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Abstract. We prove a uniqueness theorem for meromorphic functions involving
differential polynomials.

1. Introduction and Definitions

Let f, g be two transcendental meromorphic functions defined in the open
complex plane C. If for some a € C the zeros of f —a and g — a coincide in
locations and multiplicities, we say that f and g share the value a CM (counting
multiplicities).

Recently Yi and Yang [7] proved the following theorem.

Theorem A. If f, g are such that (i) ©(oco; f) = ©(o0;g) = 1, (ii) f™,
g™ share 1 CM and (iii) 6(0; f)+6(0; g) > 1 then either f = g or f(™.g(™ =1,
where n is a nonnegative integer.

Considering f = -2—3111— exp(2z)+exp(z), g = —(L?};)—— exp(—2z)+(—1)" exp(—2z)
they [7] claimed that the condition (iii) of Theorem A is necessary. Their claim
is true for n = 0 but for n > 1 it is questionable as we find in the following
example.

Example 1. Let f = 1+ exp(z) and g = 1+ (—1)"exp(—z) where n is
a positive integer. Then f(™) g{™ share 1 CM, ©(oc0; f) = ©(00;9) = 1 and
8(0; f) = 6(0;9) = 0 but f™ . g™ =1,

So it is natural to think that for n > 1 Theorem A deserves some improve-
ment. In this connection we note that for the functions of the example of Yi
and Yang Y, 6(a; f) +3 ..o 6(a; g) = 1 where as for those of Example 1 the
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sum is greater than one.

In the paper we prove a uniqueness theorem involving differential polynomials
generated by f and g. As a consequence of this theorem we give an improvement
of Theorem A for n > 1. Throughout the paper we use standard notations and
definitions of the value distribution theory [3].

Definition 1. We denote by ¥ (D) the linear differential operator ¥(D) =
Yo, a; D' where 0;eC(i = 1,2,...,n), ap #0and D = f—z-

Definition 2. We denote by F the exceptional set of finite linear measure
that appears in the second fundamental theorem and by S(r; fi, fa,..., fa) a

function of r such that S(r; f1, f2,..., fn) = o {3, T(r, i)} as r - oo (r &
E)where f;’s are meromorphic functions defined on C.

2. Lemmas
In this section we present some lemmas which will be required in the sequel.

Lemma 1.[2] Let f;(j = 1,2,...,p) be linearly independent meromorphic
functions such that _%_, fi = 1. Then for j=1,2,...,p

P
T(r, f;) <Y _N(r,0; fi) + N(r, f;) + N(r, A)

i=1
P
- ZN(r, fi) — N(r,0; A) + S(ﬁ fisfay ooy fp)
i=1

where A is the wronskian determinant of fi, fa, ..., fp.

Lemma 2.[5] If Bi(# 0;i = 1,2) are meromorphic funcitons such that
T(r,8;) = S(r; f,9) and B1f + P29 = 1 then
T(r, f) < N(r,0; f) + N(r,0; 9) + N(r, f) + S(r; f, 9)
and
T(r,g) < N(r,0; f) + N(r,0; 9) + N(r,g) + S(r; £, 9).

Lemma 3.(6] Let f1, fa, f3 be three nonconstant meromorphic functions

satisfying 3°;_, fi = 1 and let g1 = —(f1/f2), 92 = 1/ fa, 93 = —(fs/f2). If fu,
f2, f3 are linearly independent then g1, g2, g3 are linearly independent.

Lemma 4. If f is of finite order then
(1) axoo O(a; f) < liminf, o T(g\I/(?)f)

)

and
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(i1) 3 g0 6(a; f) < {14 n(1-06(c0; f))} - 6(0; ¥(D) ).

We omit the proof because it can be proved by the inequality 2.1 (p. 33, )
and Milloux theorem (p. 55, [3]). '

Lemma 5. If f is of finite order then ©(oco; ¥(D)f) > 1 — ﬁ—%l — @(:S)o;.ff )
‘LaaF#oo ’
where 3, 6(a; f) > 0.

Proof. By we get

©(c0i ¥(D)f) 2 1 - limsup 7(“(,1" f)f) liin_.s;fpw%,(gm

>1- 12600 f)
> 8(a; f)

aF#oo

This proves the lemma. I

Note 1. With modified characteristic functions and deficiencies as intro-
duced in [1], and can be proved similarly for functions of
unrestricted order.

3. Theorems

In this section we give the main results.

Theorem 1. Let ¥(D)f, ¥(D)g be nonconstant and
(i) f, g share o CM,
(ii) ¥(D)f, ¥(D)g share 1 CM,

i {1 f=Oeia wreo 0@ 1) 2(1— O(co: f))
(i) {1 - f=OCHOY (o Zgeatl) S 6 f)

Z,,#oo 8(a;9) . .
T3 n(- @(oo;g))} > 1, where -, 6(a; f) >0, -, 6(a;g) > 0.
Then either (a) [¥(D)f] - [¥(D)g] =1 or (b) f —g = s, where s = s(z) is a
solution of ¥(D)w = 0. If, further, (iv) f has at least one pole, the case (a) does
not arise.

+
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Proof. First we suppose that f, g are of finite order. Let us put F = ¥(D) f
and G = ¥(D)g. Then by Lemma 4 and Lemma 5 the condition (iii) implies

(1) O(o0; G){6(0; F) + 20(o0; F) — 2} 4+ 6(0; G) > 1.

This gives 6(0; F)+©(oo; F) > 1 and 6§(0; G)+06(c0; G) > 1. In view of condition
(ii) we get by the second fundamental theorem

T(r,F) < N(r,0; F) + N(r,1; F) + N(r,00; F) + S(r, F)
= N(r,0; F) + N(r,1;G) + N(r,00; F) + S(r, F)
< N(r,0; F) + T(r,G) + N(r,00; F) + S(r, F)
i.e., 6(0; F) 4+ ©(o0; F) — 1 < liminf, . %(::—IG,%
Also by the second fundamental theorem and condition (ii) we get T'(r,G) <
N(r,0;G) + T(r, F) + N(r,00; G) + S(r,G) and so

0 T(r,G) < 1
ey T(r, F) = 5(0;G) + 0(0;G) — 1

Combining these two we get

.. .Tr,G) _ .. T(r,G)
. . —-1< <
) 5(0; F) + ©(00; F) — 1 < liminf 77 < limsup 705

1
< .
~ 6(0;G) + O(0;G) — 1

Let H = g—:—% Then H # 0 and by conditions (i) and (ii)
N(r,H)+ N(r,0;H) = S(r; F,G). Put F; = F, F, = H and F3 = —GH. Then

(3) K+ F+F3=1.

If possible suppose that F;, F3, F3 are linearly independent.

If A is the wronskian determinant of F, F,, F3, and if 2q is a zero F; with
multiplicity p(> 2), it is a zero of A of multiplicity p — 2. So ?:1 N(r,0; F;) —
N(r,0;A) < 2?21 Ny(r,0; F}), where in Ny(r, 0; F;) a zero of F; with multiplicity
p is counted p times if p < 2 and is counted twice if p > 2. Hence

.3
S N(r,0,F) = N(r,0;4) < Ny(r,0; F) + Na(r,0; H) + No(r, 0; ~GH)
i=1

< N(r,0; F) + N(r,0; G) + 2N3(r,0; H)
< N(r,0; F) + N(r,0;G) + 4N(r,0; H).
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So by we get

3
(4) T(r,F) < N(r,0;F) + N(r,0;G) + N(r,A) — Y " N(r, F}) + S(r; F, G).

1=2

Now N(r,A)-32_, N(r, F;) < 2N(r, F»)+2N(r, F3) < 2N(r, F)+S(r, F,G)
because A = F2(1) -Féz) - F2(2) . Fél) and by condition (i). So form (4) we get in
view of (2) '

(5) T(r,F) < N(r,0; F) + N(r,0;G) + 2N(r, F) + S(r, F).

Since by G, = —-F/H, G, = 1/H, G3 = G are linearly independent
and G1 + G2 + G3 = 1, proceeding as above we get

(6) T(r,G) < N(r,0; F) + N(r,0; G) + 2N(r, F) + S(r, F).

In view of (1) we choose an e, 0 < € < 711{6(0; F) +6(0; G) + 20(o0; F) — 3}.
Then from (5) and (6) we get for sufficiently large values of r
max{T(r, F),T(r,G)} < {4 + 3¢ — 6(0; F) — 6(0; G) — 20(o0; F) + o(1)}
x max{T(r, F),T(r,G)}
<{l-e+o(1)} max{T(r,F),T(r,G)}

which is a contradiction. Hence Fj, F,, F; are linearly dependent and so there
exist constants c;, ca, c3, not all zero, such that

(7) C]Fl + Cze + C3F3 = 0.
If ey =0, we get (co — c3G)H = 0 and so G is a constant, which is not the

case. So c; # 0 and hence from (3) and (7) we get
(8) cF, +dF3 =1, wherec-_-l—g,d:l—fi.
(5] (8]

‘Now we consider the following cases.

Case I. Let c-d # 0. Then from (8) we get 1/(cH) + (d/c)(G) = 1. So by
we get

T(r,G) < N(r,H) + N(r,0;G) + N(r,G) + S(r; G, H)
= N(r,0;G) + N(r,G) + S(r; F,G)

and so by (2), T(r,G) < N(r,0;G) + N(r,G) + S(r,G). This gives 6(0; G) +
©(00; G) < 1, which is a contradiction. Hence the case ¢ - d # 0 does not arise.
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Case II. Letc-d=0.

Sub case (i). Let ¢ = 0. Then from (8) we get dGH = —1 and so
(1-d)G+dGF = 1. If d # 1, we obtain 1de— (1——1d)G = 1. So by
we get in view of (2) and condition (i) that

T(r,F) < N(r,0; F) + N(r,G) + N(r, F) + S(r; F, G)
< N(r,0; F) + 2N(r,F) + S(r, F)

and so 6(0; F) < 2(1 — ©(oo; F)). This gives by (1) that §(0; G) > 1, which is a
contradiction. Therefore, d = 1 and so GF =1 i.e., [¥(D)f]- [¥(D)G] =1

Sub case (ii). Let d =0. Then from (8) weget cF —G=c—1. Ifc#1,
we obtain C—E-IF - c_'l—IG = 1. So by and condition (i) we get in
view of (2)

T(r,F) < N(r,F) + N(r,0;G) + N(r,0; F) + S(r, F)
and
T(r,G) < N(r,F) + N(r,0;G) + N(r,0; F) + S(r, F).

In view of (1) we choose an £, 0 < € < %{@(OO;F) + 6(0; F) + 6(0;G) — 2}.
Then from above we get for sufficiently large values of r

max{T'(r, F), T(r,G)} < {3+ ¢ — ©(o0; F) — 6(0, F) — 6(0;G)
+0(1)} - max{T(r, F),T(r,G)}
<{l1-e+0(1)} max{T(r, F),T(r,G)},

a contradiction.

Therefore, c = 1 and so F = G i.e., ¥(D)(f —g) = 0so that f —g = s, where
s = s(z) is a solution of ¥(D)w = 0.

Further if f has at least one pole, say zg, then it is a pole of g also. Hence zg is
a common pole of ¥(D) f and ¥(D)g which is impossible if [¥(D) f]-[¥(D)g] = 1.
So the case (a) does not arise if f has at least one pole.

Let at least one of f and g be of infinite order. Since ©(oo; f) < ©g(o0; f),
O(00; g) < ©p(0;9), 6(a; f) < bo(a; f) and 8(a;g) < bo(a; g) (cf. Proposition 5,
[4]), where ©g(o0; ), 8o(a; f) etc. denote the modified deficiencies (cf. (1], [4D,
condition (iii) of the theorem implies that

{1_ 1 — ©o(c0; g) } _ { 3 a0 00(a; f)
Za;ﬁoo 60((1; g) 1+ Tl(l — @0(00; f))

- 2(1 = ©9(o0; f)) Za;éoo bo(a; g)
Za:ﬁoo 60((1; f) + 1+ n(l — @o(OO,g)) } > 1a
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and so in view of Note 1 we get
©0(00; G){60(0; F) + 20¢(00; F) — 2} + 6(0;G) > 1

which can play the role of inequality (1). Now the theorem can be proved in a
like manner by integrating the inequalities appearing in the above proof. This
proves the theorem. Wl

Remark 1. Condition (iii) of Mheorem 1 is necessary. For if f = exp(z) +
gnl-exp(2z) g = (—1)"exp(— z) (—n)—exp( 2z) and ¥(D) = D™ (n > 1),

we see that 3 6(a; f) = 2, Datoo 0(a;9) = 2, f, g share co CM and
¥(D)f, ¥(D)g share 1 CM. Also ©(oc0; f) = ©(00;g) = 1 and neither f —gisa
polynomial nor [¥(D)f] - [¥(D)g] = 1.

Remark 2. Let f = exp(z), g = (—1)"exp(—z) and ¥(D) = D" (n > 1).
Then f has no pole. Also we see that f, g share oo CM, ¥(D)f, ¥(D)g share 1
CMand 3, 6(a; f) + 2 azoo 6(a;g) = 2 > 1. So the conditions (i), (ii), (iii)
of [Theorem 1| are satisfies and we note that [¥(D) fl[¥(D)g] = 1 which is case
(a) of the theorem. Therefore the condition (iv) of Theorem 1 is necessary for
nonoccurrence of case (a).

Now as a consequence of we prove the next theorem which im-
proves Theorem A for n > 1.

Theorem 2. If f, g are such that
(i) ©(00; f) = ©(o0;9) = 1.
(ii) f™, g™ (n is a positive integer) share 1 CM,
(1) 3 a0 6(a; f) + Y azoo 0(a;9) > 1 and
(iv) ©(0; f) + ©(0; g) > 1 then either (a) f = g or (b) f(™ .g(M) =1.

Proof. Let ¥(D) = D™ (n > 1) and as in we suppose that
F=¥(D)f,G=¥(D)g, H=%=1. By conditions (i) and (ii) of this theorem
it follows that N(r, H)+N(r,0; H) = S(r; F, G) and so in this case the condition
(i) of [Theorem 1l is not needed. Also since ©(oo; f) = ©(o0; g) = 1, the condition
(iii) of reduces to the conditon (iii) of this theorem. Now by
1 we see that either f — g = Q or f(™ . g(™ = 1, where Q is a polynomial of
degree at most n — 1. Since f, g are transcendental, if Q # 0 then by Theorem
2.5 [3] we get ©(0; f) + ©(0;g) < 1. This contradiction proves the theorem. W
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Remark 3. The condition (iv) of is necessary for the validity of
case (a). For if f = 14+-exp(z) and g = (—1)™ exp(—2) then ©(0; f)+©(0; g) = 1,
D azo0 6(8; )+ a k00 6(a; 9) > 1, 8(00; ) = ©(00; g) = 1 and f™, g™ (n > 1)
share 1 CM, but in this case f™ . g™ = 1. Also if f = 1 + exp(z) and
g = exp(z) then ©(0;f) + ©(0;9) = 1, 3,5, 0(a; f) + Xgr000(a;9) > 1,
O(o0; f) = O(00;g9) = 1 and f™, g(® (n > 1) share 1 CM but in this case

f—-g=1
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