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Abstract. In this paper we consider a very general second order nonlinear
parabolic boundary value problem. Assuming the existence of an upper solution
$\varphi$ and a lower solution $\psi$ satisfying $\psi\leq\varphi$ , we show that the problem has ex-
tremal periodic solutions in the order interval $K=[\psi)\varphi]$ . Our proof is based
on a general surjectivity result for the sum of two operators of monotone type
and on truncation and penalization techniques. In addition we use a result of
independent interest which we prove here and which says that the pseudomono-
tonicity property of $A(t, \cdot)$ can be lifted to its Nemitsky operator. Finally when
we impose stronger conditions on the data, we show that the extremal solutions
can be obtained with a monotone iterative process.

1. Introduction

Let $T=[0, b]$ and $Z\subseteq R^{N}$ a bounded domain in $R^{N}$ with Lipschitz boundary
F. In this paper we consider the following nonlinear periodic parabolic problem:

(1) $\{Tt\partial x-\sum_{k=1}^{N}D_{k}a_{k}(t,z,x,Dx)+a_{0}(t.’ z,x)\sum_{Zae.on}^{N}D_{k}x=f(x(t, z))x(0,z)=x(b, z),x|_{T\times\Gamma}=0k=1$
on

$T\times Z\}$

The nonlinearity $f$ is in general discontinuous and is supposed to satisfy a
decomposition into the difference of two nondecreasing functions (i.e. $f$ : $R\rightarrow R$

is locally of bounded variation). It is well known that under these conditions,
problem (1) need not have a solution. To obtain an existence theory, we need to
pass to a multivalued version of the problem, which roughly speaking is obtained
by filling in the gaps at the discontinuity points of the second nondecreasing
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functions in the decomposition of $f(\cdot)$ . In the context of elliptic systems, this
problem has been studied by many authors, under different conditions on the
nonlinearity and by employing different methods. These methods and result
can be traced in the fundamental works of Ambrosetti, Badiale [1], Chang [7],
Heikkila [15], Stuart [22] and Stuart, Toland [23] and the references therein. The
study of the dynamic version of the problem (parabolic systems) is lagging behind
and only recently there have been some papers in this direction. We mention the
works of Feireisl [11] and Feireisl, Norbury [12], who treat semilinear problems
and the nonlinear work of Carl [6], where the nonlinear differential operator is
less general than ours and the method used (based on molification techniques),
does not allow the author to obtain the $exl\backslash istence$ of the extremal solutions and
forces some unnecessary additional restrictions on the data.

In this paper, we combine techniques from the theory of nonlinear operators
of monotone type, with the method of upper and lower solutions. The method
of upper and lower solutions, turned out to beapowerful tool for the resolution
of nonlinear parabolic problems. The works of Boccardo, Murat, Puel [3], Deuel,
Hess [9] and Mokrane [19], were based on this method. However the way this
method was implemented in these works, is different from our use of the upper
and lower solutions in this paper. It should be mentioned that none of the above
works allows for the presence of discontinuous nonlinearities and all three require
that the upper and lower solutions are $L^{\infty}$-functions on $T\times Z$ . So it seems that
our approach is more suitable to deal with problems involving discontinuities.

2. Preliminaries

In this section, we fix our notation and the hypothesis on the data of the
porblem and we also introduce all the relevant notations that we will be using
in the sequel.

In what follows as usual $D_{k}=\partial_{z_{k}}\partial_{-}k\in\{1,2, \ldots N\}$ and $D=(D_{k})_{k=1}^{N}$ (the

gradient). Our hypothesis on the functions $a_{k},$ $k\in\{1,2, \ldots N\}$ are the following:
$H(a)$ : $a_{k}$ : $T\times Z\times R\times R^{N}\rightarrow R,$ $k\in\{1,2, \ldots N\}$ are functions such that

(i) $(t, z)\rightarrow a_{k}(t, z, x, \eta)$ is measurable;
(ii) $(x, \eta)\rightarrow a_{k}(t, z, x, \eta)$ is continuous;

(iii) $|a_{k}(t, z, x, \eta)|\leq\beta_{1}(t, z)+c_{1}(|x|^{p-1}+\Vert\eta||^{p-1})$ a.e. on $T\times Z$ , for all $(x, \eta)\in$

$R\times R^{N}$ and with $\beta_{1}\in L^{q}(T\times Z),$ $\beta_{1}(t, z)\geq 0,$ $ c_{1}>0,2\leq p<\infty$ and
$\frac{1}{p}+\frac{1}{q}=1$ ;

(iv) $\sum_{k=1}^{N}(a_{k}(t, z, x, \eta)-a_{k}(t, z, x, \eta^{\prime}))(\eta_{k}-\eta_{k}^{\prime})\geq 0$ a.e. on $T\times Z$ for all $x\in R$

and all $\eta,$
$\eta^{\prime}\in R^{N}$ ; and
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(v)
$withc>0\sum_{k=1}^{N}a_{k}(t, z, x, \eta)\eta_{k}\geq c\Vert\eta\Vert^{p}$

a.e. on $T\times Z$ , for all $x\in R$ , all $\eta\in R^{N}$ and

Recall that by an ”evolution triple”, we understand three space $X\subseteq H\subseteq X^{*}$

such that:

(a) $X$ is a separable and reflexive Banach space;
(b) $H$ is a separable Hilbert space, identified with its dual (pivot space); and
(c) the embedding of $X$ into $H$ is continuous, (i.e. there exists a constant

$\wedge c>0$ such that for all $ x\in X|x|\leq\neg c|x\Vert$ , with $|\cdot|$ (resp. $\Vert$ . I dinoting
the norm of $H$ (resp. of $X$ )) and dense (see Zeidler [25], definition 23.11,
p. 416).

Let $W^{1,p}(Z)$ be the usual Sobolev space and $W^{1,p}(Z)^{*}$ its dual. Since $p\geq 2$ ,
the spaces $W^{1,p}(Z)\subseteq L^{2}(Z)\subseteq W^{1,p}(Z)^{*}$ from an evolution triple with the
embedding being in addition compact. Also by $W_{0}^{1,p}(Z)$ we denote the subspace
of $W_{0}^{1,p}(Z)$ , consisting of elements with zero trace. As usual, the dual of $W_{0}^{1,p}(Z)$

is denoted by $W^{-1,q}(Z)$ . Again $W_{0}^{1,p}(Z)\subseteq L^{2}(Z)\subseteq W^{-1,q}(Z)$ is an evolution
triple with the embeddings being compact.

The following two spaces, will play a prominent role in our subsequent con-
siderations:

$\overline{W}_{pq}(T)=\{f\in L^{p}(T, W^{1,p}(Z))$ : $\frac{\partial f}{\partial t}\in L^{q}(T, W^{1,p}(Z)^{*})\}$ and

$W_{pq}(T)=\{f\in L^{p}(T, W_{0}^{1,p}(Z))$ : $\frac{\partial f}{\partial t}\in L^{q}(T, W^{-1,q}(Z))\}$ .

In these definitions, the derivative $\neq_{t}^{\partial}$ is understood in the sense of vector-
valued distributions. Both spaces equipped with obvious norm $\Vert f\Vert_{pq}=\Vert f||_{p}+$

$\Vert\neq_{t}^{\partial}\Vert$ , are embedded continuously in $C(T, L^{2}(Z))$ and compactly in $L^{p}(T\times Z)$ .
For details we refer to Lions [18] (thorem 5.1, p. 58) and Zeidler [25] (proposition
23.23, pp. 422 and 450).

Because of hypothesis $H(a)$ , we can define the semilinear form

$a:L^{p}(T,$ $W_{0}^{1.\rho}(Z))\times L^{p}(T,$ $W_{0}^{1,p}(Z))\rightarrow R$

by setting $a(x, y)=\int_{0}^{b}\int\sum_{z_{k=1}}^{N}a_{k}(t, z, x, Dx)D_{k}y(t, z)dzdt$ .

$L^{p}\{$

$L^{q}$

In what follows, by $((\cdot, \cdot))$ we will denote the duality brackets between
$T,$ $W^{1,p}(Z))$ and $L^{q}(T, W^{1,p}(Z)^{*})$ and also between $L^{p}(T, W_{0}^{1,p}(Z))$ and
$T,$ $W_{\backslash }^{-1,q}(Z))$ . Recall that if $X$ is a reflexive Banach space (or more gen-
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erally if $X^{*}$ has the Radon-Nikodym Property (RNP)) and $ 1\leq p<\infty$ , then
$L^{p}(T, X)^{*}=L^{q}(T, X^{*})$ , with $\frac{1}{p}+\frac{1}{q}=1$ (see Diestel, Uhl [10], $threm1$ , p. 98).

Our hypothesis on the discontinuous nonlinearity is the following:
$H(f)$ : $f$ : $R\rightarrow R$ is a function such that $f=g-h$ , with $g,$

$h$ :
$R\rightarrow R$ being both nondecreasing (so $f(\cdot)$ is locally of bounded vari-
ation).

In what follows $g_{r}(x)=\lim_{\epsilon\downarrow 0}g(x+\epsilon)$ and $g_{l}(x)=\lim_{\epsilon\downarrow 0}g(x-\epsilon)$ . Similarly we
define $h_{r}(x)$ and $h_{\ell}(x)$ . Let $\beta(\cdot)$ be the maximal monotone graph in $R^{2}$ associated
with the nondecreasing function $h(\cdot)$ ; i.e. $\beta(x)=[h_{l}(x), h_{r}(x)]$ for all $x\in R$ .
Then instead of problem (1), we will study the following multivalued version of
it:

(2)
a $-\sum_{k=1}^{N}D_{k}a_{k}(t, z, x, Dx)+a_{0}(t, z, x)\sum_{k=1}^{N}D_{k}x$

$+\beta(x(t, z))\ni g(x(t, z))$ on $T\times Z$

$x(O, z)=x(b, z)$ a.e. on $Z$ , $x|_{Tx\Gamma}=0$

Since the functions $a_{k}$ are not assumed to be smooth, we are forced to inter-
pret problem (2) above in a weak fashion.

Definition. A functions $x\in W_{pq}(T)$ is said to be a ”solution” (weak) of (2),
if there exists $v\in L^{q}(T\times Z)$ such that $v(t, z)\in\beta(x(t, z))$ a.e. on $T\times Z$ and for
all $w\in L^{p}(T, W_{0}^{1,p}(Z))$

$((\frac{\partial x}{\partial t},$ $w))+a(x, w)+\int_{0}^{b}\int_{z}a_{0}(t, z, x(t, z))(\sum_{k=1}^{N}D_{k}x(t, z))w(t, z)dzdt$

$+\int_{0}^{b}\int_{z}v(t, z)w(t, z)dzdt=\int_{0}^{b}\int_{z}g(x(t, z))w(t, x)dzdt$

As we mentioned in the introduction our approach will use upper and lower
solutions, combined with truncation and penalization techniques. So we need
to introduce the concepts and necessary analytical tools associated with this
method.

Definition. A function $\varphi\in\overline{W}_{pq}(T)$ is said to be an “upper solution” of (2),
if

$((\frac{\partial\varphi}{\partial t},$ $w))+a(\varphi, w)+\int_{0}^{b}\int_{z}a_{0}(t, z, \varphi(t, z))(\sum_{k=1}^{N}D_{k}\varphi(t, z))w(t, z)dzdt$

$+\int_{0}^{b}\int_{z}h_{\ell}(\varphi(t, z))w(t, z)dzdt\geq\int_{0}^{b}\int_{z}g(\varphi(t, z))w(t, z)dzdt$
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for all $w\in L^{p}(T, W_{0}^{1,p}(Z))\cap L^{p}(T\times Z)_{+},$ $\varphi(0, z)\geq\varphi(b, z)$ a.e. on $Z$ and
$\varphi|\tau\times r\geq 0$ .

Similarly a function $\psi\in\overline{W}_{pq}(T)$ is said to be a “lower solution” of (2), if in
the above definition the inequalities are reversed and $h_{\ell}$ is replace by $h_{r}$ .

We will make the following hypothesis concerning upper and lower solutions.

$H_{0}$ : there exists an upper solution $\varphi\in\overline{W}_{pq}(T)$ and a lower solution
$\psi\in\overline{W}_{pq}(T)$ such that $\psi(t, z)\leq\varphi(t, z)$ a.e. on $T\times Z$ and $g_{r}(\varphi)$ ,
$g_{\ell}(\psi),$ $h_{r}(\varphi),$ $h_{\ell}(\psi)\in L^{q}(T\times Z)$ .

Note that in Boccardo, Murat, Puel [3], Deuel, Hess [9] and Mokrane [19] is
assumed that $\psi,$ $\varphi\in L^{\infty}(T\times Z)$ .

Remark. Here is a simple situation where hypothesis $H_{0}$ is satisfied. Con-
sider the following periodic parabolic problem involving the p-Laplacian

$\{$

$-\partial x\mathcal{T}t-div(\Vert Dx\Vert^{p-2}Dx)+a_{0}(z, x)\sum_{k=1}^{N}D_{k}x=f(x(t, z))$ on
$Z\}$

$x(O, z)=x(b, z)$ a.e. on $Z$ , $x|_{T\times\Gamma}=0$

Suppose $f$ : $R\rightarrow R$ satisfies hypothesis $H(f)$ . Then the above problem fits
in the framework of our problem (1). Assume that there exist $s_{1}\leq 0\leq s_{2}$ such
that $h_{r}(s_{1})\leq g(s_{1})$ and $g(s_{2})\leq h_{\ell}(s_{2})$ . Set $\varphi(t, z)=s_{2}$ and $\psi(t, z)=s_{1}$ . It is
clear that $\varphi,$

$\psi$ are upper and lower solutions repectively which satisfy hypothesis
$H_{0}$ .

The truncation part of the method, will be based on the following truncation
map. Given $x\in L^{p}(T, W^{1,p}(Z))$ , we set

$\tau(x)(t, z)=\{x(t,z)\varphi(t,z)\psi(t,z)$

,
$if\psi(t,z)xifx(t,z)\leq\psi if\varphi(t,z)\leq xt,z)t,z)$ $\leq\varphi(t, z)\}$

Proposition 1. $\tau$ : $L^{P}(T, W^{1,\rho}(Z))\rightarrow L^{\rho}(\tau, \nu V^{1,p}(Z))$ is continuous.

Proof. From lemma 7.6, P. 146 of Gilbarg, Trudinger [13], we know that for
any $x\in L^{p}(T, W^{1,p}(Z))$ , we have that for almost all $t\in T,$ $\tau(x)(t, \cdot)\in W^{1,p}(Z)$

and

$D\tau(x)(t, z)=\{Dx(t,z)D\varphi(t,z)D\psi(t,z)$ $if\psi(t,z)xif\varphi(t,z)\leq xifx(t,z)\leq\psi t,z)t,z)$ $\leq\varphi(t, z)\}$

Hence it follows that $\tau(x)(\cdot, \cdot)\in L^{p}(T, W^{1,p}(Z))$ .
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Now let $x_{n}\rightarrow x$ in $L^{p}(T, W^{1,p}(Z))$ as $ n\rightarrow\infty$ . By passing to a subsequence
if necessary, we may assume that $x_{n}(t, z)\rightarrow x(t, z)$ and $D_{k}x_{n}(t, z)\rightarrow D_{k}x(t, z)$

a.e. on $T\times Z$ as $ n\rightarrow\infty$ for all $k\in\{1,2\ldots., N\}$ . Moreover from theorem 2.8.1,
p. 74 of Kufner, John, Fucik [17], we can find functions $\theta,$ $\theta_{k}\in L^{p}(T\times Z)$

$k\in\{1,2, \ldots, N\}$ such that $|x_{n}(t, z)|\leq\theta(t, z)$ and $|D_{k}x_{n}(t, z)|\leq\theta_{k}(t, z)$ a.e. on
$T\times Z$ . Note that for all $n\geq 1$

$|\tau(x_{n})(t, z)|\leq\max\{|\varphi(t, z)|, |\psi(t, z)|\}$ a.e. on $T\times Z$ and $|D_{k}\tau(x_{n})(t, z)|\leq$

$\max\{\theta_{k}(t, z), |D_{k}\varphi(t, z)|, |D_{k}\psi(t, z)|\}$ a.e. on $T\times Z$ for all $k\in\{1,2, \ldots, N\}$ .
Thus the dominated convergence $threm$ , implies that $\tau(x_{n})\rightarrow\tau(x)$ in $ L^{p}(T\times$

$Z)$ and $D_{k}\tau(x_{n})\rightarrow D_{k}\tau(x)$ in $L^{p}(T\times Z, R^{N})$ as $ n\rightarrow\infty$ . Therefore we conclude
that $\tau(x_{n})\rightarrow\tau(x)$ in $L^{p}(T, W^{1,p}(Z))$ as $ n\rightarrow\infty$ , which proves the continuity of
$\tau(\cdot)$ . $\blacksquare$

For the penalization aspect of the method, we introduce the penalty function
$u:T\times Z\times R\rightarrow R$ denined by

$u(t, z, x)=\left\{\begin{array}{lll}(x-\varphi(t,z))^{\rho-1} & ’ & if\varphi(t,z)\leq x\\0, & & if\psi(t,z)\leq x\leq\varphi(t,z)\\-(\psi(t,z)-x)^{\rho-l}, & & ifx\leq\psi(t,z)\end{array}\right\}$

From this definition and an elementary calculation, we obtain:

Proposition 2. The function $u:T\times Z\times R\rightarrow R$ is a Caratheodory function,
$|u(t, z, x)|\leq\beta_{2}(t, z)+c_{2}|x|^{p-1}a.e$ . on $T\times Z$ , with $\beta_{2}\in L^{q}(T\times Z),$ $c_{2}>0$ , and
$\int_{0}^{b}\int_{z}u(t, z, x(t, z))x(t, x)dzdt\geq c_{3}\Vert x\Vert_{L^{p}(TxZ)}^{p}-c_{4}\Vert x\Vert_{L^{p}(TxZ)}^{p-1}$ , with $c_{3},$ $c_{4}\geq 0$ .

Our hypothesis on the function $a_{0}(t, z, x)$ , are the following:
$H(a_{0})$ : $a_{0}$ : $T\times Z\times R\rightarrow R$ , is a function such that

(i) $(t, z)\rightarrow a_{0}(t, z, x)$ is measurable;
(ii) there exists $k\in L^{\infty}(T\times Z)$ such that for almost all $(t, z)\in T\times Z$ and

$x,$ $x^{\prime}\in|\psi(t, x),$ $\phi(t, z)|,$ $|a_{0}(t, z, x)-a_{0}(t, z, x^{\prime})|\leq k(t, z)|x-x^{\prime}|$ ; and
(iii) for all $x\in L^{p}(T\times Z)$ such that $\psi(t, z)\leq x(t, z)\leq\phi(t, z)$ a.e. on $T\times Z$ ,

the function $(t, z)\rightarrow a_{0}(t, z, x(t, z))$ belongs in $L^{\infty}(T\times Z)$ .

3. Auxiliary abstract results

In this section, we introduce some basic notions and present some abstract
results, which will be crucial in the proof of our main theorem in the next sec-
tion. Our proof of that theorem, will be based on a general surjectivity result
for the sum of two operators of monotone type. The application of this theo-
rem, requires an auxiliary result of independent interest, which we prove here
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and which roughly speaking says that the pseudomonotonicity property of an
operator $A(t, x)$ , can be lifted to the Nemitsky (superposition) operator.

So let (X, $H,$ $X^{*}$ ) be an evolution triple (see section 2). In what follows by
$\langle\cdot, \cdot\rangle$ we will denote the duality brackets for the pair (X, $X^{*}$ ) and by $(\cdot, \cdot)$ the
inner product of $H$ . The two are compatible in the sense that $\langle\cdot, \cdot\rangle|_{XxH}=(\cdot, \cdot)$

Also by $\Vert$ . I (resp. $|$ . , $\Vert\cdot\Vert_{*}$ ), we will denote the norm of $X$ (resp. of $H,$ $X^{*}$ ).
We recall the following generalization of a monotone operator (see Zeidler [25],
p. 585).

Deflnition. An operator $A:X\rightarrow X^{*}$ is to said to be “pseudomonotone”, if
$x_{n}\rightarrow Xw$ in $X$ as $ n\rightarrow\infty$ and $\varlimsup\langle A(x_{n}), x_{n}-x\rangle\leq 0$ , imply that $\langle A(x), x-y\rangle\leq$

$\varliminf\langle A(x_{n}), x_{n}-y\rangle$ for all $y\in X$ .

Remark. A monotone hemicontinuous operator or a strongly continuous
operator, are pseudomonotone. Pseudomonotonicity is preserved by addition
and clearly implies property $(M)$ (i.e. $x_{n}\rightarrow wx$ in $X;A(x_{n})\rightarrow wu^{*}$ in $X^{*}$ as
$ n\rightarrow\infty$ and $\varlimsup\langle A(x_{n}), x_{n}-x\rangle\leq 0$ , then $A(x)=u)$ . For details we refer to
Zeidler [25], pp. 583-589.

In what follows, we will be dealing with an operator $A(t, x)$ , for which we
assume the following:

$H(A):A:T\times X\rightarrow X^{*}$ is an operator such that

(i) $t\rightarrow A(t, x)$ is measurable for each $x\in X$ ;
(ii) $x\rightarrow A(t, x)$ is demicontinuous and pseudomonotone (recall that demicon-

tinuity means that if $x_{n}\rightarrow x$ in $X$ , then $A(t, x_{n})\rightarrow wA(t, x)$ in $X^{*}$ as
$n\rightarrow\infty)$ ;

(iii) $\Vert A(t, x)\Vert_{*}\leq\hat{\beta}_{1}(t)+\wedge c_{1}\Vert x\Vert^{p-1}$ a.e. on $T$ with $\hat{\beta}_{1}\in L^{q}(T)_{+},$ $c_{1}>0$ ,
$ 2\leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$ ; and

(iv) $\langle A(t, x), x\rangle\geq\neg c|x\Vert^{p}-\eta\Vert x\Vert^{r}-\theta(t)$ for almost all $t\in T$ , all $x\in X$ and with
$\theta(\cdot)\in L^{1}(T),c\wedge,$ $\eta>0,1\leq r\leq p-1$ .

Let $\hat{A}$ : $L^{p}(T, X)\rightarrow L^{q}(T, X^{*})$ be the Nemitsky (superposition) operator
corresponding to $A(t, x)$ ; i.e. $\hat{A}(x)(\cdot)=A(\cdot, x(\cdot))$ .

We will show that in some sense the pseudomonotonicity property of $A(t, \cdot)$

is passed to $\hat{A}(\cdot)$ . First we need a definition:

Deflnition. Let $Y$ be a reflexive Banach space, $L$ : $D(L)\subseteq Y\rightarrow Y^{*}$ is
a linear densely defined maximal monotone operator and $V$ : $Y\rightarrow 2^{Y}\backslash \{\emptyset\}$ is
a multivalued operator with weakly compact and convex values. We say that
$V(\cdot)$ is ”pseudomonotone with respect to $D(L)$ (or “L-pseudomonotone”), if
for $\{y_{n}\}_{n\geq 1}\subseteq D(L)$ with $y_{n}\rightarrow yw$ in $Y$ and $L(y_{n})\rightarrow wL(y)$ in $Y^{*}$ as $ n\rightarrow\infty$ and
for $y_{n}^{*}\in V(y_{n})n\geq 1$ satisfying $y_{n}^{*}\rightarrow y^{*}w$ as $ n\rightarrow\infty$ and $\varlimsup(y_{n}^{*}, y_{n})\leq(y^{*}, y)$ , we
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have $y^{*}\in V(y)$ and $(y_{n}^{*}, y_{n})\rightarrow(y^{*}, y)$ as $ n\rightarrow\infty$ .

Remark. Recall that a linear operator $L:D\subseteq Y\rightarrow Y^{*}$ is maximal mono-
tone if and only if it is densely defined in $X,$ $L$ and $L^{*}$ are both monotone and
$L$ is closed (i.e. GrL is closed in $Y\times Y^{*}$ ). For a proof of this fact, we refer to
Zeidler [25], (theorem 32, p. 897).

Now let $L:D\subseteq L^{p}(T, X)\rightarrow L^{q}(T, X^{*})=L^{\rho}(T, X)^{*}$ , be defined by $Lx=x$
for all $x\in D=\{x\in L^{p}(T, X) : x\in L^{q}(T, X^{*}), x(O)=x(b)\}$ . As before,
the time derivative of $x(\cdot)$ is defined in the sense of vector-valued distributions.
Also since the separable, reflexive Banach space $W_{pq}(T)=\{x\in L^{p}(T, X)$ :
$x\in L^{q}(T, X^{*})\}$ , is continuously embedded in $C(T, H)$ , we see that the equality
$x(O)=x(b)$ makes sense. Since $C_{0}^{1}(T, X)$ is dense in $L^{\rho}(T, X)$ for the norm
topology, we deduce that $L(\cdot)$ is densely defined on $L^{\rho}(T, X)$ . Moreover note
that $L^{*}v=-v$ for all $v\in D=\{v\in L^{\rho}(T, X) : v\in L^{q}(T, X^{*}), v(O)=v(b)\}$ . So
using the integration by parts formula for functions in $W_{pq}(T)$ (see Zeidler [25],
proposition 23.23 (iv), pp. 422-423), we see that $L$ and $L^{*}$ are both monotone.
Finally it is easy to see that GrL is closed in $L^{p}(T, X)\times L^{q}(T, X^{*})$ . So according
to the previous remark, $L(\cdot)$ is a maximal monotone operator.

The next proposition, is actually a result of independent interest and can be
useful in the study of evolution equations and inclusions defined on evoluiton
triples.

Proposition 3. If $X$ is compactly embedded in $H,$ $A$ : $T\times X\rightarrow X^{*}$ is
an operator satisfying hypothesis $H(A)$ and $L$ : $D\subseteq L^{q}(T, X)\rightarrow L^{q}(T, X^{*})$ is
the linear maximal monotone operator defined by $L(x)=x$ for all $ x\in D\subseteq$

$L^{p}(T, X)=\{x\in L^{p}(T, X) : x\in L^{q}(T, X^{*}), x(O)=x(b)\}$ , then the Nemitsky
operator $\hat{A}:L^{\rho}(T, X)\rightarrow L^{q}(T, X^{*})$ is demicontinuous and pseudomonotone with
respect to $D(L)=D$ .

Proof. We will start by showing the demicontinuity of $\hat{A}(\cdot)$ . So let $x_{n}\rightarrow x$

in $L^{p}(T, X)$ as $ n\rightarrow\infty$ . By passing to a subsequence if necessary, we may as-
sume that $x_{n}(t)\rightarrow x(t)$ a.e. on $T$ in $X$ as $ n\rightarrow\infty$ . Then because of hypothesis
$H(A)(ii)$ , given $y\in L^{p}(T, X)$ , we have $\langle A(t, x_{n}(t)), y(t)\rangle\rightarrow\langle A(t, x(t)), y(t)\rangle$ a.e.
on $T$ as $ n\rightarrow\infty$ . Moreover thanks to hypothesis $H(A)(Iii)$ , we can apply the gen-
eralized dominated convergence theorem (see for example Ash [1], theorem 7.52,
p. 295) and obtain that

$((\hat{A}(x_{n}), y))=\int_{0}^{b}\langle A(t, x_{n}(t)), y(t)\rangle dt\rightarrow\int_{0}^{b}\langle A(t, x(t)), y(t)\rangle dt=((\hat{A}(x_{n}), y))$

$\mathfrak{B}n\rightarrow\infty$ .
Since $y\in L^{p}(T, X)$ was arbitrary, we conclude that $\hat{A}(x_{n})\rightarrow w\hat{A}(x)$ in
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$L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ , which proves the demicontinuity of $\hat{A}(\cdot)$ .
Next we will prove the pseudomonotonicity of $\hat{A}(\cdot)$ with respect to $D(L)$ . So

let $x_{n}\rightarrow wx$ in $L^{p}(T, X)$ and $x_{n}\rightarrow wx$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ (i.e. $x_{n}\rightarrow wx$ in
$W_{pq}(T)$ as $ n\rightarrow\infty$ ) with $x_{n}\in Dn\geq 1$ (i.e. $x_{n}(0)=x_{n}(b)$ for all $n\geq 1$).

Assume that $\varlimsup((\hat{A}(x_{n}), x_{n}-x))=\varlimsup\int_{0}^{b}\langle A(t, x_{n}(t)), x_{n}(t)-x(t)\rangle dt\leq 0$ . Let
$\xi_{n}(t)=\langle A(t, x_{n}(t)), x_{n}(t)-x(t)\rangle n\geq 1$ . Since $W_{pq}(T)$ embeds continuously in
$C(T, H)$ , we have $x_{n}\rightarrow x$ in $C(T, H)$ and so for every $t\in Tx_{n}(t)\rightarrow wx(t)$ in $H$

as $ n\rightarrow\infty$ . On the other hand, let $N\subseteq T$ be the exceptional Lebesgue null set,
outside of which hypothesis $H(A)(iiii)$ and (iv) hold. Then for every $t\in T\backslash N$

we have

(3) $\xi_{n}(t)\geq\neg c|x_{n}(t)\Vert^{p}-\eta\Vert x_{n}(t)\Vert^{r}-\theta(t)-(\beta_{1}(t)+c_{1}\wedge\Vert x_{n}(t)\Vert^{p-1})\Vert x(t)\Vert$

Set $C=\{t\in T : \varliminf\xi_{n}(t)<0\}$ . This is a Lebesgue measurable subset of
$T$ . Suppose that $\lambda(C)>0$ , where $\lambda(\cdot)$ is the Lebesgue measure on $T$ . From
(3) above, we see that for fixed $ t\in C\cap(T\backslash N)\neq\emptyset$ , the sequence $\{x_{n}(t)\}_{n\geq 1}$

is bounded in $X$ . Since $X$ is reflexive and because we already know that for
every $t\in Tx_{n}(t)\rightarrow wx(t)$ is $H$ as $ n\rightarrow\infty$ , we deduce that $x_{n}(t)\rightarrow wx(t)$

in $X$ as $ n\rightarrow\infty$ . Let $\{n_{k}\}$ be a subsequence of $\{n\}$ such that $\varliminf\xi_{n}(t)=$

$\lim\xi_{n_{k}}(t)$ . Then due to the fact that $A(t, \cdot)$ is pseudomonotone, we deduce that
$\langle A(t, x_{n}(t)), x_{n_{k}}(t)-x(t)\rangle=\xi_{n_{k}}(t)\rightarrow 0$ as $ k\rightarrow\infty$ , a contradiction to the
definition of $C$ (recall that $t\in C\cap(T\backslash N)$ ). So $\lambda(C)=0$ and so $0\leq\varliminf\xi_{n}(t)$

a.e. on $T$ . Then from the generalized Fatou’s lemma (see for example Ash [1],
theorem 7.5.2, p. 295) we have

$0\leq\int_{0}^{b}\varliminf\xi_{n}(t)dt\leq\varliminf\int_{0}^{b}\xi_{n}(t)dt\leq\varlimsup\int_{0}^{b}\xi_{n}(t)dt\leq 0$

hence $\int_{0}^{b}\xi_{n}(t)dt\rightarrow 0$ as $ n\rightarrow\infty$ . Also note that since $0\leq\varliminf\xi_{n}(t)$ a.e. on $T$ , we
have $\xi_{n}^{-}(t)\rightarrow 0$ a.e. on $T$ . Moreover from (3) above, it is evident that $\gamma_{n}(t)\leq$

$\xi_{n}(t)$ a.e. on $T$ with $\{\gamma_{n}\}_{n\geq 1}\subseteq L^{1}(T)$ being uniformly integrable. Then $ 0\leq$

$\xi_{n}^{-}(t)\leq\gamma_{n}^{-}(t)$ a.e. on $T$ and of course $\{\gamma_{n}^{-}\}_{n\geq 1}\subseteq L^{1}(T)$ is uniformly integrable.
So a new application of the generalized dominated convergence theorem, gives
us that $\int_{0}^{b}\xi_{n}^{-}(t)\rightarrow 0$ as $ n\rightarrow\infty$ . Therefore we deduce that

$\int_{0}^{b}|\xi_{n}(t)|dt=\int_{0}^{b}(\xi_{n}(t)+2\xi_{n}^{-}(t))dt\rightarrow 0$ as $ n\rightarrow\infty$ ;

i.e. $\xi_{n}\rightarrow 0$ in $L^{1}(T)$ as $ n\rightarrow\infty$ . By passing to a subsequence if necessary, we may
assume that $\xi_{n}(t)\rightarrow 0$ a.e. on $T$ as $ n\rightarrow\infty$ . Because $A(t, \cdot)$ is pseudomonotone,
we have that $A(t, x_{n}(t))\rightarrow wA(t, x(t))$ a.e. on $T$ in $X^{*}$ and $\langle A(t, x_{n}(t)), x_{n}(t)\rangle\rightarrow$

$\langle A(t, x(t)), x(t)\rangle$ a.e. on $T$ as $ n\rightarrow\infty$ . So a final application fo the generalized
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dominated convergence theorem, tells us that
$\hat{A}(x_{n})\rightarrow w\hat{A}(x)$ in $L^{q}(T, X^{*})$ and

$((\hat{A}(x_{n}), x_{n}))=\int_{0}^{b}\langle A(t, x_{n}(t)), x_{n}(t)\rangle dt\rightarrow\int_{0}^{b}\langle A(t, x(t)), x(t)\rangle dt=((\hat{A}(x),x))$

as $ n\rightarrow\infty$ .
Thus we conclude that $\hat{A}(\cdot)$ is pseudomonotone with respect to $D(L)=D$ . $\blacksquare$

The next surjectivity result is known (see Lions [18], theorem 1.2, p. 319 or
B-A. Ton [24]). However for easy reference, we include it here. Recall that if $V$ ,
$W$ are Hausdorff topological spaces, then a multifunction $G$ : $V\rightarrow 2^{W}\backslash \{\emptyset\}$ is
said to be upper semicontinuous (usc for short) if and only if for every $U\subseteq W$

open subset, $G^{+}(U)=\{v\in V : G(v)\subset U\}$ is open in $V$ . Such a multifunction
has a closed graph; i.e. $GrG=\{(v, w)\}\in V\times W$ : $w\in G(v)$ } is closed in $V\times W$ .
For details we refer to DeBlasi, Myjak [8].

Theorem 4. If $Y$ is a reflexive Banach space, $L:D\subseteq Y\rightarrow Y^{*}$ is a linear
maximal monotone operator and $G:Y\rightarrow 2^{Y^{*}}\backslash \{\emptyset\}$ is a multivalued operator with
weakly compact and convex values, which is bounded ($i.e$ . $G(\cdot)$ maps bounded
sets to bounded sets), usc from $Y$ into $Y_{w}^{*}$ (here by $Y_{w}^{*}$ we denote the reflexive
Banach space $Y^{*}$ fumished with the weak topology), pseudomonotone with respect
to $D(L)=D$ and coercive ($i.e$ . $\ovalbox{\tt\small REJECT}_{y}^{\inf(y^{*},y):y^{*}\in G(y)}\rightarrow+\infty$ as $\Vert y||\rightarrow\infty$ ,
then $R(L+G)=Y^{*};$ $i.e$ . the operator $(L+G)(\cdot)$ is $su7j$ective.

4. Main theorem

In this section we prove our main theorem. Namely we show that under
the hypothesis fixed in the previous section, problem (2) has its extremal solu-
tions in the order interval $K=|[\psi, \varphi]=\{y\in L^{p}(T\times Z)$ : $\psi(t, z)\leq y(t, z)\leq$

$\varphi(t, z)$ a.e. on $T\times Z$ }. Assume $\frac{3N}{N+2}\leq p,$ $2\leq p$ .
In order words problem (2) has the greatest solution $x_{g}$ and the smallest

solution $x_{s}$ within the order interval $K$ , in the sense that if $x$ is any solution of
(2) in $K$ , then $x\in[x_{s}, x_{g}]$ . Moreover we show that under additional hypothesis
on the functions $a_{k},$ $a_{0}k\in\{1,2, \ldots, N\}$ and on the regularity properties of $g(\cdot)$ ,
these extremal solution can be attained by a monotone iterative process.

Theorem 5. If hypothesis $H(a),$ $H(f),$ $H_{0}$ and $H(a_{0})$ hold, then problem
(2) has a greatest solution $x_{g}\in W_{pq}(T)$ and a smallest solution $x_{s}\in W_{pq}(T)$ in
the order interval

$K=[\psi, \varphi]=$ { $y\in L^{\rho}(T\times Z)$ : $\psi(t,$ $z)\leq y(t,$ $z),$ $\leq\varphi(t,$ $z)a.e$ . on $T\times Z$ }
($i.e$ . problem (2) has extremal solutions in the order interval $K$).
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Proof. Given $y\in K$ , we consider the following auxiliary problem

(4) $\left\{\begin{array}{l}\mathcal{T}t\partial x-\sum_{k=l}^{N}D_{k}a_{k}(t,z,\tau(x),Dx)+a_{0}(t,z,\tau(x))\sum_{k=l}^{N}D_{k}\tau(x)+\\+\beta(\tau(x)(t,z))+u(t,z,x(t,z))\ni g(x(t,z))onTxZ\\x(0,z)=x(b,z)a.e.onZ, x|_{T\times\gamma}=0\end{array}\right\}$

In what follows for notational simplicity, we set $X=W_{0}^{1,p}(Z)$ and $X^{*}=$

$W^{-1,q}(Z)$ .
Let $L$ : $D\subseteq L^{p}(T, X)\rightarrow L^{q}(T, X^{*})$ be defined by $Lx=\dot{x}$ for all $x\in D=$

$\{x\in W_{pq}(T) : x(O)=x(b)\}$ (recall that the time-derivative of $x$ is understood
in the sense of vector-valued distributions). Rom our discussion in section 3, we
know that $L(\cdot)$ is maximal monotone.

Next let $A_{1}$ : $T\times X\rightarrow X^{*}$ be defined by

$\langle A_{1}(t, x), y\rangle=\sum_{k=1}^{N}\int_{z}a_{k}(t, z, \tau(x), Dx)D_{k}y(z)dz$ .

Using Fubini’s theorem, we see at once that $ t\rightarrow\langle A_{1}(t, x), y\rangle$ is measurable.
Since $y\in X$ was arbitrary, we deduce that $t\rightarrow A_{1}(t, x)$ is weakly measurable.
But $X^{*}=W^{-1,q}(Z)$ is a separable reflexive Banach space. So from the Pettis
measurability theorem (see Diestel, Uhl [10], theorem 2, p. 42), we have that
$t\rightarrow A_{1}(t, x)$ is measurable. Also it is clear from hypothesis $H(a)(iii)$ , that
$\Vert A_{1}(t, x)||_{*}\leq\beta_{1}^{\prime}(t)+c_{1}^{\prime}||x\Vert^{p-1}$ with $\beta_{1}^{\prime}\in L^{q}(T)$ and $c_{1}^{\prime}>0$ , while from hypoth-

esis $H(a)(v)$ , it follows that $\langle A_{1}(t, x), x\rangle=\sum_{k=1}^{N}\int_{z}a_{k}(t, z, \tau(x), Dx)D_{k}x(z)dz\geq$

$c^{\prime}\Vert x\Vert^{\rho}$ for almost all $t\in T$ , all $x\in X$ and with $c^{\prime}>0$ . Note that in both
inequalities $\Vert$ . I denotes the norm of $X=W_{0}^{1,p}(Z)$ .

Now we will show that $x\rightarrow A_{1}(t, x)$ is demicontinuous. To this end, let
$x_{n}\rightarrow x$ in $X$ as $ n\rightarrow\infty$ . By passing to a subsequence if necessary, we may assume
that $\tau(x_{n})(z)\rightarrow\tau(x)(z)$ and $Dx_{n}(z)\rightarrow Dx(z)$ a.e. on $Z$ as $ n\rightarrow\infty$ . Then from
hypothesis $H(a)(iii)$ and the generalized dominated convergence theorem, we
deduce that for all $y\in X$ we have

$\langle A_{1}(t, x_{n})), y\rangle$

$=\sum_{k=1}^{N}\int_{z}a_{k}(t, z, \tau(x_{n}), Dx_{n})D_{k}y(z)dz\rightarrow\sum_{k=1}^{N}\int_{z}a_{k}(t, z, \tau(x), Dx)D_{k}y(z)dz$

$=\langle A_{1}(t, x)), y\rangle$ as $ n\rightarrow\infty$ ,

hence $A_{1}(t, x)\rightarrow wA_{1}(t, x)$ in $X^{*}$ as $ n\rightarrow\infty$ , which proves the demicontinuity of
$x\rightarrow A_{1}(t, x)$ .
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Finally theorem 3, p. 42 of Gossez, Mustonen [14], tells us that $x\rightarrow A_{1}(t,x)$

is pseudomonotone.
Next for every $(t, x)\in T\times X$ , define $h(t, x)$ as follows

$h(t,x)(\cdot)=a_{0}(t, \cdot, \tau(x)(\cdot))\sum_{k=1}^{N}D_{k}\tau(x)(\cdot)$ .

Evidently $h(t, x)\in H$ . So we can consider the map $h:T\times X\rightarrow X^{*}$ . Clearly
$t\rightarrow h(t, x)$ is measurable. We will also show that $x\rightarrow h(t, x)$ is completely
continuous (i.e. if $x_{n}\rightarrow wx$ in $X$ as $ n\rightarrow\infty$ , then $h(t,$ $x_{n})$ in $X^{*}$ as $ n\rightarrow\infty$ ). To
this end let $x_{n}\rightarrow wx$ in $X=W_{0}^{1,p}(Z)$ as $ n\rightarrow\infty$ . Note that since by hypothesis
$2\leq p$ , in $\frac{3N}{N+2}\leq p,$ $W_{0}^{1,p}(Z)$ embeds compactly in $L^{2q}(Z)(1<q\leq 2\leq p<\infty)$ .
So we have $x_{n}\rightarrow x$ in $L^{2q}(Z)$ as $ n\rightarrow\infty$ .

We need to show that $h(t, x_{n})\rightarrow h(t, x)$ in $X^{*}$ as $ n\rightarrow\infty$ . Suppose not.
Then we can find $\epsilon>0$ and a sequence $\{y_{n_{m}}\}_{m\geq 1}\subseteq X$ such that $\Vert y_{n_{m}}\Vert\leq 1$

for all $m\geq 1$ and $\langle h(t, x_{n_{m}})-h(t, x), y_{n_{m}}\rangle\geq\epsilon$ for all $m\geq 1$ . Passing to a
subsequence if necessary, we may assume that $y_{n_{m}}\rightarrow yw$ in $X$ and so $y_{n_{m}}\rightarrow y$ in
$L^{2q}(Z)$ as $ m\rightarrow\infty$ .

Then we have

$|\int_{z}a_{0}(t, z, \tau(x_{n_{m}})(z))D_{k}\tau(x_{n_{m}})(z)y_{n_{m}}(z)dz$

$-\int_{z}a_{0}(t, z, \tau(x)(z))D_{k}\tau(x)(z)y_{n_{m}}(z)dz|$

$\leq|\int_{z}a_{0}(t, z, \tau(x_{n_{m}})(z))-a_{0}(t, z, \tau(x)(z)))D_{k}\tau(x_{n_{m}})(z)y_{n_{m}}(z)dz|$

$+|\int_{z}a_{0}(t, z, \tau(x)(z))D_{k}\tau(x_{n_{m}})(z)(y_{n_{m}}(z)-y(z))dz|$

$+|\int_{z}a_{0}(t, z, \tau(x)(z))(D_{k}\tau(x_{n_{m}})(z)-D_{k}\tau(x)(z))y_{n_{m}}(z)dz|$

$+|\int_{z}a_{0}(t, z, \tau(x)(z))D_{k}\tau(x)(z)(y(z)-y_{n_{m}}(z)dz|$ .

From hypothesis $H(a_{0})(ii)$ , we know that

$|a_{0}(t, z, \tau(x_{n_{m}})(z))-a_{0}(t, z, \tau(x)(z))|\leq k(t, z)|\tau(x_{n_{m}})(z)-\tau(x)(z)|$

a.e. on $T\times Z$ .
So using Holder’s inequality with three factors, we obtain that

$|\int_{z}(a_{0}(t, z, \tau(x_{n_{m}})(z))-a_{0}(t, z, \tau(x)(z)))D_{k}\tau(x_{n_{m}})(z)y_{n_{m}}(z)dz|$

$\leq\Vert k\Vert_{\infty}\Vert\tau(x_{n_{m}})-\tau(x)\Vert_{2q}\Vert D_{k}\tau(x_{n_{m}})\Vert_{p}\Vert y_{n_{m}}\Vert_{2q}\rightarrow 0$ as $ n\rightarrow\infty$ ,
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since the truncation map $\tau(\cdot)$ is continuous on $L^{2q}(Z)$ .
Also for some $\eta>0$ , we have

$|\int_{z}a_{0}(t, z, \tau(x)(z))D_{k}\tau(x_{n_{m}})(z)(y_{n_{m}}(z)-y(z))dz|$

$\leq\eta\Vert a(t,$
$\cdot,$

$\tau(x)(\cdot)\Vert_{\infty}\Vert D_{k}\tau(x_{n_{m}})\Vert_{p}\Vert y_{n_{m}}-y\Vert_{2q}\rightarrow 0$ as $ m\rightarrow\infty$ .

In addition from the continuity of $\tau(\cdot)$ and since $W_{0}^{1,p}(Z)$ embeds compactly
in $L^{p}(Z)$ , we have $\tau(x_{n})\rightarrow\tau(x)$ in $L^{p}(Z)$ as $ n\rightarrow\infty$ . Then in $y\in C_{0}^{\infty}(Z)$ , we
have

$(D_{k}\tau(x_{n_{m}})(z), y)_{L^{p}(Z),L^{q}\langle Z)}=\int_{z}D_{k}\tau(x_{n_{m}})(z)y(z)dz$

$=-\int_{z}\tau(x_{n_{m}})(z)D_{k}y(z)dz\rightarrow-\int_{z}\tau(x)(z)D_{k}y(z)dz$

$=\int_{z}D_{k}\tau(x)(z)y(z)dz$

$=(D_{k}\tau(x), y)_{L^{p}(Z),L^{q}(Z)}$ as $ m\rightarrow\infty$ .

Because $C_{0}^{\infty}(Z)$ is dense in $L^{q}(Z)$ (see Kufner, John, Fucik [17] theorem 2.6.1,
p. 73), we deduce that $D_{k}\tau(x_{n})\rightarrow wD_{k}\tau(x)$ in $L^{p}(Z)$ as $ m\rightarrow\infty$ . So we have

$|\int_{z}a_{0}(t, z, \tau(x)(z))(D_{k}\tau(x_{n_{m}})(z)-D_{k}\tau(x)(z))y(z)dz|\rightarrow 0$ as $ m\rightarrow\infty$ .

Finally note that for some $\eta^{\prime}>0$ , we have

$|\int_{z}a_{0}(t, z, \tau(x)(z))D_{k}\tau(x_{n_{m}})(z)(y(z)-y_{n_{m}}(z))dz|$

$\leq\eta^{\prime}\Vert a_{0}(t,$
$\cdot,$

$\tau(x)(\cdot)\Vert_{\infty}\Vert D_{k}\tau(x_{n_{m}})\Vert_{p}\Vert y-y_{n_{m}}\Vert_{q}\rightarrow 0$ as $ m\rightarrow\infty$ .

Combining all these convergences, which are valid for every $k\in\{1,2, \ldots, N\}$ ,
we conclude that $\langle h(t, x_{n_{m}})-h(t, x), y_{n_{m}}\rangle\rightarrow 0$ as $ m\rightarrow\infty$ where as in section 3,
$\langle\cdot, \cdot\rangle$ stands for the duality brackets for the pair (X, $X^{*}$ ).

This last convergence, contradicts the choice of the sequences
$\{x_{n_{m}}\}_{m\geq 1}\{y_{n_{m}}\}_{m\geq 1}\subseteq X=W_{0}^{1,p}(Z)$ . Therefore we have that $h(t, x_{n})\rightarrow h(t, x)$

in $X^{*}$ as $ n\rightarrow\infty$ and so $x\rightarrow h(t, x)$ is completely continuous. If we set $A(t, x)=$

$A_{1}(t, x)+h(t, x)$ , then from proposition 27.6(e), p. 586 of Zeidler [25], we have
that $x\rightarrow A(t,x)$ is pseudomonotone. Thus proposition 3, tells us that the
Nemitsky operator $\hat{A}$ : $L^{p}(T, X)\rightarrow L^{q}(T, X^{*})$ is pseudomonotone with respect
to $D(L)=D$ .

Next let $\Phi$ : $L^{p}(T, X)\rightarrow\overline{R}=R\cup\{+\infty\}$ be defined by

$\Phi(x)=\{\int_{0}^{b}\int_{z}j(x(t, z))dzdt+\infty$
’ if

$j(x(\cdot))\in L^{1}(T\times Z)otherwise\}$
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where $j:R\rightarrow\overline{R}=R\cup\{+\infty\}$ is the proper, lower semicontinuous and convex
function such that $\beta=\partial j$ . It is easy to see that $\Phi(\cdot)$ is proper, lower semi-
continuous and convex (i.e. $\Phi\in\Gamma_{0}(L^{p}(T,$ $X))$ ). Moreover from corollary 1 of
Brezis [4] and theorem 21 of Rockafellar [20], we know that for all $ x\in dom\partial\Phi$ ,
$\partial\Phi(x)\subseteq L^{1}(T\times Z)$ and $v\in\partial\Phi(x)$ if and only if $v(t, z)\in\beta(x(t, z))$ a.e. on
$T\times Z$ .

Then problem (4), can be equivalently rewritten as the following operator
inclusion

$Lx+\hat{A}(x)+\partial\Phi(\tau(x))+U(x)\in\wedge g(y)$

where $U$ : $L^{\rho}(T\times Z)\rightarrow L^{q}(T\times Z)$ is defined by

$U(x)(t, z)=u(t, z, x(t, z))$

(the Nemitsky operator corresponding to the penalty function u) and

$g\wedge(y)(t, z)=g(y(t, z))\in L^{1}(T\times Z)\cap L^{q}(T, W^{-1,q}(Z))$ ($see$ hypothesis $H_{0}$ ).

Let $G:L^{p}(T, X)\rightarrow 2^{L^{q}(T,X)}$ be defined by

$G(x)=\hat{A}(x)+\partial\Phi(\tau(x))+U(x)$ .
First note that $G(\cdot)$ has nonempty, weakly compact and convex values. This

is an immediate consequence of hypothesis $H_{0}$ , corollary 1 of Brezis [4] and
theorem 21 of Rockafellar [20].

Claim #1. $G(\cdot)$ is pseudomonotone with respect to $D(L)$ .
Let $x_{n}\rightarrow wx$ in $W_{pq}(T)$ as $n\rightarrow\infty,$ $x_{n}\in D(L)=D$ . Let $g_{n}\in G(x_{n})$ ,

$n\geq 1$ and assume that $g_{n}\rightarrow wg$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ and that $\varlimsup((g_{n},$
$x_{n}-$

$x))\leq 0$ (recall from section 2 that $((\cdot, \cdot))$ denotes the duality brackets for the
pair $(L^{p}(T, X),$ $L^{q}(T, X^{*}))$ ; i.e. $((g, x))=\int_{0}^{b}\langle g(t), x(t)\rangle dt)$ . By definition $g_{n}=$

$\hat{A}(x_{n})+v_{n}+U(x_{n})n\geq 1$ with $v_{n}\in\partial\Phi(\tau(x_{n}))$ . Hence by virtue of hypothesis
$H_{0},$ $\{v_{n}\}_{n\geq 1}\subseteq L^{q}(T, X^{*})$ is bounded and so by passing to a subsequence if
necessary we may assume that $v_{n}\rightarrow wv$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ . Also from
the continuity of the penalty function $u(t, z, \cdot)$ (see proposition 2) and because
$x_{n}\rightarrow x$ in $L^{p}(T\times Z)$ as $ n\rightarrow\infty$ (which is a consequence of the fact that $W_{pq}(T)$

embeds compactly in $L^{p}(T\times Z))$ , we have that $U(x_{n})\rightarrow U(x)$ in $L^{p}(T\times Z)$ as
$ n\rightarrow\infty$ . Then we have

$0\geq\varlimsup((g_{n}, x_{n}-x))=\varlimsup((\hat{A}(x_{n})+v_{n}+U(x_{n}),$ $x_{n}-x))$

$\geq\varlimsup((\hat{A}(x_{n}),$ $x_{n}-x))+\varlimsup((v_{n}, x_{n}-x))+\varlimsup((U(x_{n}), x_{n}-x))$

$\geq((\hat{A}(x_{n}),$ $x_{n}-x))+\varlimsup((v, x_{n}-x))+\varlimsup((U(x_{n}), x_{n}-x))$

$=\varlimsup((\hat{A}(x_{n}),$ $x_{n}-x))$
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Note the third inequality in the above chain, is a consequence of the mono-
tonicity of the subdifferential operator $\partial\Phi(\cdot)$ .

So we have proved that $\varlimsup((\hat{A}(x_{n}), x_{n}-x))\leq 0$ .
But recall that $\hat{A}(\cdot)$ is pseudomonotone with respect to $D(L)$ . So from the

above inequality we infer that
$\hat{A}(x_{n})\rightarrow w\hat{A}(x)$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ and $((\hat{A}(x_{n}), x_{n}))\rightarrow((\hat{A}(x), x))$ as
$ n\rightarrow\infty$ .

Therefore $g_{n}=\hat{A}(x_{n})+v_{n}+U(x_{n})\rightarrow wg=\hat{A}(x)+v+U(x)$ in $L^{q}(T, X^{*})$ as
$ n\rightarrow\infty$ and $((g_{n}, x_{n}))\rightarrow((g, x))$ as $ n\rightarrow\infty$ . Finally note that

$\varlimsup((v_{n}, x_{n}-x))=\varlimsup((g_{n}-\hat{A}(x_{n})-U(x_{n}), x_{n}-x))=0$ .

Since $\partial\Phi(\cdot)$ is maximal monotone, it is generalized pseudomonotone in the
sense of definition 2, p. 253 of Browder, Hess [5] and so $v\in\partial\Phi(x)$ . Therefore
$g=\hat{A}(x)+v+U(x)\in\hat{A}(x)+\partial\Phi(x)+U(x)=G(x)$ , which proves claim #1.

Claim #2. $G(\cdot)$ is bounded (i.e. maps bounded sets to bounded sets).
This claim is an immediate consequence of hypothesis $H_{0}$ and of the growth

properties of the operator $\hat{A}(\cdot)$ (see the first part of the proof) and of the operator
$U(\cdot)$ (see proposition 2).

Claim #3. $G(\cdot)$ is an $usc$ multifunction from $L^{\rho}(T, X)$ into $2^{L^{q}(T,X)_{w}\backslash \{\emptyset\}}$ .
In order to prove this claim, we need to show that if $C\subseteq L^{q}(T, X^{*})$ is weakly

closed, then $G^{-}(C)=\{x\in L^{p}(T, X) : G(x)\cap C\neq\emptyset\}$ is closed in $L^{\rho}(T, X)$ (see
DeBlasi, Myjak [8]). So let $x_{n}\in G^{-}(C)n\geq 1$ and assume that $x_{n}\rightarrow x$ in
$L^{p}(T, X)$ as $ n\rightarrow\infty$ . Let $g_{n}\in G(x_{n})\cap Cn\geq 1$ . By virtue of claim #2, $\{g_{n}\}_{n\geq 1}$

is bounded in $L^{q}(T, X^{*})$ and so by passing to a subsequence, we may assume
that $g_{n}\rightarrow gw$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ . By definition we have

$g_{n}=\hat{A}(x_{n})+v_{n}+U(x_{n}),$ $v_{n}\in\partial\Phi(x_{n})n\geq 1$ .

By virtue of hypothesis $H_{0}$ , we may assume that $v_{n}\rightarrow wv$ in $L^{q}(T, X^{*})$ as
$ n\rightarrow\infty$ . So from the demiclosedness of the subdifferential operator (since it
is maximal monotone; see Zeidler [25], p. 915), we have that $v\in\partial\Phi(x)$ . Also
$\hat{A}(x_{n})\rightarrow w\hat{A}(x)$ and $U(x_{n})\rightarrow U(x)$ in $L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ . Thus in the limit as
$ n\rightarrow\infty$ , we have $g=\hat{A}(x)+v+U(x),$ $v\in\partial\Phi(x)$ .

Claim #4. $G(\cdot)$ is coercive.
Using hypothesis $H(a)(v)$ , we have

$((\hat{A}(x),x))\geq c\Vert x\Vert_{L^{p}(T,X)}^{p}+\int_{0}^{b}\int_{z}a_{0}(t,z,x(t,x))(\sum_{k=1}^{N}D_{k}x(t,z))x(t,z)dzdt$

$\geq c\Vert x\Vert_{L^{p}(T,X)}^{p}-c\neg|a_{0}(\cdot,\cdot,x(\cdot,\cdot))\Vert_{\infty}\Vert x\Vert_{L^{p}(T,X)}\Vert x\Vert_{L^{p}(T\times Z)}$
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for some $\wedge c>0$ .
Using Young’s inequality with $\epsilon>0$ and setting $\wedge c_{1}=\neg c|a_{0}(\cdot, \cdot,x(\cdot, \cdot))\Vert_{\infty}$ , we

have $c_{1}\wedge\Vert x\Vert_{L^{p}\langle T,X)}\Vert x\Vert_{L^{p}\langle T,Z)}\leq\wedge c_{1}\frac{\epsilon^{\rho}}{p}\Vert x\Vert_{L^{p}(T,X)}^{p}+c_{\overline{\epsilon}^{\Gamma}}\wedge 1q\Vert x\Vert_{L^{p}(T\times Z)}^{q}$

So we have

(5) $((\hat{A}(x), x))\geq(c-c_{1^{\frac{\epsilon^{p}}{p}}}\wedge)\Vert x\Vert_{L^{p}\langle T,X)^{-C_{1}}}^{p\wedge}\frac{1}{\epsilon^{q}q}\Vert x\Vert_{L^{p}\langle TxZ)}^{q}$ .

Also from proposition 2, we know that

(6) $((U(x), x))\geq c_{3}\Vert x\Vert_{L^{p}(TxZ)}^{\rho}-c_{4}\Vert x\Vert_{L^{p}\langle TxZ)}^{p-1}$ .

Finally from hypothesis $H_{0}$ and Young’s inequality with $e>0$ , we have

$|((\partial\Phi(\tau(x)), x))|\leq\xi\Vert x\Vert_{L^{p}(T,X)}\leq(\frac{\xi}{\epsilon})^{q}\frac{1}{q}+\frac{\epsilon^{p}}{p}\Vert x\Vert_{L^{p}\langle T,X)}^{p}$

hence

(7) $((\partial\Phi(\tau(X)), x))\geq-\frac{\epsilon^{p}}{p}\Vert X\Vert_{L^{p}(T,X)^{-\xi(\epsilon)wIth\xi(\epsilon)=}}^{p^{\wedge\wedge}}(\frac{\xi}{\epsilon})^{q}\frac{1}{q},$ $\xi>0$ .

Putting together (5), (6) and (7), we obtain

$((G(x), x))\geq(c-c_{1}\wedge\frac{\epsilon^{p}}{p}-\frac{\epsilon^{p}}{p})\Vert x\Vert_{L^{p}\langle T,X)}^{\rho}+\Vert x\Vert_{L^{p}(TxZ)}^{\rho-1}(c_{3}\}|x\Vert_{L^{p}\langle TxZ)}-c_{4})$

(8)

Choose $\epsilon>0$ so that $c-(c_{1}\wedge+1)\frac{\epsilon^{p}}{p}>0$ .
Then from (8) we infer that $G(\cdot)$ is coercive.
Now we are in a position to apply theorem 4 and obtain $x\in D(L)=D$ such

that

(9) $Lx+\hat{A}(x)+\partial\Phi(\tau(x))+U(x)\ni g\wedge(y)$ .

Let $S(y)\subseteq X=W_{0}^{1,p}(Z)$ be the solution set of (9). We have just seen that
for every $y\in K,$ $S(y)$ is nonempty.

Claim #5. $S(K)\subseteq K$

Let $y\in K$ and let $x\in S(y)$ . Since $\psi\in\overline{W}_{pq}(T)$ is a lower solution, we have

(10) $((\psi, w))+((\hat{A}(\psi), w))+((h_{\tau}(\psi), w))+((U(\psi), w))\leq((g(\psi), w))$

for all $w\in\overline{W}_{pq}(T)\cap L^{p}(T\times Z)_{+}$ and $\psi(0, z)\leq\psi(b, z)$ a.e. on $Z,$ $\psi|_{TxZ}\leq 0$ .
Also for some $v\in\partial\Phi(x)$ , we have

(11) $((x, w))+((\hat{A}(x), w))+((v, w))+((U(x), w))=((g(y), w))$ .
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Multiplying $(\underline{10})$ with-l and then adding it to (11) and using as test function
$w=(\psi-x)^{+}\in W_{pq}(T)$ , we obtain

$((x-\psi, (\psi-x)^{+}))+((\hat{A}(x)-\hat{A}(\psi), (\psi-x)^{+}))$

$+((v-h_{r}(\psi), (\psi-x)^{+}))+((U(x)-U(\psi), (\psi-x)^{+}))$

(12) $\geq((g\wedge(y)^{\wedge}-g(\psi), (\psi-x)^{+}))$ .

From the integration by parts formula for functions in $\overline{W}_{pq}(T)$ (see Zeidler
[25], proposition 23.23(iv), pp. 422-423), we have

$((x-\psi, (\psi-x)^{+}))=-\frac{1}{2}\Vert(\psi-x)^{+}(b)\Vert_{L^{2}(Z)}^{2}+\frac{1}{2}\Vert(\psi-x)^{+}(0)\Vert_{L^{2}\langle Z)}^{2}\leq 0$ .

(13)

Also recall that $v\in\partial\Phi(\tau(x))$ implies that $v(t, z)\in\beta(\tau(x)(t, z))$ a.e. on
$T\times Z$ .

Hence from the definition of the truncation map $\tau(x)$ , we have

(14) $((v-h_{r}(\psi), (\psi-x)^{+}))\leq 0$ .

Moreover from Gilbarg, hudinger [13], lemma 7.6, p. 145, we know that

$D_{k}(\psi-x)^{+}(t, z)=\{D_{k}(\psi-x)(t, z)0$ $if\psi(t,z)\leq x(t,zifx(t,z)\leq\psi(t,z\}\}$

So using hypothesis $H(a)(iv)$ , we have

$((\hat{A}(x)-\hat{A}(\psi), (\psi-x)^{+}))$

$=\int_{0}^{b}\int_{Z}\sum_{k=1}^{N}(a_{k}(t, z, \tau(x), Dx)-a_{k}(t, z, \psi, D\psi))D_{k}(\psi-x)^{+}dzdt$

$+\int_{0}^{b}\int_{Z}(a_{0}(t, z, \tau(x))(\sum_{k=1}^{N}D_{k}\tau(x))$

$-a_{0}(t,x, \psi)(\sum_{k=1}^{N}D_{k}\psi))(\psi-x)^{+}dzdt$

(15) $=\int\int_{\{\psi\leq x\}}k\leq 0$ .

Finally because $y\in K$ and $g(\cdot)$ is nondecreasing, we have

(16) $((g\wedge(y)^{\wedge}-g(\psi), (\psi-x)^{+}))\geq 0$ .
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Using inequalities (13) $\rightarrow(16)$ in (12), we obtain
$((U(x)-U(\psi), (\psi-x)^{+}))\geq 0$ hence $\int_{0}^{b}\int_{z}-(\psi-x)^{p-1}(\psi-x)^{+}dzdt\geq 0$ and so
$0\leq\int\int_{\{\psi>x\}}-(\psi-x)^{\rho}dzdt\leq 0$ , from which it follows that $\int\int_{\{\psi\geq x\}}(\psi-x)^{p}=0$ .

Therefore we deduce that

$\wedge\lambda\{(t, z)\in T\times Z : x(t, z)\leq\psi(t, z)\}=0$

with $\wedge\lambda(\cdot)$ being the Lebesgue product measure on $T\times Z$ . In a similar way,
working with the upper solution $\varphi$ , we obtain

$\wedge\lambda\{(t, z)\in T\times Z : x(t, z)\geq\varphi(t, z)\}=0$ .

Thus we have shown that $\psi(t, z)\leq x(t, z)\leq\varphi(t, z)$ a.e. on $T\times Z$ ; i.e. $x\in K$ .
So $S(K)\subseteq K$ . In particular if $ y=\psi$ , then $S(\psi)\subseteq K$ and so for every

$x\in S(\psi),$ $\psi\leq x$ .
Next let $y_{1}\leq y_{2}$ and $x_{1}\in S(y_{1})$ with $y_{1}\leq x_{1}$ .

Claim #6. Therefore exists $x_{2}\in S(y_{2})$ such that $x_{1}\leq x_{2}$ .
To this end consider the following auxiliary problem:

$\mathcal{T}t\partial x-\sum_{k=1}^{N}D_{k}a_{k}(t, z, \tau_{1}(x), Dx)+\beta(\tau_{1}(x))+u_{1}(t, z, x)$

(17)
$\ni g(y_{2}(t, z))$ on $T\times Z$

$x(O, z)=x(b, z)$ a.e. on $Z$ , $x|_{Tx\Gamma}=0$

Here $\tau_{1}$ is the truncation map at $\{x_{1}, \varphi\}$ and $u_{1}$ the penalty function corre-
sponding to the same pair $\{x_{1}, \varphi\}$ . Working exactly as for problem (4), we can
show that problem (13) above has at least one solution $x_{2}\in[x_{1}, \varphi]$ . Evidently
$x_{2}\in S(y_{2})$ and $x_{2}\geq x_{1}$ .

Now consider the multifunction $S$ : $K\rightarrow 2^{K}\backslash \{\emptyset\}$ . Note that the values of
$S(\cdot)$ are bounded in $W_{\rho q}(T)$ , hence relatively compact in $L^{p}(T\times Z)$ and since it
is easy to see from our previous considerations that $S(y)$ is closed in $L^{p}(T\times Z)$ ,
is compact there. Thus we can apply proposition 2.2, p. 121 of Heikkila, Hu [16]
and deduce the existence of $x\in K$ such that $x\in S(x)$ . Evidently $x\in W_{pq}(T)$

is a solution of problem (2). Thus we have proved that problem (2) has at least
one solution in the order interval $K$ . In what follows by $\hat{S}$ we will denote the set
of solutions of (2) in $K$ .

Next we will show that $\hat{S}$ has a greatest and smallest element (extremal
soluitons of (2) in $K$ ). Indeed by Zorn’s lemma $\hat{S}$ has a maximal element $x_{u}\in K$

for the pointwise ordering inherited from $L^{p}(T\times Z)$ . We claim that $x_{u}$ is the
greatest element of $\hat{S}$ in $K$ . This will follow immediately if we can show that
$\hat{S}\subseteq K$ is directed. Indeed let $x_{1},$

$x_{2}\in\hat{S}$ and set $x=\max\{x_{1}, x_{2}\}\in W_{pq}(T)$ ,
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$x\in K$ . Also we see that $x=x_{1}+(x_{2}-x_{1})^{+}$ and so

$\frac{dx}{dt}=\frac{d}{dt}(x_{1}+(x_{2}-x_{1})^{+})$

$=\frac{dx_{1}}{dt}+\frac{d(x_{2}-x_{1})^{+}}{dt}=\left\{\begin{array}{llllll}x_{2}(t), & if & x_{2}(t, & )\geq & x_{l}(t, & )\\x_{1}(t), & if & x_{2}(t, & )\leq & x_{1}(t, & )\end{array}\right\}$

Solving as above the equation

$x+\hat{A}_{1}(t, x(t))+h(t, \tau_{0}(x))-\sum_{k=1}^{2}|h(t, \tau_{k}(x))-h(t, \tau_{0}(x))|+\hat{\beta}(\tau(x))\ni g\wedge(x)$ ,

we obtain $ x\wedge$ solution of the problem such that $x\wedge\geq x$ . So $S$ is directed and
threfore $x_{u}$ is the greatest element of $\hat{S}$ in $K$ . Similarly we can produce the
smallest element $x_{1}$ of $\hat{S}$ in K. $\blacksquare$

Now will consider the following special case of problem (1)

(18)
$\pi\partial x=\sum_{k=1}^{N}D_{k}a_{k}(t, z, Dx)+a_{0}(t, z, x)=f(x(t, z))$ on $T\times Z$

$x(O, z)=x(b, z)$ a.e. on $Z,$ $x|_{Tx\Gamma}=0$

The hypothesis on the data, are now the following:
$H(a)_{1}$ : $a_{k}$ : $T\times Z\times R^{N}\rightarrow Rk\in\{1,2, \ldots , N\}$ are functions such that

(i) $(t, z)\rightarrow a_{k}(t, z, \eta)$ is measurable;
(ii) $\eta\rightarrow a_{k}(t, z, \eta)$ is continuous;

(iii) $|a_{k}(t, z, \eta)|\leq\beta_{1}(t, z)+c_{1}\Vert\eta\Vert^{\rho}$
“1 a.e. on $T\times Z$ for all $\eta\in R^{N}$ and with

$\beta_{1}\in L^{q}(T\times Z),$ $ c_{1}>0,2\leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1.$ ;

(iv) $\sum_{k=1}^{N}(a_{k}(t, z, \eta)-a_{k}(t, z, \eta^{\prime}))(\eta_{k}-\eta_{k}^{\prime})>0$ a.e. on $T\times Z$ for all $\eta,$
$\eta^{\prime}\in R^{N}$ ,

$\eta_{N}\neq\eta^{\prime}$
; and

(v)
$\sum_{k=1}a_{k}(t, z, \eta)\eta_{k}\geq c\Vert\eta\Vert^{p}$ a.e. on $T\times Z$ , for all $\eta\in R^{N}$ and with $c>0$ .

Remark. In hypothesis $H(a)_{1}$ , we recognize the well-known Leray, Lions
conditions (see Lions [18]).

$H(a_{0})_{1}$ : $a_{0}$ : $T\times Z\times R\rightarrow R$ is a function such that
(i) $(t, z)\rightarrow a_{0}(t, z, x)$ is measurable;

(ii) there exists $k\in L^{\infty}(T\times Z)$ such that for almost all $T\times Z$ and all $x,$
$ x^{\prime}\in$

$[\psi(t, z), \varphi(t, x)],$ $|a_{0}(t, z, x)-a_{0}(t, z, x^{\prime})|\leq k(t, z)|x^{\prime}-x|$ ;
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(iii) for almost all $(t, z)\in T\times Z,$ $x\rightarrow a_{0}(t, z, x)$ is nondecreasing on
$[\psi(t, z), \varphi(t, z)]$ ; and

(iv) for all $x\in L^{p}(T\times Z)$ such that $\psi(t, z)\leq x(t, z)\leq\varphi(t, z)$ a.e. on $T\times Z$ ,
the function $(t, z)\rightarrow a_{0}(t, z,x(t, z))$ belongs in $L^{\infty}(T\times Z)$ .

$H(f)_{1}$ : $f$ : $R\rightarrow R$ is a function such that $f=g-h$ with $g,$
$h$ : $R\rightarrow R$ are

nondecreasing functions and $g$ is right (resp. left) continuous.
As before, to guarantee existence of solutions, we pass to the following mul-

tivalued version of (18):

$Tt\partial x-\sum_{k=1}^{N}D_{k}a_{k}(t, z, Dx)+a_{0}(t, z, Dx)+\beta(x(t, z))$

(19)
$\ni g(x(t, x))$ on $T\times Z$

$x(O, z)=x(b, z)$ a.e. on $Z$ , $x|_{T\times\Gamma}=0$

In the next proposition we show that the gratest (resp. smallest) solution of
(19) in $K$ can be obtained by a monotone iterative process (see Sattinger [21]
forsemilinear systems and classical solutions).

Proposition 6. If hypothesis $H(a)_{1},$ $H(a_{0})_{1},$ $H(f)_{1}$ and $H_{0}$ hold, then the
greatest (resp. smallest) solution is obtained as the limit of a decreasing (resp.
increasing) sequence in $K$ .

Proof. In this case the map $S:K\rightarrow K$ considred in the proof of theorem 5
is single-valued. Moreover from the proof of that theorem, we know $S(\cdot)$ is
nondecreasing and $S(K)$ is compact in $L^{p}(T\times Z)$ . Then $ y_{0}=\varphi$ and $y_{n}=$

$S(y_{n-1})$ for $n\geq 1$ . Evidently $\{y_{n}\}_{n\geq 1}\subseteq S(K)\subseteq K$ and is nonincreasing. So we
have that $y_{n}\rightarrow x_{u}$ in $L^{p}(T\times Z)$ and also $y_{n}\rightarrow wx_{u}$ in $W_{pq}(T)$ as $ n\rightarrow\infty$ (recall
that $S(K)$ is bounded in $W_{pq}(T))$ . We have

$y_{n}+\hat{A}(y_{n})+v_{n}^{\wedge}=g(y_{n-1}),$ $u_{n}\in\partial\Phi(x_{n})n\geq 1$ .

Then by virtue of hypothesis $H_{0}$ , we may assume that $v_{n}\rightarrow wv$ in $L^{q}(T\times Z)$

and as in the proof of theorem 5 we have that $v\in\partial\Phi(x)$ . Also

$((y_{n}, y_{n}-x_{u}))+((\hat{A}(x_{n}), y_{n}-x_{u}))+((v_{n}, y_{n}-x_{u}))=((g\wedge(y_{n-1}), y_{n}-x_{u}))$ .

Note that from the integration by parts formula for functions in $W_{pq}(T)$ (see
Zeidler [25], proposition 23.23(iv), p. 423), we have

$((y_{n}, y_{n}-x_{u}))=((x_{u}, y_{n}-x_{u}))\rightarrow 0$ as $ n\rightarrow\infty$ .

Also $((v_{n}, y_{n}-x_{u}))=(v_{n}, y_{n}-x_{u})_{L^{p},L^{q}}\rightarrow 0$ as $ n\rightarrow\infty$ . Finally exploiting
the right continuity of $g(\cdot)$ and hypothesis $H_{0}$ , we have that $g\wedge(y_{n-1})\rightarrow y\wedge(x_{u})$
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in $L^{q}(T\times Z)$ and $((g\wedge(y_{n-1}), y_{n-1}-x_{u}))=(g\wedge(y_{n-1}), y_{n-1}-x_{u})_{L^{p},L^{q}}\rightarrow 0$ as
$ n\rightarrow\infty$ .

So finally we have $\varlimsup((\hat{A}(y_{n}), y_{n}-x_{u}))=0$ .
Recalling that $\hat{A}(\cdot)$ is pseudomonotone, we deduce that $\hat{A}(y_{n})\rightarrow w\hat{A}(x_{u})$ in

$L^{q}(T, X^{*})$ as $ n\rightarrow\infty$ . So in the limit as $ n\rightarrow\infty$ , we have
$x_{u}+\hat{A}(x_{u})+v=g\wedge(x_{u}),$ $v\in\partial\Phi(x_{u}),$ $x_{u}(0, z)=x(b, z)$ a.e. on $Z$ .
Therefore $x_{u}\in W_{pq}(T)$ solves (19). In fact we claim that $x_{u}$ is the greatest

solution of (19) in $K$ . Indeed let $x\wedge\in K$ be any solution of (19). In particular
then $ x\wedge$ is a lower solution (19) satisfying $ x\wedge\leq\varphi$ . Starting again the iteration
$y_{0}=\varphi,$ $y_{n}=S(y_{n-1})n\geq 1$ we obtain $ y_{n}\rightarrow x_{u}\geq x\wedge$ in $L^{p}(T\times Z)$ as $ n\rightarrow\infty$ , of
a nondecreasing sequence in K. $\blacksquare$

Remark. In particular if $g(\cdot)$ is continuous, then both extremal solutions
$x_{u},$ $x_{s}\in W_{pq}(T)$ can be obtained through monotone iterative processes.

Aknowledgment: The authors express their gratitude to the knowledgeable
referee for his (her) corrections and remarks.
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