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Abstract. We prove a uniqueness theorem for meromorphic functions involving
differential polynomials.

1. Introduction and Definitions

Let $f,$ $g$ be two transcendental meromorphic functions defined in the open
complex plane $C$ . If for some $a\in C$ the zeros of $f-a$ and $g-a$ coincide in
locations and multiplicities, we say that $f$ and $g$ share the value a CM (counting
multiplicities).

Recently Yi and Yang [7] proved the following theorem.

Theorem A. If $f,$ $g$ are such that (i) $\Theta(\infty;f)=\Theta(\infty;g)=1$ , (ii) $f^{(n)}$ ,
$g^{\langle n)}$ share 1 CM and (iii) $\delta(0;f)+\delta(O;g)>1$ then either $f\equiv g$ or $f^{(n)}\cdot g^{\langle n)}\equiv 1$ ,
where $n$ is a nonnegative integer.

Considering $f=\neg 2-1\tau\exp(2z)+\exp(z),$ $g=-\frac{(-1)^{n}}{2^{n}}\exp(-2z)+(-1)^{n}\exp(-z)$

they [7] claimed that the condition (iii) of Theorem A is necessary. Their claim
is true for $n=0$ but for $n\geq 1$ it is questionable as we find in the following
example.

Example 1. Let $f=1+\exp(z)$ and $g=1+(-1)^{n}\exp(-z)$ where $n$ is
a positive integer. Then $f^{(n)},$ $g^{(n)}$ share 1 CM, $\Theta(\infty;f)=\Theta(\infty;g)=1$ and
$\delta(0;f)=\delta(O;g)=0$ but $f^{(n)}\cdot g^{\langle n)}\equiv 1$ .

So it is natural to think that for $n\geq 1$ Theorem A deserves some improve-
ment. In this connection we note that for the functions of the example of Yi
and Yang $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)=1$ where as for those of Example 1 the
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sum is greater than one.
In the paper we prove a uniqueness theorem involving differential polynomials

generated by $f$ and $g$ . As a consequence of this theorem we give an improvement
of Theorem A for $n\geq 1$ . Throughout the paper we use standard notations and
definitions of the value distribution theory [3].

Deflnition 1. We denote by $\Psi(D)$ the linear differential operator $\Psi(D)=$

$\sum_{\dot{|}=1}^{n}\alpha_{i}D^{i}$ where $\alpha_{i}\epsilon C(i=1,2, \ldots, n),$ $\alpha_{n}\neq 0$ and $D\equiv Tzd$ .

Definition 2. We denote by $E$ the exceptional set of finite linear measure
that appears in the second fundamental theorem and by $S(r;f_{1}, f_{2}, \ldots, f_{n})$ a
function of $r$ such that $S(r;f_{1}, f_{2}, \ldots , f_{n})=0\{\sum_{i=1}^{n}T(r, f_{1})\}$ as $ r\rightarrow\infty(r\not\in$

$E)wheref_{1}’ s$ are meromorphic functions defined on $C$ .

2. Lemmas

In this section we present some lemmas which will be required in the sequel.

Lemma 1.[2] Let $f_{j}(j=1,2, \ldots,p)$ be linearly independent meromo $7p$hic
functions such that $\sum_{j=1}^{R}f_{j}\equiv 1$ . Then for $j=1,2,$ $\ldots,p$

$T(r, f_{j})<\sum_{i=1}^{p}N(r, 0;f_{i})+N(r, f_{j})+N(r, \Delta)$

$-\sum_{i=1}^{p}N(r, f_{i})-N(r, 0;\Delta)+S(r;f_{1}, f_{2}, \ldots, f_{p})$

where $\triangle$ is the wronskian $detem\iota inant$ of $f_{1},$ $f_{2},$
$\ldots,$

$f_{p}$ .

Lemma 2.[5] If $\beta_{i}(\not\equiv 0;i=1,2)$ are meromorphic funcitons such that
$T(r, \beta_{i})=S(r;f,g)$ and $\beta_{1}f+\beta_{2}g\equiv 1$ then

$T(r, f)\leq\overline{N}(r, 0;f)+\overline{N}(r, 0;g)+\overline{N}(r, f)+S(r;f, g)$

and
$T(r, g)\leq\overline{N}(r, 0;f)+\overline{N}(r, 0;g)+\overline{N}(r, g)+S(r;f, g)$ .

Lemma 3.[6] Let $f_{1},$ $f_{2},$ $f_{3}$ be three nonconstant meromorphic functions
satisfying $\sum_{i=1}^{3}f_{i}\equiv 1$ and let $g_{1}=-(f_{1}/f_{2}),$ $g_{2}=1/f_{2},$ $g_{3}=-(f_{3}/f_{2})$ . If $f_{1}$ ,
$f_{2},$ $f_{3}$ are linearly independent then $g_{1},$ $g_{2},$ $g_{3}$ are linearly independent.

Lemma 4. If $f$ is of finite order then
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(ii) $\sum_{a\neq\infty}\delta(a;f)\leq\{1+n(1-\Theta(\infty;f))\}\cdot\delta(0;\Psi(D)f)$ .

We omit the proof because it can be proved by the inequality 2.1 (p. 33, [3])
and Milloux theorem (p. 55, [3]).

Lemma 5. If $f$ is of finite order then $\Theta(\infty;\Psi(D)f)\geq 1-\frac{1-\Theta(\infty;f)}{\sum_{a\neq\infty}\delta(a;f)}$

where $\sum_{a\neq\infty}\delta(a;f)>0$ .

Proof. By Lemma 4 we get

$\Theta(\infty;\Psi(D)f)\geq 1-\lim\sup\frac{\overline{N}(r,\infty;f)}{T(r,f)}\cdot\lim_{rr\rightarrow\infty\rightarrow}\sup_{\infty}\frac{T(r,f)}{T(r,\Psi(D)f)}$

$\geq 1-\frac{1-\Theta(\infty;f)}{\sum_{a\neq\infty}\delta(a;f)}$

.

This proves the lemma. $\blacksquare$

Note 1. With modified characteristic functions and deficiencies as intro-
duced in [1], [4] Lemma 4 and Lemma 5 can be proved similarly for functions of
unrestricted order.

3. Theorems

In this section we give the main results.

Theorem 1. Let $\Psi(D)f,$ $\Psi(D)g$ be nonconstant and

(i) $f,$ $g$ share $\infty$ CM,

(ii) $\Psi(D)f,$ $\Psi(D)g$ share 1 CM,

(iii) $\{1-\frac{1-\Theta(\infty;g)}{\sum_{a\neq\infty}\delta(a;g)}\}\cdot\{\frac{\sum_{a\neq\infty}\delta(a;f)}{1+n(1-\Theta(\infty;f))}-\frac{2(1-\Theta(\infty;f))}{\sum_{a\neq\infty}\delta(a;f)}$

$+\frac{\sum_{a\neq\infty}\delta(a;g)}{1+n(1-\Theta(\infty;g))}\}>1$ , where $\sum_{a\neq\infty}\delta(a;f)>0,$ $\sum_{a\neq\infty}\delta(a;g)>0$ .

Then either (a) $[\Psi(D)f]\cdot[\Psi(D)g]\equiv 1$ or (b) $f-g\equiv s$ , where $s\equiv s(z)$ is a
solution of $\Psi(D)w=0$ . If, further, (iv) $f$ has at least one pole, the case (a) does
not arise.
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Proof. First we suppose that $f,$ $g$ are of finite order. Let us put $F=\Psi(D)f$

and $G=\Psi(D)g$ . Then by Lemma 4 and Lemma 5 the condition (iii) implies

(1) $\Theta(\infty;G)\{\delta(0;F)+2\Theta(\infty;F)-2\}+\delta(0;G)>1$ .

This gives $\delta(0;F)+\Theta(\infty;F)>1$ and $\delta(0;G)+\Theta(\infty;G)>1$ . In view of condition
(ii) we get by the second fundamental theorem

$T(r, F)\leq N(r, 0;F)+N(r, 1;F)+\overline{N}(r, \infty;F)+S(r, F)$

$=N(r, 0;F)+N(r, 1;G)+\overline{N}(r, \infty;F)+S(r, F)$

$\leq N(r, 0;F)+T(r, G)+\overline{N}(r, \infty;F)+S(r, F)$

i.e., $\delta(0;F)+\Theta(\infty;F)-1\leq\lim\inf_{r\rightarrow\infty}\frac{T(r,G)}{T(r,F)}$ .
Also by the second fundamental theorem and condition (ii) we get $ T(r, G)\leq$

$N(r, 0;G)+T(r, F)+\overline{N}(r, \infty;G)+S(r, G)$ and so

$\lim_{r\rightarrow}\sup_{\infty}\frac{T(r,G)}{T(r,F)}\leq\frac{1}{\delta(0;G)+\Theta(\infty;G)-1}$

Combining these two we get

(2) $\delta(0;F)+\Theta(\infty;F)-1\leq\lim_{r\rightarrow}\inf_{\infty}\frac{T(r,G)}{T(r,F)}\leq\lim_{r\rightarrow}\sup_{\infty}\frac{T(r,G)}{T(r,F)}$

$\leq\frac{1}{\delta(0;G)+\Theta(\infty;G)-1}$

Let $H=\frac{F-1}{G-1}$ Then $H\not\equiv O$ and by conditions (i) and (ii)
$\overline{N}(r, H)+\overline{N}(r, 0;H)=S(r;F, G)$ . Put $F_{1}=F,$ $F_{2}=H$ and $F_{3}=-GH$ . Then

(3) $F_{1}+F_{2}+F_{3}\equiv 1$ .

If possible suppose that $F_{1},$ $F_{2},$ $F_{3}$ are linearly independent.
If $\Delta$ is the wronskian determinant of $F_{1},$ $F_{2},$ $F_{3}$ , and if $z_{0}$ is a zero $F_{i}$ with

multiplicity $p(>2)$ , it is a zero of $\triangle$ of multiplicity $p-2$ . So $\sum_{i=1}^{3}N(r, 0;F_{j})-$

$N(r, 0;\Delta)\leq\sum_{=1}^{\dot{3}}N_{2}(r, 0;F_{i})$ , where in $N_{2}(r, 0;F_{i})$ a zero of $F_{t}$ with multiplicity
$p$ is counted $p$ times if $p\leq 2$ and is counted twice if $p>2$ . Hence

$\sum_{i=1}^{3}N(r, 0;F)-N(r, 0;\Delta)\leq N_{2}(r, 0;F)+N_{2}(r, 0;H)+N_{2}(r, 0;-GH)$

$\leq N(r, 0)F)+N(r, 0;G)+2N_{2}(r, 0;H)$

$\leq N(r, 0;F)+N(r, 0;G)+4\overline{N}(r, 0;H)$ .
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So by Lemma 1 we get

(4) $T(r, F)<N(r, 0;F)+N(r, 0;G)+N(r, \Delta)-\sum_{:=2}^{3}N(r, F_{1})+S(r;F, G)$ .

Now $N(r, \Delta)-\sum_{i=2}^{3}N(r, F_{l})\leq 2\overline{N}(r, F_{2})+2\overline{N}(r, F_{3})\leq 2\overline{N}(r, F)+S(r, F, G)$

because $\Delta=F_{2}^{\langle 1)}\cdot F_{3}^{(2)}-F_{2}^{(2)}\cdot F_{3}^{(1)}$ and by condition (i). So form (4) we get in
view of (2)

(5) $T(r, F)<N(r,0;F)+N(r, 0;G)+2\overline{N}(r, F)+S(r, F)$ .

Since by Lemma 3 $G_{1}=-F/H,$ $G_{2}=1/H,$ $G_{3}=G$ are linearly independent
and $G_{1}+G_{2}+G_{3}\equiv 1$ , proceeding as above we get

(6) $T(r, G)<N(r, 0;F)+N(r, 0;G)+2\overline{N}(r, F)+S(r, F)$ .

In view of (1) we choose an $\epsilon,$ $0<\epsilon<z^{\{\delta(0;F)}1+\delta(O;G)+2\Theta(\infty;F)-3$ }.
Then from (5) and (6) we get for sufficiently large values of $r$

$\max\{T(r, F), T(r, G)\}<\{4+3\epsilon-\delta(0;F)-\delta(O;G)-2\Theta(\infty;F)+o(1)\}$

$\times\max\{T(r, F), T(r, G)\}$

$\leq\{1-\epsilon+o(1)\}\max\{T(r, F), T(r, G)\}$

which is a contradiction. Hence $F_{1},$ $F_{2},$ $F_{3}$ are linearly dependent and so there
exist constants $c_{1},$ $c_{2},$ $c_{3}$ , not all zero, such that

(7) $c_{1}F_{1}+c_{2}F_{2}+c_{3}F_{3}\equiv 0$ .

If $c_{1}=0$ , we get $(c_{2}-c_{3}G)H\equiv 0$ and so $G$ is a constant, which is not the
case. So $c_{1}\neq 0$ and hence from (3) and (7) we get

(8) $cF_{2}+dF_{3}\equiv 1$ , where $c=1-\frac{c_{2}}{c_{1}},$ $d=1-\frac{c_{3}}{c_{1}}$ .

Now we consider the following cases.

Case I. Let $c\cdot d\neq 0$ . Then from (8) we get $1/(cH)+(d/c)(G)\equiv 1$ . So by
Lemma 2 we get

$T(r, G)\leq\overline{N}(r, H)+\overline{N}(r, 0;G)+\overline{N}(r, G)+S(r;G, H)$

$=\overline{N}(r, 0;G)+\overline{N}(r, G)+S(r;F, G)$

and so by (2), $T(r, G)\leq\overline{N}(r, 0;G)+\overline{N}(r, G)+S(r, G)$ . This gives $\delta(0;G)+$

$\Theta(\infty;G)\leq 1$ , which is a contradiction. Hence the case $c\cdot d\neq 0$ does not arise.
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Case II. Let $c\cdot d=0$ .
Sub case (i). Let $c=0$ . Then from (8) we get $dGH\equiv-1$ and so

$(1-d)G+dGF\equiv 1$ . If $d\neq 1$ , we obtain $\ulcorner_{-\eta^{F-}}df_{d)G}\equiv 1$ . So by

Lemma 2 we get in view of (2) and condition (i) that

$T(r, F)\leq\overline{N}(r, 0;F)+\overline{N}(r, G)+\overline{N}(r, F)+S(r;F, G)$

$\leq\overline{N}(r, 0;F)+2\overline{N}(r, F)+S(r, F)$

and so $\delta(0;F)\leq 2(1-\Theta(\infty;F))$ . This gives by (1) that $\delta(0;G)>1$ , which is a
contradiction. Therefore, $d=1$ and so $GF\equiv 1$ i.e., $[\Psi(D)f]\cdot[\Psi(D)G]\equiv 1$

Sub case (ii). Let $d=0$ . Then from (8) we get $cF-G\equiv c-1$ . If $c\neq 1$ ,
we obtain $\frac{c}{c-1}F-\frac{1}{c-1}G\equiv 1$ . So by Lemma 2 and condition (i) we get in
view of (2)

$T(r, F)\leq\overline{N}(r, F)+N(r, 0;G)+N(r,0;F)+S(r, F)$

and
$T(r, G)\leq\overline{N}(r, F)+N(r, 0;G)-|- N(r,0;F)+S(r, F)$ .

In view of (1) we choose an $\epsilon,$
$0<\epsilon<2^{\{\Theta(\infty;F)}1+\delta(O;F)+\delta(O;G)-2$ }.

Then from above we get for sufficiently large values of r

$\max\{T(r, F), T(r, G)\}<\{3+\epsilon-\Theta(\infty;F)-\delta(O, F)-\delta(O;G)$

$+o(1)\}\cdot\max\{T(r, F), T(r, G)\}$

$<\{1-\epsilon+o(1)\}\cdot\max\{T(r, F), T(r, G)\}$ ,

a contradiction.
Therefore, $c=1$ and so $F\equiv G$ i.e., $\Psi(D)(f-g)\equiv 0$ so that $f-g\equiv s$ , where

$s\equiv s(z)$ is a solution of $\Psi(D)w=0$ .
Further if $f$ has at least one pole, say $z_{0}$ , then it is a pole of $g$ also. Hence $z_{0}$ is

a common pole of $\Psi(D)f$ and $\Psi(D)g$ which is impossible if $[\Psi(D)f]\cdot[\Psi(D)g]\equiv 1$ .
So the case (a) does not arise if $f$ has at least one pole.

Let at least one of $f$ and $g$ be of infinite order. Since $\Theta(\infty;f)\leq\Theta_{0}(\infty;f)$ ,
$\Theta(\infty;g)\leq\Theta_{0}(\infty;g),$ $\delta(a;f)\leq\delta_{0}(a;f)$ and $\delta(a;g)\leq\delta_{0}(a;g)$ (cf. Proposition 5,
[4]), where $\Theta_{0}(\infty;f),$ $\delta_{0}(a;f)$ etc. denote the modified deficiencies (cf. [1], [4]),
condition (iii) of the theorem implies that

$\{1-\frac{1-O_{0}-(\infty;g)}{\sum_{a\neq\infty}\delta_{0}(a;g)}\}$
$\{\frac{\sum_{a\neq\infty}\delta_{0}(a;f)}{1+n(1-\Theta_{0}(\infty;f))}$

$-\frac{2(1-\Theta_{0}(\infty;f))}{\sum_{a\neq\infty}\delta_{0}(a;f)}+\frac{\sum_{a\neq\infty}\delta_{0}(a;g)}{1+n(1-\Theta_{0}(\infty;g))}\}>1$ ,
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and so in view of Note 1 we get

$\Theta_{0}(\infty;G)\{\delta_{0}(0;F)+2\Theta_{0}(\infty;F)-2\}+\delta_{0}(0;G)>1$

which can play the role of inequality (1). Now the theorem can be proved in a
like manner by integrating the inequalities appearing in the above proof. This
proves the theorem. $\blacksquare$

Remark 1. Condition (iii) of Theorem 1 is necessary. For if $f=\exp(z)+$

$\neg 2\ulcorner-1_{\exp(2z)}g=(-1)^{n}\exp(-z)-\frac{(-1)^{n}}{2^{n}}\exp(-2z)$ and $\Psi(D)=D^{n}(n\geq 1)$ ,
we see that $\sum_{a\neq\infty}\delta(a;f)=21$ $\sum_{a\neq\infty}\delta(a;g)=21$ $f,$ $g$ share $\infty$ CM and
$\Psi(D)f,$ $\Psi(D)g$ share 1 CM. Also $\Theta(\infty;f)=\Theta(\infty;g)=1$ and neither $f-g$ is a
polynomial nor $[\Psi(D)f]\cdot[\Psi(D)g]\equiv 1$ .

Remark 2. Let $f=\exp(z),$ $g=(-1)^{n}\exp(-z)$ and $\Psi(D)=D^{n}(n\geq 1)$ .
Then $f$ has no pole. Also we see that $f,$ $g$ share $\infty$ CM, $\Psi(D)f,$ $\Psi(D)g$ share 1
CM and $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)=2>1$ . So the conditions (i), (ii), (iii)
of Theorem 1 are satisfies and we note that $[\Psi(D)f][\Psi(D)g]\equiv 1$ which is case
(a) of the theorem. Therefore the condition (iv) of Theorem 1 is necessary for
nonoccurrence of case (a).

Now as a consequence of Theorem 1 we prove the next theorem which im-
proves Theorem A for $n\geq 1$ .

Theorem 2. If $f,$ $g$ are such that

(i) $\Theta(\infty;f)=\Theta(\infty;g)=1$ .

(ii) $f^{\{n)},$ $g^{(n)}$ ($n$ is a positive integer) share 1 CM,

(iii) $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1$ and

(iv) $\Theta(0;f)+\Theta(O;g)>1$ then either (a) $f\equiv g$ or (b) $f^{(n)}\cdot g^{(n)}\equiv 1$ .

Proof. Let $\Psi(D)=D^{n}(n\geq 1)$ and as in Theorem 1 we suppose that
$F=\Psi(D)f,$ $G=\Psi(D)g,$ $H=\frac{F-1}{G-1}$ By conditions (i) and (ii) of this theorem
it follows that $\overline{N}(r, H)+\overline{N}(r, 0;H)=S(r;F, G)$ and so in this case the condition
(i) of Theorem 1 is not needed. Also since $\Theta(\infty;f)=\Theta(\infty;g)=1$ , the condition
(iii) of Theorem 1 reduces to the conditon (iii) of this theorem. Now by Theorem
1 we see that either $f-g\equiv Q$ or $f^{\langle n)}\cdot g^{(n)}\equiv 1$ , where $Q$ is a polynomial of
degree at most $n-1$ . Since $f,$ $g$ are transcendental, if $Q\not\equiv O$ then by Theorem
2.5 [3] we get $\Theta(0;f)+\Theta(O;g)\leq 1$ . This contradiction proves the theorem. $\blacksquare$
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Remark 3. The condition (iv) of Theorem 2 is necessary for the validity of
case (a). For if $f=1+\exp(z)$ and $g=(-1)^{n}\exp(-z)$ then $\Theta(0;f)+\Theta(O;g)=1$ ,
$\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1,$ $\Theta(\infty;f)=\Theta(\infty;g)=1$ and $f^{(n)},$ $g^{(n)}(n\geq 1)$

share 1 CM, but in this case $f^{(n)}\cdot g^{(n)}\equiv 1$ . Also if $f=1+\exp(z)$ and
$g=\exp(z)$ then $\Theta(0;f)+\Theta(O;g)=1,$ $\sum_{a\neq\infty}\delta(a;f)+\sum_{a\neq\infty}\delta(a;g)>1$ ,
$\Theta(\infty;f)=\Theta(\infty;g)=1$ and $f^{(n)},$ $g^{(n)}(n\geq 1)$ share 1 CM but in this case
$f-g\equiv 1$ .
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