OF MEROMORPHIC FUNCTIONS

Dedicated with deepest respect to Mother Teresa

By

Indrajit Lahiri

(Received September 25, 1996; Revised September 11, 1997)

Abstract. We prove a uniqueness theorem for meromorphic functions involving differential polynomials.

1. Introduction and Definitions

Let f, g be two transcendental meromorphic functions defined in the open complex plane C. If for some $a \in C$ the zeros of f - a and g - a coincide in locations and multiplicities, we say that f and g share the value a CM (counting multiplicities).

Recently Yi and Yang [7] proved the following theorem.

Theorem A. If f, g are such that (i) $\Theta(\infty; f) = \Theta(\infty; g) = 1$, (ii) $f^{(n)}$, $g^{(n)}$ share 1 CM and (iii) $\delta(0; f) + \delta(0; g) > 1$ then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$, where n is a nonnegative integer.

Considering $f = \frac{-1}{2^n} \exp(2z) + \exp(z)$, $g = -\frac{(-1)^n}{2^n} \exp(-2z) + (-1)^n \exp(-z)$ they [7] claimed that the condition (iii) of Theorem A is necessary. Their claim is true for n = 0 but for $n \ge 1$ it is questionable as we find in the following example.

Example 1. Let $f = 1 + \exp(z)$ and $g = 1 + (-1)^n \exp(-z)$ where n is a positive integer. Then $f^{(n)}$, $g^{(n)}$ share 1 CM, $\Theta(\infty; f) = \Theta(\infty; g) = 1$ and $\delta(0; f) = \delta(0; g) = 0$ but $f^{(n)} \cdot g^{(n)} \equiv 1$.

So it is natural to think that for $n \geq 1$ Theorem A deserves some improvement. In this connection we note that for the functions of the example of Yi and Yang $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)=1$ where as for those of Example 1 the

¹⁹⁹¹ Mathematics Subject Classification: 30D35

Key words and phrases: Uniqueness, Sharing values, Differential polynomial.

sum is greater than one.

In the paper we prove a uniqueness theorem involving differential polynomials generated by f and g. As a consequence of this theorem we give an improvement of Theorem A for $n \geq 1$. Throughout the paper we use standard notations and definitions of the value distribution theory [3].

Definition 1. We denote by $\Psi(D)$ the linear differential operator $\Psi(D) = \sum_{i=1}^{n} \alpha_i D^i$ where $\alpha_i \in C(i=1,2,\ldots,n), \ \alpha_n \neq 0 \ \text{and} \ D \equiv \frac{d}{dz}$.

Definition 2. We denote by E the exceptional set of finite linear measure that appears in the second fundamental theorem and by $S(r; f_1, f_2, \ldots, f_n)$ a function of r such that $S(r; f_1, f_2, \ldots, f_n) = o\{\sum_{i=1}^n T(r, f_1)\}$ as $r \to \infty$ $(r \notin E)$ where f_i 's are meromorphic functions defined on C.

2. Lemmas

In this section we present some lemmas which will be required in the sequel.

Lemma 1.[2] Let $f_j(j = 1, 2, ..., p)$ be linearly independent meromorphic functions such that $\sum_{j=1}^{p} f_j \equiv 1$. Then for j = 1, 2, ..., p

$$T(r, f_j) < \sum_{i=1}^{p} N(r, 0; f_i) + N(r, f_j) + N(r, \Delta)$$

 $-\sum_{i=1}^{p} N(r, f_i) - N(r, 0; \Delta) + S(r; f_1, f_2, \dots, f_p)$

where Δ is the wronskian determinant of f_1, f_2, \ldots, f_p .

Lemma 2.[5] If $\beta_i(\not\equiv 0; i=1,2)$ are meromorphic functions such that $T(r,\beta_i) = S(r;f,g)$ and $\beta_1 f + \beta_2 g \equiv 1$ then

$$T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,f) + S(r;f,g)$$
and
 $T(r,g) \leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,g) + S(r;f,g).$

Lemma 3.[6] Let f_1 , f_2 , f_3 be three nonconstant meromorphic functions satisfying $\sum_{i=1}^{3} f_i \equiv 1$ and let $g_1 = -(f_1/f_2)$, $g_2 = 1/f_2$, $g_3 = -(f_3/f_2)$. If f_1 , f_2 , f_3 are linearly independent then g_1 , g_2 , g_3 are linearly independent.

Lemma 4. If f is of finite order then

(i)
$$\sum_{a \neq \infty} \delta(a; f) \leq \liminf_{r \to \infty} \frac{T(r, \Psi(D)f)}{T(r, f)}$$
 and

(ii)
$$\sum_{a\neq\infty} \delta(a;f) \leq \{1 + n(1 - \Theta(\infty;f))\} \cdot \delta(0;\Psi(D)f)$$
.

We omit the proof because it can be proved by the inequality 2.1 (p. 33, [3]) and Milloux theorem (p. 55, [3]).

Lemma 5. If f is of finite order then $\Theta(\infty; \Psi(D)f) \ge 1 - \frac{1 - \Theta(\infty; f)}{\sum_{a \ne \infty} \delta(a; f)}$, where $\sum_{a \ne \infty} \delta(a; f) > 0$.

Proof. By Lemma 4 we get

$$\begin{split} \Theta(\infty; \Psi(D)f) & \geq 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, \infty; f)}{T(r, f)} \cdot \limsup_{r \to \infty} \frac{T(r, f)}{T(r, \Psi(D)f)} \\ & \geq 1 - \frac{1 - \Theta(\infty; f)}{\sum_{a \neq \infty} \delta(a; f)}. \end{split}$$

This proves the lemma.

Note 1. With modified characteristic functions and deficiencies as introduced in [1], [4] Lemma 4 and Lemma 5 can be proved similarly for functions of unrestricted order.

3. Theorems

In this section we give the main results.

Theorem 1. Let $\Psi(D)f$, $\Psi(D)g$ be nonconstant and

- (i) f, g share ∞ CM,
- (ii) $\Psi(D)f$, $\Psi(D)g$ share 1 CM,

$$\begin{aligned} &\text{(iii) } \left\{1 - \frac{1 - \Theta(\infty; g)}{\sum_{a \neq \infty} \delta(a; g)}\right\} \cdot \left\{\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + n(1 - \Theta(\infty; f))} - \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta(a; f)} \right. \\ &\left. + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + n(1 - \Theta(\infty; g))}\right\} \right. \\ &\left. > 1, \text{ where } \sum_{a \neq \infty} \delta(a; f) > 0, \sum_{a \neq \infty} \delta(a; g) > 0. \end{aligned}$$

Then either (a) $[\Psi(D)f] \cdot [\Psi(D)g] \equiv 1$ or (b) $f - g \equiv s$, where $s \equiv s(z)$ is a solution of $\Psi(D)w = 0$. If, further, (iv) f has at least one pole, the case (a) does not arise.

34 I. LAHIRI

Proof. First we suppose that f, g are of finite order. Let us put $F = \Psi(D)f$ and $G = \Psi(D)g$. Then by Lemma 4 and Lemma 5 the condition (iii) implies

(1)
$$\Theta(\infty; G)\{\delta(0; F) + 2\Theta(\infty; F) - 2\} + \delta(0; G) > 1.$$

This gives $\delta(0; F) + \Theta(\infty; F) > 1$ and $\delta(0; G) + \Theta(\infty; G) > 1$. In view of condition (ii) we get by the second fundamental theorem

$$T(r,F) \leq N(r,0;F) + N(r,1;F) + \overline{N}(r,\infty;F) + S(r,F)$$

$$= N(r,0;F) + N(r,1;G) + \overline{N}(r,\infty;F) + S(r,F)$$

$$\leq N(r,0;F) + T(r,G) + \overline{N}(r,\infty;F) + S(r,F)$$

i.e.,
$$\delta(0; F) + \Theta(\infty; F) - 1 \le \liminf_{r \to \infty} \frac{T(r, G)}{T(r, F)}$$
.

Also by the second fundamental theorem and condition (ii) we get $T(r,G) \leq N(r,0;G) + T(r,F) + \overline{N}(r,\infty;G) + S(r,G)$ and so

$$\limsup_{r\to\infty}\frac{T(r,G)}{T(r,F)}\leq\frac{1}{\delta(0;G)+\Theta(\infty;G)-1}.$$

Combining these two we get

(2)
$$\delta(0; F) + \Theta(\infty; F) - 1 \le \liminf_{r \to \infty} \frac{T(r, G)}{T(r, F)} \le \limsup_{r \to \infty} \frac{T(r, G)}{T(r, F)}$$
$$\le \frac{1}{\delta(0; G) + \Theta(\infty; G) - 1}.$$

Let $H = \frac{F-1}{G-1}$. Then $H \not\equiv 0$ and by conditions (i) and (ii) $\overline{N}(r,H) + \overline{N}(r,0;H) = S(r;F,G)$. Put $F_1 = F$, $F_2 = H$ and $F_3 = -GH$. Then

$$(3) F_1 + F_2 + F_3 \equiv 1.$$

If possible suppose that F_1 , F_2 , F_3 are linearly independent.

If Δ is the wronskian determinant of F_1 , F_2 , F_3 , and if z_0 is a zero F_i with multiplicity p(>2), it is a zero of Δ of multiplicity p-2. So $\sum_{i=1}^3 N(r,0;F_i) - N(r,0;\Delta) \leq \sum_{i=1}^3 N_2(r,0;F_i)$, where in $N_2(r,0;F_i)$ a zero of F_i with multiplicity p is counted p times if $p \leq 2$ and is counted twice if p > 2. Hence

$$\sum_{i=1}^{3} N(r,0;F) - N(r,0;\Delta) \le N_2(r,0;F) + N_2(r,0;H) + N_2(r,0;-GH)$$

$$\le N(r,0;F) + N(r,0;G) + 2N_2(r,0;H)$$

$$\le N(r,0;F) + N(r,0;G) + 4\overline{N}(r,0;H).$$

So by Lemma 1 we get

(4)
$$T(r,F) < N(r,0;F) + N(r,0;G) + N(r,\Delta) - \sum_{i=2}^{3} N(r,F_i) + S(r;F,G).$$

Now $N(r,\Delta) - \sum_{i=2}^3 N(r,F_i) \le 2\overline{N}(r,F_2) + 2\overline{N}(r,F_3) \le 2\overline{N}(r,F) + S(r,F,G)$ because $\Delta = F_2^{(1)} \cdot F_3^{(2)} - F_2^{(2)} \cdot F_3^{(1)}$ and by condition (i). So form (4) we get in view of (2)

(5)
$$T(r,F) < N(r,0;F) + N(r,0;G) + 2\overline{N}(r,F) + S(r,F).$$

Since by Lemma 3 $G_1 = -F/H$, $G_2 = 1/H$, $G_3 = G$ are linearly independent and $G_1 + G_2 + G_3 \equiv 1$, proceeding as above we get

(6)
$$T(r,G) < N(r,0;F) + N(r,0;G) + 2\overline{N}(r,F) + S(r,F).$$

In view of (1) we choose an ε , $0 < \varepsilon < \frac{1}{4} \{\delta(0; F) + \delta(0; G) + 2\Theta(\infty; F) - 3\}$. Then from (5) and (6) we get for sufficiently large values of r

$$\max\{T(r,F),T(r,G)\} < \{4 + 3\varepsilon - \delta(0;F) - \delta(0;G) - 2\Theta(\infty;F) + o(1)\}$$
$$\times \max\{T(r,F),T(r,G)\}$$
$$\leq \{1 - \varepsilon + o(1)\} \max\{T(r,F),T(r,G)\}$$

which is a contradiction. Hence F_1 , F_2 , F_3 are linearly dependent and so there exist constants c_1 , c_2 , c_3 , not all zero, such that

(7)
$$c_1 F_1 + c_2 F_2 + c_3 F_3 \equiv 0.$$

If $c_1=0$, we get $(c_2-c_3G)H\equiv 0$ and so G is a constant, which is not the case. So $c_1\neq 0$ and hence from (3) and (7) we get

(8)
$$cF_2 + dF_3 \equiv 1$$
, where $c = 1 - \frac{c_2}{c_1}$, $d = 1 - \frac{c_3}{c_1}$.

Now we consider the following cases.

Case I. Let $c \cdot d \neq 0$. Then from (8) we get $1/(cH) + (d/c)(G) \equiv 1$. So by Lemma 2 we get

$$T(r,G) \leq \overline{N}(r,H) + \overline{N}(r,0;G) + \overline{N}(r,G) + S(r;G,H)$$
$$= \overline{N}(r,0;G) + \overline{N}(r,G) + S(r;F,G)$$

and so by (2), $T(r,G) \leq \overline{N}(r,0;G) + \overline{N}(r,G) + S(r,G)$. This gives $\delta(0;G) + \Theta(\infty;G) \leq 1$, which is a contradiction. Hence the case $c \cdot d \neq 0$ does not arise.

36 I. LAHIRI

Case II. Let $c \cdot d = 0$.

Sub case (i). Let c=0. Then from (8) we get $dGH\equiv -1$ and so $(1-d)G+dGF\equiv 1$. If $d\neq 1$, we obtain $\frac{d}{1-d}F-\frac{1}{(1-d)G}\equiv 1$. So by Lemma 2 we get in view of (2) and condition (i) that

$$T(r,F) \leq \overline{N}(r,0;F) + \overline{N}(r,G) + \overline{N}(r,F) + S(r;F,G)$$

$$\leq \overline{N}(r,0;F) + 2\overline{N}(r,F) + S(r,F)$$

and so $\delta(0; F) \leq 2(1 - \Theta(\infty; F))$. This gives by (1) that $\delta(0; G) > 1$, which is a contradiction. Therefore, d = 1 and so $GF \equiv 1$ i.e., $[\Psi(D)f] \cdot [\Psi(D)G] \equiv 1$

Sub case (ii). Let d=0. Then from (8) we get $cF-G\equiv c-1$. If $c\neq 1$, we obtain $\frac{c}{c-1}F-\frac{1}{c-1}G\equiv 1$. So by Lemma 2 and condition (i) we get in view of (2)

$$T(r,F) \le \overline{N}(r,F) + N(r,0;G) + N(r,0;F) + S(r,F)$$
 and
$$T(r,G) < \overline{N}(r,F) + N(r,0;G) + N(r,0;F) + S(r,F).$$

In view of (1) we choose an ε , $0 < \varepsilon < \frac{1}{2} \{\Theta(\infty; F) + \delta(0; F) + \delta(0; G) - 2\}$. Then from above we get for sufficiently large values of r

$$\max\{T(r,F),T(r,G)\} < \{3+\varepsilon - \Theta(\infty;F) - \delta(0,F) - \delta(0;G) + o(1)\} \cdot \max\{T(r,F),T(r,G)\}$$

$$< \{1-\varepsilon + o(1)\} \cdot \max\{T(r,F),T(r,G)\},$$

a contradiction.

Therefore, c=1 and so $F\equiv G$ i.e., $\Psi(D)(f-g)\equiv 0$ so that $f-g\equiv s$, where $s\equiv s(z)$ is a solution of $\Psi(D)w=0$.

Further if f has at least one pole, say z_0 , then it is a pole of g also. Hence z_0 is a common pole of $\Psi(D)f$ and $\Psi(D)g$ which is impossible if $[\Psi(D)f] \cdot [\Psi(D)g] \equiv 1$. So the case (a) does not arise if f has at least one pole.

Let at least one of f and g be of infinite order. Since $\Theta(\infty; f) \leq \Theta_0(\infty; f)$, $\Theta(\infty; g) \leq \Theta_0(\infty; g)$, $\delta(a; f) \leq \delta_0(a; f)$ and $\delta(a; g) \leq \delta_0(a; g)$ (cf. Proposition 5, [4]), where $\Theta_0(\infty; f)$, $\delta_0(a; f)$ etc. denote the modified deficiencies (cf. [1], [4]), condition (iii) of the theorem implies that

$$\left\{1 - \frac{1 - \Theta_0(\infty; g)}{\sum_{a \neq \infty} \delta_0(a; g)}\right\} \cdot \left\{\frac{\sum_{a \neq \infty} \delta_0(a; f)}{1 + n(1 - \Theta_0(\infty; f))} - \frac{2(1 - \Theta_0(\infty; f))}{\sum_{a \neq \infty} \delta_0(a; f)} + \frac{\sum_{a \neq \infty} \delta_0(a; g)}{1 + n(1 - \Theta_0(\infty; g))}\right\} > 1,$$

and so in view of Note 1 we get

$$\Theta_0(\infty; G)\{\delta_0(0; F) + 2\Theta_0(\infty; F) - 2\} + \delta_0(0; G) > 1$$

which can play the role of inequality (1). Now the theorem can be proved in a like manner by integrating the inequalities appearing in the above proof. This proves the theorem.

Remark 1. Condition (iii) of Theorem 1 is necessary. For if $f = \exp(z) + \frac{-1}{2^n} \exp(2z)$, $g = (-1)^n \exp(-z) - \frac{(-1)^n}{2^n} \exp(-2z)$ and $\Psi(D) = D^n$ $(n \ge 1)$, we see that $\sum_{a \ne \infty} \delta(a; f) = \frac{1}{2}$, $\sum_{a \ne \infty} \delta(a; g) = \frac{1}{2}$, f, g share ∞ CM and $\Psi(D)f$, $\Psi(D)g$ share 1 CM. Also $\Theta(\infty; f) = \Theta(\infty; g) = 1$ and neither f - g is a polynomial nor $[\Psi(D)f] \cdot [\Psi(D)g] \equiv 1$.

Remark 2. Let $f = \exp(z)$, $g = (-1)^n \exp(-z)$ and $\Psi(D) = D^n$ $(n \ge 1)$. Then f has no pole. Also we see that f, g share ∞ CM, $\Psi(D)f$, $\Psi(D)g$ share 1 CM and $\sum_{a\ne\infty} \delta(a;f) + \sum_{a\ne\infty} \delta(a;g) = 2 > 1$. So the conditions (i), (ii), (iii) of Theorem 1 are satisfies and we note that $[\Psi(D)f][\Psi(D)g] \equiv 1$ which is case (a) of the theorem. Therefore the condition (iv) of Theorem 1 is necessary for nonoccurrence of case (a).

Now as a consequence of Theorem 1 we prove the next theorem which improves Theorem A for $n \ge 1$.

Theorem 2. If f, g are such that

- (i) $\Theta(\infty; f) = \Theta(\infty; g) = 1$.
- (ii) $f^{(n)}$, $g^{(n)}$ (n is a positive integer) share 1 CM,
- (iii) $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1$ and
- (iv) $\Theta(0; f) + \Theta(0; g) > 1$ then either (a) $f \equiv g$ or (b) $f^{(n)} \cdot g^{(n)} \equiv 1$.

Proof. Let $\Psi(D) = D^n$ $(n \ge 1)$ and as in Theorem 1 we suppose that $F = \Psi(D)f$, $G = \Psi(D)g$, $H = \frac{F-1}{G-1}$. By conditions (i) and (ii) of this theorem it follows that $\overline{N}(r,H) + \overline{N}(r,0;H) = S(r;F,G)$ and so in this case the condition (i) of Theorem 1 is not needed. Also since $\Theta(\infty;f) = \Theta(\infty;g) = 1$, the condition (iii) of Theorem 1 reduces to the condition (iii) of this theorem. Now by Theorem 1 we see that either $f - g \equiv Q$ or $f^{(n)} \cdot g^{(n)} \equiv 1$, where Q is a polynomial of degree at most n-1. Since f, g are transcendental, if $Q \not\equiv 0$ then by Theorem 2.5 [3] we get $\Theta(0;f) + \Theta(0;g) \le 1$. This contradiction proves the theorem.

Remark 3. The condition (iv) of Theorem 2 is necessary for the validity of case (a). For if $f=1+\exp(z)$ and $g=(-1)^n\exp(-z)$ then $\Theta(0;f)+\Theta(0;g)=1$, $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1$, $\Theta(\infty;f)=\Theta(\infty;g)=1$ and $f^{(n)},g^{(n)}$ $(n\geq 1)$ share 1 CM, but in this case $f^{(n)}\cdot g^{(n)}\equiv 1$. Also if $f=1+\exp(z)$ and $g=\exp(z)$ then $\Theta(0;f)+\Theta(0;g)=1$, $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1$, $\Theta(\infty;f)=\Theta(\infty;g)=1$ and $f^{(n)},g^{(n)}$ $(n\geq 1)$ share 1 CM but in this case $f-g\equiv 1$.

References

- [1] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan, 25: 4 (1973), 667-679.
- [2] F. Gross, Factorization of meromorphic functions, U.S. Govt. Math. Res. Centre (1972).
- [3] W. K. Hayman, Meromorphic Functions, The Clarendon Press (1964).
- [4] N. Toda, On a modified deficiency of meromorphic functions, *Tôhoku Math. J.*, 22 (1970), 635-658.
- [5] H. X. Yi, Meromorphic functions with two deficient values, *Acta. Math. Sinica (Chinese)*, **30**: 5 (1987), 588-597.
- [6] H. X. Yi, Meromorphic functions that share two or three values, *Kodai Math. J.*, 13 (1990), 363-372.
- [7] H. X. Yi and C. C. Yang, A uniqueness theorem for meromorphic functions whose nth derivative share the same 1-points, J. d'Analyse Math., 62 (1994), 261-270.

Department of Mathematics Jadavpur University Calcutta - 7000032 INDIA