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Abstract. In [12], the notion of $\lambda$-automorphisms of harmonic Riemannian
foliations on closed Riemannian manifolds was extended to general Riemannian
foliations. Besides, certain characterizations of $\lambda$-automorphisms to be transver-
sal Killing were obtained. These results were generalized to the complete case
([13]). As applications, we study the problem when $L^{2}$ transversal conformal or
projective fields are to be transversal Killing. Our main results extend those in
[10], [11], [15], [16].

1. Introduction

The study on geometric transversal infinitesimal automorphisms such as
transversal Killing, affine, conformal, projective fields of Riemannian foliations
has been attacked by many differential geometers. One way of doing this study
was to extend well-known results concerning those infinitesimal automorphisms
on Riemanninan manifolds to foliated versions.

There have been obtained lots of results in the case that the foliation is
harmonic (all the leaves are minimal submanifolds). However, in this situation we
do not see what the given foliated structures have influences on the properties of
geometric transversal infinitesimal automorphisms. Indeed, the mean curvature
plays an important role on the study of the transversal geometry for Riemannian
foliations. Recently, several authors studied them in a more general situation
that the foliation is not harmonic.

In the space of transversal infinitesimal automorphisms, there is a crucial
subspace consisting of $\lambda$-automorphisms. In [12], this notion was treated with
in a general Riemannian foliation. Furthermore, certain characterizations of $\lambda-$
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automorphisms to be transversal Killing were obtained in the case where the
ambient space is close ([12]) and then complete ([13]). In this paper, we are
mainly interested in the problem when $L^{2}$ transversal conformal or projective
fields are to be transversal Killing. For the harmonic foliation, our results are
found in [10], [11], [15], [16].

The authors would like to thank the referee for his helpful comments and
kind suggestions. In particular, his opinions led to improvements in the proof of
Theorem 3.4.

2. $L^{2}$ $\lambda$-automorphisms

Let $(M, g, \mathcal{F})$ be an m-dimensional oriented, connected, complete Rieman-
nian manifold with transversally oriented Riemannian foliation $\mathcal{F}$ of codimension
$q:=m-p$ and a bundle-like metric $g$ . It is given by an exact sequence of vector
bundles

(2. 1) $0\rightarrow \mathcal{V}\rightarrow TM\rightarrow\pi Q\rightarrow 0$ ,

where $\mathcal{V}$ is the tangent bundle and $Q$ the normal bundle of $\mathcal{F}$ . The metric $g$

determines an orthogonal decomposition $ TM=\mathcal{V}\oplus?\ell$ . We may identify $\mathcal{H}$ with
$Q$ by an isometric splitting

(2. 2) $\sigma$ : $(Q,g_{Q} :=\sigma^{*}g_{\mathcal{H}})\rightarrow(?t,g_{?\ell})$ .

We have an associated exact sequence of Lie algebras

(2.3) $0\rightarrow\Gamma(\mathcal{V})\rightarrow V(\mathcal{F})\rightarrow\pi\overline{V}(\mathcal{F})\rightarrow 0$ ,

where $V(\mathcal{F})$ $:=$ { $Y\in\Gamma(TM)|[V,$ $Y]\in\Gamma(\mathcal{V})$ for all $V\in\Gamma(\mathcal{V})$ } and $\overline{V}(\mathcal{F})$ $:=$

$\{s\in\Gamma(Q)|s=\pi(Y), Y\in V(\mathcal{F})\}$ , called the space of transversal infinitesimal
automorphisms of $\mathcal{F}$ . Here and hereafter, we denote by $\Gamma(\cdot)$ the space of all
smooth sections of a vector bundle $(\cdot)$ . The transversal Levi-Civita connection
$D$ on $Q$ is a unique torsion free and metric connection with respect to $g_{Q}$ ([17]).

Throughout this paper, we use the following notations:
$\tau$ : the tension field on $\mathcal{F}$ ,
$div_{D}s$ : the transversal divergence of $s\in\Gamma(Q)$ ,
$grad_{D}f$ : the transversal gradient of a function $f\in C^{\infty}(M)$ ,
$R_{D}$ : the transversal curvature tensor of $D$ ,
$\rho_{D}$ : the transversal Ricci operator,
$c_{D}$ : the transversal scalar curvature,
$\Delta$

$:=d_{D}^{*}d_{D}$ : the Laplacian acting on $\Gamma(Q)$ ,
$\theta_{Y}$ : the transversal Lie derivative operator for $Y\in V(\mathcal{F})$ ,
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$A_{D}(Y)$ $:=\theta_{Y}-D_{Y}$ for $Y\in V(\mathcal{F})$ .
The basic complex $(\Omega_{B}, d_{B} :=d|_{\Omega_{B}})$ is a subcomplex of the de Rham complex

$(\Omega(M), d)$ , where
$\Omega_{B}$ $:=$ {$\omega\in\Omega(M)|i_{V}\omega=\theta_{V}\omega=0$ for all $V\in\Gamma(\mathcal{V})$ }.

There is a codifferential operator $\delta_{T}$ : $\Omega_{B}^{r}\rightarrow\Omega_{B}^{r-1}$ defined by

(2.4) $\delta_{T}$ $:=(-1)^{r(q+1)+1}\overline{*}d_{B^{\overline{*}}}$ ,

where $\overline{*}is$ the star operator associated to the holonomy-invariant metric $g_{Q}$ on
$Q$ . It should be noted that in general $d_{B}$ and $\delta_{T}$ are not formal adjoint on $\Omega_{B}$

unless $\mathcal{F}$ is harmonic.
Recall the following operators $\delta,$

$\delta^{*}$ appeared in [6]. Throughout this pa-
per, we denote by $\{E_{A}\}=\{E_{l}, E_{a}\},$ $E_{i}\in\Gamma(\mathcal{V}),$ $E_{a}\in V(\mathcal{F})$ the special lo-
cal orthonormal frame field about $x\in M$ with $(E_{A})_{x}=e_{A}$ introduced in [6].
$\delta$ : $\Gamma(S^{2}Q^{*})\rightarrow\Gamma(Q^{*}),$ $S^{2}Q^{*}$ being the symmetric tensor product of $Q^{*}$ of order
2, is given by the local formula

$\delta\beta$

$:=-\sum_{a}(D_{E_{a}}\beta)(E_{a}, \cdot)$ , for $\beta\in\Gamma(S^{2}Q^{*})$

and $\delta^{*}$ : $\Gamma(Q^{*})\rightarrow\Gamma(S^{2}Q^{*})$ by

$(\delta^{*}\omega)(s, t)$ $:=\frac{1}{2}\{(D_{\sigma(\epsilon)}\omega)(t)+(D_{\sigma(t)}\omega)(s)\}$ , for $\omega\in\Gamma(Q^{*}),$ $s,t\in\Gamma(Q)$ .

The space of basic l-forms (resp. basic symmetric 2-forms) may be identified
with a subspace of $\Gamma(Q^{*})$ (resp. $\Gamma(S^{2}Q^{*})$ ). We denote by $(, )_{x}$ the local scalar
product on $\Gamma(Q)$ or $\Gamma(Q^{*})$ at a point $x\in M$ and . $|_{x}^{2}$ $:=(\cdot, \cdot)_{x}$ . The local scalar
product may be extended on $\Gamma(\otimes^{r_{1}}Q\otimes^{r_{2}}Q^{*})$ . Let $\Gamma_{c}(Q)$ (resp. $\Gamma_{c}(Q^{*})$ ) be the
space of all sections of $Q$ (resp. $Q^{*}$ ) with compact supports. Let $\langle, \rangle$ be the
global scalar product on $\Gamma_{c}(Q)$ or $\Gamma_{c}(Q^{*})$ and $||\cdot\Vert^{2}$ $:=\langle\cdot, \cdot\rangle$ . The global scalar
product may be. also extended on $\Gamma_{c}(\otimes^{r_{1}}Q\otimes^{r_{2}}Q^{*})$ . Let $L^{2}(Q)$ (resp. $L^{2}(Q^{*})$ )
be the completion of $\Gamma_{c}(Q)$ (resp. $\Gamma_{c}(Q^{*})$ ) with respect to $\langle$ , $\rangle$ .

Definition. We say that an element $s\in L^{2}(Q)\cap\overline{V}(\mathcal{F})$ is a $L^{2}$ transversal
infinitesimal automorphism of $\mathcal{F}$ .

The following fundamental identities were derived in [12].

Proposition 2.1. For $s\in\overline{V}(\mathcal{F})$ and $\omega$ the $g_{Q}$ -dual of $s$ we have

$ 2\delta\delta^{*}\omega=-trD^{2}\omega-\rho_{D}(\omega)+d_{B}\delta_{T}\omega$ ,
$(div_{D}s)_{x}=-(\delta_{T}\omega)_{x}=(\delta^{*}\omega,g_{Q})_{x}$ ,

$|\delta^{*}\omega+\frac{1}{q}(\delta_{T}\omega)g_{Q}|_{x}^{2}=|\delta^{*}\omega|_{x}^{2}-\frac{1}{q}(\delta_{T}\omega)_{x}^{2}$ .
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Definition. Given $Y\in V(\mathcal{F}),$ $s=\pi(Y)$ is called a $\lambda$-automorphism for
$\lambda\in R$ if it satisfies

(2.5) $\Delta s-D_{\sigma(\tau)}s-\rho_{D}(s)-\lambda grad_{D}div_{D}s=0$ ,

or equivalently the $g_{Q}$-dual $\omega$ satisfies

(2. 6) $-trD^{2}\omega-\rho_{D}(\omega)+\lambda d_{B}\delta_{T}\omega=0$ .

Proposition 2.2. ([14]) Let $s=\pi(Y)\in\overline{V}(\mathcal{F})$ .
(i) If $s$ is a transversal Killing field, $i.e.,$ $\theta_{Y}g_{Q}=0$ then

$div_{D}s=0$ , $\Delta s=D_{\sigma(\tau)}s+\rho_{D}(s)$ .

(ii) If $s$ is a transversal conformal field, $i.e.,$ $\theta_{Y}g_{Q}=2f_{Y}g_{Q}$ where $f_{Y}$ is a
function on $M$ , then

$div_{D}s=qf_{Y}$ , $\Delta s=D_{\sigma(\tau)}s+\rho_{D}(s)+(1-\frac{2}{q})grad_{D}div_{D}s$ .

(iii) If $s$ is a transversal projective field, $i.e.,$ $(\theta_{Y}D)_{Z}t=\phi_{Y}(Z)t+\phi_{Y}(\sigma(t))\pi(Z)$

for any $Z\in\Gamma(TM)$ and $t\in\Gamma(Q)$ where $\phi_{Y}$ is a l-form on $M$ , then

$d(div_{D}s)=(q+1)\phi_{Y}$ , $\Delta s=D_{\sigma(\tau)}s+\rho_{D}(s)-\frac{2}{q+1}grad_{D}div_{D}s$ .

We remark that every transversal Killing field is a $\lambda$-automorphism for all $\lambda$ ,
every transversal conformal field a $(1-\frac{2}{q})$-automorphism and every transversal
projective field a $(-\frac{2}{q+1})$-automorphism.

3. $L^{2}$ transversal conformal and projective fields

Let $(M, g, \mathcal{F})$ be an m-dimensional oriented, connected, complete Rieman-
nian manifold with transversally oriented Riemannian foliation $\mathcal{F}$ of codimension
$q$ $:=m-p\geq 2$ and a bundle-like metric $g$ . IFlirom now on we suppose that $\mathcal{F}$

admits at least one compact leaf $\mathcal{L}_{0}$ passing through a point $x_{0}\in M$ . Since a
geodesic orthogonal to a leaf is orthogonal to leaves, we can define the distance
function dist $(x)$ between $\mathcal{L}_{0}$ and the leaf through any point $x$ in $M$ . Let

$w_{k}(x)$ $:=w(dist(x)/k)$ , $k=1,2,3,$ $\cdots$ ,
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where $w$ is a smooth function defined on $R$ such that $0\leq w(t)\leq 1,$ $w(t)=1$

for $t\leq 1,$ $w(t)=0$ for $t\geq 2$ . It is well-known that each $w_{k}$ is basic Lipschitz
continuous on $M$ and satisfies

$0\leq w_{k}(x)\leq 1$ ,
supp $w_{k}\subset B(2k)$ (geodesic ball of radius $2k$ centered at $x_{0}$ ),

(3. 1) $w_{k}(x)=1$ on $B(k)$ ,

$\lim_{k\rightarrow\infty}w_{k}=1$ ,

$|dw_{k}|\leq C/k$ almost everywhere on $M$ ,

where $C$ is a positive constant independent of $k$ ([7]).
We recall a useful symmetric operator $B_{D}^{\lambda}(s)$ : $\Gamma(Q)\rightarrow\Gamma(Q)$ appeared in

[12]

(3.2) $B_{D}^{\lambda}(s)$ $:=A_{D}(s)+{}^{t}A_{D}(s)+\lambda(div_{D}s)Id$ ,

for a given $s=\pi(Y)\in\overline{V}(\mathcal{F})$ , where Id denotes the identity map of $\Gamma(Q)$ .
An important feature of $B_{D}^{\lambda}(s)$ is the fact that $s$ is transversal Killing (resp.

transversal conformal) if and only if $B_{D}^{0}(s)=0$ (resp. $B_{D}^{2/q}(s)=0$).
Our main results are based on the following result obtained in [13].

Theorem 3.1. Let $(M,g, \mathcal{F})$ be an m-dimensional oriented, connected, com-
plete Riemannian manifold with transversally oriented Riemannian foliation $\mathcal{F}$

of codimension $q$ $:=m-p\geq 2$ and a bundle-like metric $g$ . If $s\dot{u}$ an $L^{2}\lambda-$

automo$rp$hism satisfying

$d(div_{D}s)=0$ and $\langle B_{D}^{1-\lambda}(s)s, \tau\rangle\geq 0$ ,

then $s$ is an $L^{2}$ transversal Killing field.

We first observe from Proposition 2.1 that if $\omega$ is the $g_{Q}$-dual of a
$\lambda$-automorphism $s$ then

$2\delta\delta^{*}\omega+(\lambda-1)d_{B}\delta_{T}\omega=0$ .

This yield the following formula ([13])

$(2l_{1}+(\lambda-1)l_{2})\frac{C^{2}}{k^{2}}\Vert\omega\Vert_{B(2k)}^{2}\geq(2-\frac{2}{l_{1}})\Vert w_{k}\delta^{*}\omega\Vert_{B(2k)}^{2}$

(3.3) $+(\lambda-1)(1-\frac{1}{l_{2}})\Vert w_{k}\delta_{T}\omega\Vert_{B(2k)}^{2}+\langle w_{k}^{2}B_{D}^{1-\lambda}(s)s, \tau\rangle_{B(2k)}$ ,

for $l_{1},$ $l_{2}>0$ . The proof of Theorem 3.1 is relied on (3.3).
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Remark 3.2. In particular, it is obvious that if $s$ is an $ L^{2}\lambda$-automorphisms
satisfying

$div_{D}s=0$ and $\langle B_{D}^{0}(s)s, \tau\rangle\geq 0$ ,

then $s$ is an $L^{2}$ transversal Killing field. When $\mathcal{F}$ is harmonic, this is found in
[1], [9].

We prepare a lemma, which is an immediate consequence of (3.3).

Lemma 3.3. If $s$ is an $ L^{2}\lambda$ -automorphism with $\lambda\neq 1$ satisfying
$\langle B_{D}^{1-\lambda}(s)s, \tau\rangle\geq 0$ , then $div_{D}s$ is an $L^{2}$ function.

We also need the following divergence formula at a point $x\in M$

$(div_{\nabla^{M}}Z)_{x}$
$:=\sum_{A}g(\nabla_{e_{A}}^{M}Z, e_{A})$

(3.4) $=(div_{D}\pi(Z))_{x}-(\pi(Z), \tau)_{x}$ .

Now we are in a position to consider our main problem when $L^{2}$ transversal
conformal or projective fields are to be transversal Killing. For our purpose we
impose on the mean curvature $\kappa$ ( $:=theg_{Q}$-dual to $\tau$ ) the following conditions:

$\mathcal{F}$ is isoparametric, i.e., $\kappa$ is a basic l-form,
(3. 5) $\delta_{B}\kappa=0$ , where $\delta_{B}$ is the formal adjoint of $d_{B}$ which is given by

$\delta_{B}=\delta_{T}+\iota_{\kappa}$ ,
$\Vert\kappa\Vert_{\infty}$ $:=ess\sup_{x\in M}|\kappa|_{x}<\infty$ .

We first consider the problem which is related to the classical result of Lich-
nerowicz ([8]) for the point foliations on closed Riemannian manifolds. Assume
that the transversal scalar curvature $c_{D}$ for $\mathcal{F}$ is a nonpositive constant. Let $s$

be an $ L^{2}\lambda$-automorphism satisfying $-1<\lambda<1,$ $\langle B_{D}^{1-\lambda}(s)s, \tau\rangle\geq 0$ and $\omega$ its
$g_{Q}$-dual. By observing the Weitzenb\"ock formula

(3. 6) $d_{B}\delta_{T}\omega+\delta_{T}d_{B}\omega=-trD^{2}\omega+\rho_{D}(\omega)$ ,

it is easily seen that (2.6) becomes

(3.7) $(1+\lambda)d_{B}\delta_{T}\omega+\delta_{T}d_{B}\omega=2\rho_{D}(\omega)$ .

In our situation we notice that $\kappa$ being basic implies $d\kappa=0$ ([5], [7]). It follows
that the formal adjoint $d_{T}$ $:=d_{B}-\kappa\wedge of\delta_{T}$ satisfies $d_{T}^{2}=0$ . Thus (3.7) gives
rise to

(3.8) $(1+\lambda)\delta_{T}d_{B}\delta_{T}\omega=2\delta_{T}\rho_{D}(\omega)$
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In particular, if $s$ is an $L^{2}$ transversal conformal field, we have

(3.9) $\delta_{T}\rho_{D}(\omega)=\frac{c_{D}}{q}\delta_{T}\omega$ .

Indeed, a local computation yields

$\delta_{T}\rho_{D}(\omega)=-\sum_{a}(D_{e_{a}}\rho_{D}(\omega))(\pi(E_{a}))$

$=-\sum_{a}(D_{e_{a}}S_{D})(\pi(E_{a}), s)-\sum_{a}S_{D}(\pi(E_{a}), D_{e_{a}}s)$ .

Here and hereaftr, $S_{D}$ is the transversal Ricci curvature defined as $S_{D}(t, u)$ $:=$

$g_{Q}(\rho_{D}(t), u)$ for $t,$ $u\in\Gamma(Q)$ . The first term $\sum_{a}(D_{e_{a}}S_{D})(\pi(E_{a}), s)$ vanishes
because of the identity $\delta S_{D}=2^{d_{B}c_{D}}1$ and $c_{D}=constant$ . It follows by Propo-
sitions 2.1 and 2.2 that

$\delta_{T}\rho_{D}(\omega)=-\sum_{a}S_{D}(\pi(E_{a}), D_{e_{a}}s)$

$=-\sum_{a,b}g_{Q}(D_{e_{a}}s, \pi(E_{b}))S_{D}(\pi(E_{a}), \pi(E_{b}))$

$=-\frac{1}{2}\sum_{a,b}2g_{Q}(D_{e_{a}}s, \pi(E_{b}))S_{D}(\pi(E_{a}), \pi(E_{b}))$

$=-\frac{1}{2}\sum_{a,b}(\theta_{s}g_{Q})(\pi(E_{a}), \pi(E_{b}))S_{D}(\pi(E_{a}), \pi(E_{b}))$

$=\frac{c_{D}}{q}\delta_{T}\omega$ .

It should be noted that the notion $\theta_{s}$ for $s\in\overline{V}(\mathcal{F})$ makes sense. Therefore,
every $\omega$ dual to transversal conformal field $s$ satisfies

(3. 10) $\delta_{T}d_{B}\delta_{T}\omega=\frac{c_{D}}{q-1}\delta_{T}\omega$ .

Now we deduce by a direct computation that

$(\delta_{T}d_{B}\delta_{T}\omega, w_{k}^{2}\delta_{T}\omega)_{x}$

$=-\sum_{a}(D_{e_{a}}d_{B}\delta_{T}\omega)(e_{a})(w_{k}^{2}\delta_{T}\omega)$

$=-(div_{D}u)_{x}+2(w_{k}d_{B}\delta_{T}\omega, \delta_{T}\omega dw_{k})_{x}+|w_{k}d_{B}\delta_{T}\omega|_{x}^{2}$ ,

where $u$ is the $g_{Q}$-dual to the basic l-form $ w_{k}^{2}\delta_{T}\omega d_{B}\delta_{T}\omega$ . The divergence formula
(3.4) yields

$\langle\delta_{T}d_{B}\delta_{T}\omega, w_{k}^{2}\delta_{T}\omega\rangle_{B(2k)}=-\langle u, \tau\rangle_{B(2k)}$

(3. 11) $+2\langle w_{k}d_{B}\delta_{T}\omega, \delta_{T}\omega dw_{k}\rangle_{B(2k)}+\Vert w_{k}d_{B}\delta_{T}\omega\Vert_{B\langle 2k)}^{2}$ .
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Furthermore, by using the assumption (3.5) imposed on the mean curvature, we
evaluate

$-\langle u, \tau\rangle_{B(2k)}=\langle(w_{k}\delta_{T}\omega)\kappa, \delta_{T}\omega dw_{k}\rangle_{B\langle 2k)}$

$(3.12)$ $\geq-\frac{C}{k}\Vert\kappa\Vert_{\infty}\Vert\delta_{T}\omega\Vert_{B(2k)}^{2}$ .

Hence from (3.11), (3.12) and the inequality

$2\langle w_{k}d_{B}\delta_{T}\omega, \delta_{T}\omega dw_{k}\rangle_{B(2k)}\geq-\frac{1}{2}\Vert w_{k}d_{B}\delta_{T}\omega\Vert_{B\langle 2k)}^{2}-\frac{2C^{2}}{k^{2}}\Vert\delta_{T}\omega\Vert_{B\langle 2k)}^{2}$ ,

we see that (3.10) implies

$\frac{c_{D}}{q-1}\Vert w_{k}\delta_{T}\omega\Vert_{B\langle 2k)}^{2}=\langle\delta_{T}d_{B}\delta_{T}\omega, w_{k}^{2}\delta_{T}\omega\rangle_{B(2k)}$

$\geq\frac{1}{2}\Vert w_{k}d_{B}\delta_{T}\omega\Vert_{B(2k)}^{2}-\{\frac{C}{k}\Vert\kappa\Vert_{\infty}+\frac{2C^{2}}{k^{2}}\}\Vert\delta_{T}\omega\Vert_{B(2k)}^{2}$ .

By letting $ k\rightarrow\infty$ and using Lemma 3.3, we conclude that $d_{B}\delta_{T}\omega=0$ . Moreover,
every transversal conformal field $s$ satisfies $B_{D}^{1-\lambda}(s)=0$ . Therefore Theorem 3.1
leads to that $s$ is an $L^{2}$ transversal Killing field. Summing up,

Theorem 3.4. Let $(M, g, \mathcal{F})$ be an m-dimensional oriented, connected, com-
plete Riemannian manifold with transversally omented Riemannian foliation $\mathcal{F}$

of codimension $q$ $:=m-p\geq 2$ and a bundle-like metric $g$ . Let the transversal
scalar curvature $c_{D}$ be a non-positive constant. Assume that $\mathcal{F}$ admits at least
one compact leaf and the mean curwature satisfies the condition (3.5). If $s\dot{u}$ an
$L^{2}$ transversal conformal field, then $s$ is an $L^{2}$ transversal Killing field.

Remark 3.5. If we impose a more stronger condition on the transversal
structure for $\mathcal{F}$ than $c_{D}$ being non-positive constant, that is, if $\mathcal{F}$ is transversal
Einstein with

$S_{D}=\frac{c_{D}}{q}g_{Q}$ and $c_{D}\leq 0$ ,

we have a more stronger conclusion that every $ L^{2}\lambda$-automorphisms $s$ with-l $<$

$\lambda<1$ satisfying $\langle B_{D}^{\lambda}(s)s, \tau\rangle\geq 0$ is a transversal Killing field. Indeed, it suffices to
notice that in such situation every $\lambda$-automorphism satisfies the formula (3.10).

Corollary 3.6. ([10], [11]) Let $(M, g, \mathcal{F})$ and $c_{D}$ be as in Theorem 3.4. If
$\mathcal{F}$ is harmonic, then every $L^{2}$ transversal conformal field is a transversal Killing
field.

Next, we consider $\lambda$-automorphisms preserving the transversal Ricci curva-
ture $S_{D}$ . For the point foliations on closed Riemannian manifolds this is related
to the well-known result of Ishihara ([4]).
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Let $s$ be an $L^{2}$ transversal conformal field such that $\theta_{s}g_{Q}=2f_{s}g_{Q}$ . Then we
have the following identity (cf. [16])

(3. 13) $\sum_{a}(\theta_{s}S_{D})(\pi(E_{a}), \pi(E_{a}))=2(q-1)\delta_{T}d_{B}f_{s}$
.

The preserving the transversal Ricci curvature implies that $\delta_{T}d_{B}f_{s}=0$ . A
similar way as in Theorem 3.4 gives rise to

$0=2(q-1)\langle\delta_{T}d_{B}f_{s}, w_{k}^{2}f_{s}\rangle_{B(2k)}$

$\geq(q-1)\{\Vert w_{k}d_{B}f_{s}\Vert_{B(2k)}^{2}-2\Vert f_{s}||_{B(2k)}^{2}(\frac{C}{k}\Vert\kappa\Vert_{\infty}+\frac{2C^{2}}{k^{2}})\}$ ,

so that letting $ k\rightarrow\infty$ implies $d_{B}f_{s}=0$ . This means that $d(div_{D}s)=0$ by
Proposition 2.2. From Theorem 3.1 we conclude that $s$ is an $L^{2}$ transversal
Killing field.

If $s$ is an $L^{2}transversa1$ projective field such that
$(\theta_{s}D)_{Z}t=\phi_{s}(Z)t+(\sigma(t))\pi(Z)$ , it holds the corresponding identity (cf. [16])

(3. 14) $\sum_{a}(\theta_{s}S_{D})(\pi(E_{a}), \pi(E_{a}))=(q-1)\delta_{T}\phi_{s}-\phi_{s}(\tau)$
.

It follows from Proposition 2.2 that the preserving the transversal Ricci curvature
implies that

$0=\langle\delta_{T}d_{B}\delta_{T}\omega-d_{B}\delta_{T}\omega(\tau), w_{k}^{2}\delta_{T}\omega\rangle_{B(2k)}$

(3. 15) $\geq\frac{1}{2}\Vert w_{k}d_{B}\delta_{T}\omega||_{B\langle 2k)}^{2}-(\frac{2C}{k}||\kappa||_{\infty}+\frac{2C^{2},}{k^{2}})\Vert\delta_{T}\omega||_{B(2k)}^{2}$ .

We have proved that

Theorem 3.7. Let $(M, g, \mathcal{F})$ be an m-dimensional oriented, connected, com-
plete Riemannian manifold with transversally $0$riented Riemannian foliation $\mathcal{F}$

of codimension $q$ $:=m-p\geq 2$ and a bundle-like metric $g$ . Assume that $\mathcal{F}$

admits at least one compact leaf and the mean curvature satisfies the condition
(3.5). Either if $s$ is an $L^{2}$ transversal conformal field or if $s$ is an $L^{2}$ transversal
projective field satisfying $\langle B_{D}^{(q+3)/\langle q+1)}(s)s, \tau\rangle\geq 0$ and satisfies $\theta_{s}S_{D}=0$ , then
$s$ is an $L^{2}$ transversal Killing field.

Corollary 3.8. ([15], [16]) Let $(M, g, \mathcal{F})$ be as in Theorem 3.7. If $\mathcal{F}$ is
harmonic, then every $L^{2}$ transversal conformal or projective field $s$ satisfying
$\theta_{s}S_{D}=0$ is a transversal Killing field.

Remark 3.9. (i) As is obviously seen in the proof, Theorem 3.7 and so
Corollary 3.8 are still true even if we omit the assumption that $\mathcal{F}$ admits at least
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one compact leaf. Indeed, it suffices to notice that the above assumption serves
to obtain that $\kappa$ being basic implies $d\kappa=0$ , so that $d_{T}^{2}=0$ .

(ii) It is known in [3] that given a Riemannian foliation on a closed manifold
there always exists a bundle-like metric with respect to which the foliation is
isoparametric. In this case, we can derive our results without the assumption
that the foliation is isoparametric. However, for the complete case it is not
assured the existence of such a bundle-like metric.

(iii) It is worthwhile to note that in the presence of the assumption $\delta_{B}\kappa_{B}=0$ ,
some transversal vanishing theorems were obtained in [2], [7].
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