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Abstract. As a continuation of , in this paper, we establish functional central
limit theorems for weighted and integrated random functions of the type

‘/_ Zhn i(8)Mp i(t) and \/_ Z/ hy i(s)dMy, i(s)

=1

satisfying some strong mixing condition where {{My i(s) : 0 < s < 1};n > 1} is
a triangular array of mean-zero martingales and {hn,} is a triangular array of
nonrandom functions.

1. Main results

(I) Weak convergence of weighted sums.

Let (V,F, P) be a probability space. For eachn (> 1) and i (1 <i < n) let
{M, i(s) : 0 < s < 1} be a martingale with filtration F,, , (C F). Firstly, we
consider weak convergence of weighted sums of martingales of the type

% i M i()hni(t) s,t€(0,1].
=1

We consider the following conditions.

Condition A. {{M,;(t);0<t<1,i=1,---,n}:n > 1} is a strong mixing
triangular array of martingales with respect to the filtration F,, , which satisfies
the following requirements:

(i) Foreachn M, ;(0) =0 (:=1,---,n), EM,;(t)=0(:=1,---,n) for all ¢
in [0,1] and for all ¢ and j (i # j) M, :(s) and M, ;(s) have no common
jumps;
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(ii) ZEM;‘:,,-(l) = O(n) and there exist some positive constants Cp and &
i=1
(€ (0,1))

Sup max E I Mn,i(t) - Mn,i(s) IZS Co I t—s 'n s,te [01 1]1
n>11<i<n

(iif) There exist positive constants p and § such that xp > 7/2,

sup max E | M, ;(1) |P* < oo
n>11<i<n

and

o0

b(p,6) = ) (n+1)/®2

n=1

where j(p) = 2min{k € Z : 2k > p}.

s <

Condition B. {h,;:(t) : 1 < i < n:n > 1} is a triangular array of real-
valued functions of bounded variation on [0,1] and there exist 3 (> 1/v/2) and
Co (> 0) such that

(1) sup max | hni(s) — hng(t) | < Cols—tf.
n>11<i<n

Condition C. There exists a centered Gaussian process {W(s,t) : [0,1] x
[0,1]} with

EW(s,t1)W(s,t2) = G(s;t1,t2) (s,t1,t2 € [0,1]).
and for all ¢, j (= 1,2,---,k) and s,t,t; (€ [0,1])
1 n 1 n
2 FE {ﬁ ;Mn,i(s)hn,i(tl)ﬁ ; My i1 (8)hn,ir (tj)} — G(s, e, ;)
We prove the following theorem.

Theorem 1. Suppose Conditions A, B and C hold. Then

1 n
(3) {% g Mn,i(s)hn,i(t); (s’t) € [0’ 1]2}

2w ={W(s,t): (s,t) €[0,1>} inD[0,1)2
where W is a centered Gaussian process with covariance

(4) ' EW (s, t)W(s',t') = G(s A §'; t,t).
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(IT) Central limit theorems for integrated random variables.
We note here that

6 LS M)
=2
i=1

n

1 t 1 n t
-5 /0 Mo i(8)dhoni(s) + 75; /0 b 4(5)d M 4(3).

=1

When M, ;(s) is of bounded variation, the last integral in (5) can also be
interpreted as a pathwise Lebesgue-Stieltjes integration.

If we can show the joint normality of the left side and the second term in
the right side in (5), then we obtain the weak convergence of random elements
of the type

n t
%Z /o My 3(8)dha i (s).
i=1

Now, we consider another condition.

Condition D. (i) There exists a bounded function A(t) such that

sup max | hni(f) | < h(t) < oo Yt (€[0,1)).
n>115isn
(ii) The sequence |
1« t
> i) [ ns(6)d(Mos(s)
i=1 0

converges in probability for all ¢, in [0, 1].

Concerning the above problem, we prove the following theorem.

Theorem 2. Suppose Conditions A-D hold. Then, the two processes

({EEsomoosiss) ne)
=1

and

1 « [t
{%Z_/o hn,g(s)dMn,,'(S); 0<t< 1}
i=1

are jointly weakly convergent in D?[0,1] to a Gaussian limiting process.
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2. Auxiliary results
To prove Theorems 1 and 2, we need the following general limit theorem.

Theorem 3. Let {Z,(s,t) : (s,t) € [0,1]2} be a sequence of D|0, 1)*-valued
random processes, defined on a probability space (V,F, P). Suppose the following
conditions hold: '

(i) For every fized s (€ [0,1]), {Zn(s,1)} is a stationary strong mizing sequence
of random functions of t.
(11) For arbztmn'ly ﬁa:ed 81,°°*, Sk, Zn = (Zn(sl’ ')a Tt Zﬂ(sk’ ))) as a ran-
dom element taking values in D¥[0,1], converges weakly to (W(sy,-),:--,
W (sk,-)), where W(-,-) is a mean-zero Gaussian process defined on [0, 1]2.
(iii) There exist constants r (> 1), ¢ (= 2), C (> 0) and a function B,(s) such
that for any s, 8’ (€ [0,1], s > &)

(6) sup E | Zn(8,t) — Zn(s',t) | < C{Bn(s) — Bn(s)}} + Cn~1.
0<t<1
Moreover, B,(t) is a non-decreasing step-function with mazimum jump
size equal to O(n—1%) such that Bn(t) — B(t) (t € [0,1]) where B(t) is a
non-decreasing continuous function on [0, 1]). '
(iv) For every € (> 0) there ezist to,t1, - ,tm 0=ty <t < -+ <ty =1)
with m = O(nP) (3 < B < q/4) such that

(7) P| sup max sup |Za(s,t) — Zn(stj-1) |>€] — O
0<s<11SisSmy;  <t<t;
as n — 0o.
Then

8) {Za(s,t): (s,t) € [0,1]*} 2 {W(s,2): (s,t) €[0,1]?} inD[0,1]?
as n — 0o0.

Proof. By Condition (ii), to prove Theorem 3, it suffices to show that for
every € (> 0) there exist sg,81,--,8¢ (0 = 80 < 81 < -+ < 8¢ = 1) with
£=0(nf) (3 < B1 < q/4) and to,t1, - tm (0 =to <13 <--- < tm = 1) with
m = O(nf?) (1 < B; < q/4) such that

9) P max su max su Zn(s,t) — Zn(siyt;) |>€e] — 0
( ) (lsistsi—lsrs)<a,- ISjsmtj.—lsléLtjl "( ) "( J J)l )

as n — oo. Since

(10) L. H.S.of (9)
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€
<P| sup max sup | Zn(sat) - Zn(s,tj—l) I> 5
0<s<11SiSmyg;_ <tct; 2

. €
. - s 1. ta_ > -
e (g, 1Bt~ ot )

’ €
<P sup max sup I Zn(sa t) - Zn(S, tj—l) |> 9
0<s<11SiSm ¢, <t<t, 2

€

+m sup P su Zn(8,t) = Zp(8i-1,t) |> =

o<1 (1<;<z 1<£)<a,| n(8,t) — Zn(si-1,1) | 2)
=hLn+Izn (say),

to prove (9) it suffices to show that

(11) max(Iyp,I2.n) — 0 (n— o00).

But, using the method of proof Theorem 15.6 in [2] and (6) we can prove the
fact that I, — 0. On the other hand, the fact that I ,, — 0 is Condition (iv).
Hence, we have the desired conclusion. [J

Let gn(t) be a step-function from [0, 1] — [0, 1] such that

l /4 £+1
=1: =— | = <t< =1,--- - N-1
(1) =1; gn(?) N (N St<— ) t=1,---, )

where N = [n?] and + is chosen so that 1/2 <y < 1/v2, 78> 1/2 and 3 is the
one defined in (1) and put

1 n
Xn(s,t) = —= ) My i(s)hn,i(gn(t)).
It is easy to see that

1
su t—gn(t) | < —
ost1_<>1| ORI

and
gn(t) — t uniformly for t € [0, 1]

with maximum jump size 1/N of g, (t).
The following lemma, due to [5], shows that the two processes X,(s,t) and

(1/\/7—;) Z Mn,i (s)hn,i(t)

=1
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are equivalent in the limit and it is enough to prove the weak convergence for
Xn(s,t).

Lemma A. Suppose Conditions A, B and C hold. Then

(12) P( sup sup > e) -0 (n—> o00).

0<s<10<t<1

T2 D Mo s()hni(t) = Xalo,)
i=1

To prove theorems (below) we need the following theorem, due to [5].

Theorem A. Suppose {&;} is a strong mizing sequence of zero-mean random
variables such that for some p (> 2) and 6§ (> 0)

max E | & |PH< oo.

1<i<n
Put
L(n,6) =Y | & llt4s (¢>1), D2X(6) = La(n,é),
i=1
Qp(n,8) = max{Ly(n,d), D2(6)}.
Then

E|Y &P < cb(p,8)Qp(n, ).
=1

where b(p, 6) is the one defined in Condition A (iii).

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. We use [Theorem 3. In view of Lemma 1 and Condi-
tions A and B, it suffices to verify that the auxiliary process {X,(s,t)} satisfies
the following conditions:

(i) for all sy,---, sk (€ [0,1])
(Xn(sl’ ')’ te ,Xn(ska )) —P_’ (W(31’ ')1 Tty W(Sk, )) in D([Oi 1]k);
(ii) the processes {{Xn(s,t)};n > 1} satisfy (6) and (7).

(i) is clear from Conditions A-C.

To show that (ii) holds, take the equally spaced points 0 =tp <t; < :-- < tp,,
to be the same as the jump points of g,(t). Then, b,, = [n?]. We note that for
all s (€ [0,1])

max su Xn(s,t) — Xn(s,t;—1) |=0
1<j<bm t,'._1SIt)<tj| ﬂ( ) n( ™ 1) '
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since

gn(t) = gn(tj) (t € [tj—htj)vj =1,--- abn)'

Thus, (7) is satisfied.
Further, for arbitrary points 0 = sp < 8; < --- < 84, = 1 we have

max  su max su Xn(s,t) — Xpn(si—1,tj—1)
1<i<ae 8.‘—1SI:<ai 1<j<bm t,'_1SIt)<t,' | n( ’ ) n( i—1y45 |
< m su Xn(s,t) — Xn(8i—1,ti—
S 1Si’aSJ¢cu a;_1$§<a.- 1?}35'}15,”' n( ’ ) n( i—1y1j l) |a

and hence

13) P max su max su Xa(s,t) — Xn(si—1,ti—1) |> €
( ) (lsisat a.'—158<3.' lsjsbmtj—lﬁlt)<tj| "( ’ ) "( b l)l )

1<i<ae 8i—1<8<8; 1<j<bm

<P ( max sup max | Xn(s,tj-1) — Xn(si—1,ti-1) |> f)

< . - . .
<bn, max p (121.2’5, ,5u | Xn(s,tj—1) — Xn(si-1,tj-1) |> e)

<a¢b, sup max P ( sup | Xn(s,t) — Xn(si-1,tj-1) |> e)

0<t<11<i<a. 8i_1<8<s;

4

atbm

< sup max max E| sup | Xa(s,8) — Xn(sic1,t) |
€P  0<t<11<i<ar 0<j<bm 8i-1<8<5;

< albm

. — . p
- Ossggllrsqu Ogngan(s.,t) Xn(si-1,0)7,

since for any fixed ¢ {X,(s,t) — Xp(si—1,%); 8i—1 < s < s;} is a martingale.

Let 7 be a positive number such that (4v7/3) < 7 < 1 and put a; = [n"]. Let
8i —8i—1 = [n"]"! (i = 1,---,as). By Condition A (ii) we have that for any r
(>0)

Il B, (8) Mr,5(8:) — B, (£) Mn,5(5i-1) |Ir |
=| hn i (@) Il Mnj(8:) — M j(sic1) I < c|si—sio1 |2 < en™F,

Hence, by Theorem A we have
E | Xn(si,1) = Xn(si-1,8) [P< cmax (n~ 541~ n =) |
which implies (6). Noting that p > 2 and 7 + v < (Txp/2), we have

L. H. S. of (21) = o(1).
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Now, the desired conclusion follows from Theorem 3. [J

Proof of Theorem 2. Let

Ua(t) = E/ hoi(s)dMoi(s), 0<t<1.

1—1

By Condition B the function n (t) defined by
N [NVt)
W00 = hns (57
satisfies

(14) sup | hns(t) — RSV (8) | < CoN~P
0<t<1

foreach N>1,n>1and 1<i<n. Let U,(,N)(t) be a process defined by
UM () = / B (5)d Mo 4(5).

By Burkholder inequality with Condition A (ii), we have

/ (hns(s) — B (s)
0

246

, 2+6
(15) E < C.SM{ sup | hms(t) = RO (0 |} ,
0<t<1

where

M = sup E(| My;:(1) 2+4)

n,i

and Cj is a constant depending only on §. For each n and N define
Y ® = J= [ (ns® - B () aMos(o),

Then, for each N {Y(N)(t) :0 <t <1,1<1i<n}is a strong mixing sequence
satisfying EY( ¥)(¢) = 0. 1t follows from [[14) and (15) that

E(Y® @) %) < CsC3oMn*F N-@+6)8
and therefore

Z I Yéf)(t) 1345< (C6M)7%ECSN—25.
i=1
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Thus, we can apply Theorem A to show the existence of a constant C satisfying

2
< CN—2ﬂ

n

PR A

i=1

(16) E|Ust)-UM@) 2P< E

foreach N,nand 0 <t <1.
Note that the process U’ (t) is written as follows:

[N¢]

0= e[ (52) o () - (5}

s (3 st (32

Define a centered Gaussian process U(V)(t) by
[Nt] .. . .
N (g) = J I\ _w(iz1i-1
v ;{W(N’ N) W(N " N
[Ne] _ oy (VY] [NVe]
+W (t, N |14 NN /)

Then, it is follows from Theorem A that the finite dimensional distributions of
AR (t) converge to those of U(™)(t). Together with this implies that the
finite dimensional distributions of U, (¢) converge to those of a centered Gaussian
process U(t). Furthermore, the finite dimensional distributions of vector valued
process (W, (t,t), U, (t)) converge to those of the Gaussian process (W (¢, t), U(t))
where

Wa(s,t) = % 3 Mo i(s)hnit).
=1

Now, we will prove that for arbitrary numbers t, s (0 < s <t <1, t—s >
C’ln‘l)
(17) E|Un(t) = Un(s)® < Ca(t—s)'*?

where 9, C3 and C; are some positive constants independent of n, ¢ and s.
Let

_ t
Vi(s,8) = Vias(s,8) = f s (w)dMin 4 (u).
From Condition A it is obvious that

EVi(s,t)=0 Vi (>1)"s, t (€]0,1))
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and for any r (> 2)

ElV(st)l"<c[ /h (ud(MM)r

<csup h(u)|t—s|%F < c|t—s|TF.
s<u<t

Thus, we have

(18) D2(8) = La(n,8) = Y _ || Va(s,t) 346 < en|t—s]",
i=1
(19) Lp(n,8) =D | Vi(s,t) |2, < en|t—s|7 .
=1

Noting that for fixed s and t {Vi(s,t)} is a triangular array of random variables
satisfying the same mixing condition as that of {M,} and that p > 2, from
Theorem A, Condition A (iii), and we obtain

E|Un(t) = Un(s) IP < cmax{n-§+1 It —s|¥, |t—s|%‘}5c|t—s|%“,

which implies [(17).
Hence the processes {U,(t)} are tight. The tightness of {W,(t,t)} follows
from and therefore we obtain the desired result. (]
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