), e^{-i\theta})$$
$$h : F \times S^{1} \to F \times S^{1}$$
$$h(x, e^{i\theta}) = (x, e^{i(\theta + 2\pi)/p})$$

Then we can see that g and h generate a dihedral group $D_{2,p} = \langle g, h | g^2 = h^p = (gh)^2 = 1 \rangle$ acting on M. If g' is free then $D_{2,p}$ acts freely, and if g' has a fixed point, the fixed point set of the action of this group consists of a finite number of points.

This completes the proof for Case 1).

Case 2)

Consider a 3-manifold $M = F \times S^1$ and a dihedral group $D_{2,p} = \langle g, h | g^2 = h^p = (gh)^2 = 1 \rangle$ acting on M as in the Case 1) such that M and $D_{2,p}$ satisfy the following conditions;

- (1) p is the given odd number,
- (2) the genus of F is (b-p-1)/2,
- (3) g is constructed from g' with $Fix(g', F) \neq \emptyset$.

We consider p copies X_0, X_1, \dots, X_{p-1} of $S^2 \times S^1$. Let I_i be an identification map from X_0 to X_i $(i = 1, 2, \dots, p-1)$. Note that $X_0 = S^2 \times S^1$ admits an orientation reversing involution f_0 with four fixed points. Take a fixed point x_0 of f_0 in X_0 . Let f_i be the involution on X_i defined by $f_i = I_i f_0 I_i^{-1}$ and $x_i = I_i(x_0)$ $(i = 1, 2, \dots p - 1)$. Let y be a point of M with g(y) = y. Then there is a gequivariant regular neighborhood of y, N(y) such that N(y), hN(y), $h^2N(y)$, \dots , $h^{p-1}N(y)$ are mutually disjoint. Furthermore there is an f_i -equivariant regular neighborhood $N(x_i)$ of x_i in X_i $(i = 0, 1, \dots p - 1)$. We attach $X_i - int(N(x_i))$ $(i = 0, 1, \dots, p-1)$ to $M - \bigcup_{i=0}^{p-1} inth^i(N(y))$ so that identifying maps satisfy the following conditions.

- (1) $\partial N(y)$ is identified with $\partial N(x_0)$ by an identifying map $J : \partial N(x_0) \to \partial N(y)$ which satisfies the relation $g|_{\partial N(y)}J = Jf_0|_{\partial N(x_0)}$.
- (2) $\partial h^i N(y)$ is identified with $\partial N(x_i)$ by the identifying map $h^i J I_i^{-1}|_{\partial N(x_i)}$: $\partial N(x_i) \to \partial h^i N(y)$.

Then we can obtain a manifold M' which is a connected sum of $F \times S^1$ and X_0, X_1, \dots, X_{p-1} . There is an orientation preserving homeomorphism on M' with period p induced by h on M. There is an orientation reversing involution on M' induced by g on M and f_i on X_i $(i = 0, 1, \dots, p-1)$. We can see that these homeomorphisms on M' generate a dihedral group. Note that $\beta_1(M) = 2 \times (b-p-1)/2 + 1 = b-p$, therefore $\beta_1(M') = b$.

This completes the proof for Case 2).

Case 3)

In this case, we construct homeomorphisms of a connected sum of (p-1) $S^2 \times S^1$'s such that the homeomorphisms generate a dihedral group.

As the first step, we define an orientation preserving dihedral group action on S^3 . Put $S^3 = \{(s,t,r)|s,t \in R, 0 \le r \ge 1\} / \langle (s,t,r) \sim (s+2\pi,t,r), (s,t,r) \sim (s,t+2\pi,r), (s,t,r) \sim (s,t,r+2\pi), (s,t,0) \sim (s',t,0), (s,t,1) \sim (s,t',1) \rangle$ and give an orientation. Define orientation preserving periodic homeomorphisms k and f by

$$k(s, t, r) = (s + 2\pi/p, t + 2\pi/p, r),$$

 $f(s, t, r) = (-s, -t, r).$

Then k and f generate a dihedral group $G = \langle f, k | f^2 = k^p = (fk)^2 = 1 \rangle$. Note that k is free and f fixes the curve $\{(s,t,r)|s,t,=0,\pi\}$. Let B be a regular neighborhood of the point (0,0,0) such that f(B) = B and B, k(B),

 $k^{2}(B), \dots, k^{p-1}(B)$ are mutually disjoint. Then $\bigcup_{i=0}^{p-1} k^{i}(B)$ is G-equivariant since $f(k^{i}(B)) = k^{-i}f(B) = k^{-i}(B)$.

Put $V_1 = S^3 - \bigcup_{i=0}^{p-1} \operatorname{int} k^i(B)$ and $k_1 = k|_{V_1}$, $f_1 = f|_{V_1}$. Let V_2 be a manifold which is obtained from a copy of V_1 by reversing the orientation of it and Ithe orientation reversing homeomorphism from V_2 to V_1 which is induced from the identification map. Then V_2 also have an orientation preserving homeomorphisms $k_2 = I^{-1}k_1I$ and $f_2 = I^{-1}f_1I$. The homeomorphisms k_2 and f_2 generate a dihedral group.

We construct a closed 3-manifold M from V_1 and V_2 by identifying ∂V_2 with ∂V_1 through the identifying map f_1I . Define homomorphisms g and h of M as follows;

$$g|_{V_1} = I^{-1}, \ g|_{V_2} = I, \ h|_{V_1} = k_1, \ h|_{V_2} = k_2^{-1}.$$

Then M is a connected sum of (p-1) $S^2 \times S^1$'s. We can check that g and h are well defined by the following relations. (Note that $f_i^2 = \text{id.}$ and $k_i f_i = f_i k_i^{-1}$.) For $x \in \partial V_2$,

$$g(f_1I(x)) = I^{-1}f_1I(x)$$

= $(f_1I)^{-1}(g(x))$
 $h(f_1I(x)) = k_1f_1I(x) = f_1k_1^{-1}I(x) = f_1Ik_2^{-1}(x).$
= $f_1I(h(x)).$

We can check that g is an orientation reversing involution and h is an orientation preserving free periodic homeomorphism of period p. The homeomorphisms g and h generate a dihedral group $D_{2,p}$ since for $x \in V_1$, $ghgh(x) = Ik_2^{-1}I^{-1}k_1(x)$ $= Ik_2^{-1}k_2I^{-1}(x) = x$, and for $x \in V_2$, $ghgh(x) = I^{-1}k_1Ik_2^{-1}(x) = k_2k_2^{-1}(x) = x$. The fixed point set of the action of this group is finite since it consists of the points corresponding to $\operatorname{Fix}(G, S^3) \cap (\bigcup_{i=0}^{p-1}k^i(\partial B))$. Therefore we have a dihedral group $D_{2,p} = \langle g, h \mid g^2 = h^p = (gh)^2 = 1 \rangle$ which acts on a connected sum of $(p-1) S^2 \times S^1$'s with the fixed point set consisting of 2p points.

This completes the proof for Case 3).

This completes the proof of Theorem 2. \Box

References

- [1] G.E. Bredon, "Introduction to compact transformation groups", Pure and applied mathematics, # 46, Academic press, New York, London, 1972.
- J.F. Davis and R.J. Milgram, Free actions on products of spheres: The rational case, Math. Z., 207 (1991), 379-390.
- [3] D.B.A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc., 11 (1961), 469-484.

- [4] J. Hempel, 3-MANIFOLDS, Annals of Math. Studies # 86, Princeton Univ. Press, 1976.
- [5] J. Przytycki, Free actions of Z_n on handlebodies and surfaces, Bull. Acad. Polon. Sci., **26** (1978), 617-624.
- [6] M. Kobayashi, E. Luft and S. Wang, A finite group acting on a rational homology 3-sphere with 0-dimensional fixed point set must be Z_2 , Topology, **36** (1997), 509-518.
- [7] J. Kalliongis, A. Miller, Equivalence and strong equivalence of actions on handlebodies, Trans. Amer. Math. Soc., 308 (1988), 721-745.
- [8] T. Nagase, A generalization of Reidemeister-Singer theorem on Heegaard splittings, Yokohama Math. J., 27 (1979), 23-47.
- [9] S. Negami, Branched coverings of PL involutions on 3-manifolds, Science Reports of the Yokohama National University Section I, 37 (1990), 1-12.
- [10] J.H. Rubinstein, One-sided Heegaard splittings of 3-manifolds, *Pacific J. Math.*, (1978),185–200.
- [11] S. Wang, The virtual Z-representability of 3-manifolds which admit orientation reversing involution, *Proc. Amer. Math. Soc.*, **110** (1990), 499–503.

Masako Kobayashi Assumption Junior College Nyoidani 1-13-23, Minno, Osaka, 562-8543 Japan