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Abstract. The Poincar\’e-Bendixon Theorem implies that two dimensional flows
have no chaotic behavior. L.O. Chua and Brown showed an example of chaotic
2-dimensional flow with ”swicthing” ([1], [2]). M. Misiurewicz showed that the
unimodal map derived from the Chua-Brown system has negative Schwarzian
derivative for certain parameter values ([3]). In this note we will show an analo-
gous result for the system called Spiral-Linear system, proposed by H. Kawakami
and Lozi, which is 2-dimensional chaotic system with “switching” apparently
simpler than Chua-Brown system ([4]). The main result of this note is that
the l-dimensional map, which determines behaviors of the system, has negative
Schwarzian derivatives.

1. Spiral-Linear Systems

The Spiral-Linear system was introduced by H. Kawakami and Lozi as a
simple chaotic system ([4]). The system is completely described by l-dimensional
map with finite discontinuity as we will see. The system is described as follows.

On the $(x, y)$-plane, let $H,$ $B$ denote the half planes defined by the following
inequalities:

$H=\{(x, y)|y\geq-1\},$ $B=\{(x,y)|y\leq-1+\alpha\},$ $(0\leq\alpha\leq 1)$

The flow with ”switching” is defined by the following differential equations
on each half plane. On the boundary lines of the planes the solution switches
onto another plane. On the half plane $B$ the dynamics is determined by the
following equations, which is “spiral”:

(1) $\left\{\begin{array}{l}\frac{dx}{dt}=\sigma x-y\\\frac{dy}{dt}=x+\sigma y, (\sigma>0)\end{array}\right.$

On the half plane $H$ , the dynamics is determined by the following equations,
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$\sigma=0.1,\alpha=0.6$ $\sigma=0.1,\alpha=0.4$

Figure 1 Graphs of $f_{\alpha,\sigma}$

which is “linear’‘ :

(2) $\left\{\begin{array}{l}\frac{dx}{dt}=0\\\frac{dy}{dt}=1.\end{array}\right.$

The behavior of this system is d\’ecibed by the l-dimensional smooth map
$f_{\sigma,a}=f$ : $L\rightarrow L$ with finite discontinuity which is obtained by considering a
boundary line $L=\{(x, y)|y=-1+\alpha\}$ of $B$ as a kind of Poincar\’e section.
Typical graphs of maps $f’ s$ are shown in Fig. 1.

2. An Invariant Interval

First we will show the existence of an invariant interval on which the system
may show chaotic behavior. The discontinuous point of the map $f$ corresponds
to the tangency of the solution curve of (1) and the line $\partial H=\{(x, y)|y=-1\}$ .
The solution curve of (1) through $(x_{0},y_{0})$ is given by the spiral described by the
following form;

(3) $\left\{\begin{array}{l}x=e^{\sigma t} ( x_{0} cos t-y_{0} sin t),\\y=e^{\sigma t} ( x_{0} sin t+y_{0} cos t).\end{array}\right.$

Hence we can easily see the tangential point $T$ has the coordinate $(\sigma, -1)$ . Going
back to the point on $L$ along the solution curve through $(\sigma, -1)$ , we get the point
$P:(a, -1+\alpha)$ and

$\sigma=$ $\lim f(x)$ .
$x\rightarrow a+0$
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Put

$\tau=\lim_{x\rightarrow a-0}f(x)$ .

Then the following theorem holds.

Theorem 1. For a given $\alpha(0<\alpha<1)$ , there exists $\sigma_{0}>0$ such that if
$0<\sigma\leq\sigma_{0}$ then the closed interval $[\tau,\sigma]$ is invariant under $f_{\sigma,a}$ .

Proof. It is sufficient to show $\tau\leq f(\tau)$ and $ f(\sigma)\leq\sigma$ . We only need to
prove $\tau\leq f(\tau)$ , the other is clear because $\sigma$ is the maximum value of $f$ . Let $P_{0}$

be the point having the coordinate $(\tau, -1+\alpha)$ and $P:(\tau^{\prime}, -1)$ the point where
the solution curve of (1) through $P_{0}$ meets firstly the half line $x\leq 0,$ $ y=-1+\alpha$ .
Then we have $f(\tau)=\tau^{\prime}$ .

Putting $\theta=\angle P_{0}OP$ , we have the following;
$|OP|=e^{\sigma\theta}\cdot|OP_{0}|$ ,

$\tau^{2}=|OP|^{2}-(-1)^{2}$ ,
$\tau^{\prime 2}=|OP_{0}|^{2}-(-1+\alpha)^{2}$ .

Hence,
$\tau^{2}-\tau^{\prime 2}=|OP_{0}|^{2}\cdot(e^{2\sigma\theta}-1)-(2-\alpha)\alpha$ .

Now Theorem 1 follows from the following lemma. $\blacksquare$

Lemma 2.1. When we make $\sigma$ tend to $0$ the following hold;

$\lim_{\sigma\rightarrow+0}|OP_{0}|^{2}\cdot(e^{2\sigma\theta}-1)=0$ , $\lim_{\sigma\rightarrow+0}|OP_{0}|=1$

and the function of $\sigma,$ $\rho(\sigma)=|OP_{0}|^{2}\cdot(e^{2\sigma\theta}-1)$ is monotone decreasing.

Proof. Since when $\sigma=0$ the solution curve are simply circles, the proof
of the former half is obvious. To prove the last statement, note that $|OP_{0}|^{2}$ is

monotone decreasing and $\frac{d(e^{2\sigma\theta}-1)}{d\sigma}=2\theta\frac{d\theta}{d\sigma}\cdot e^{2\sigma\theta}$ is negative for clearly $\frac{d\theta}{d\sigma}$ is
negative. $\blacksquare$

3. Schwarzian derivatives

Recall that for a $C^{3}$-map $\varphi$ the Schwarzian derivative $S(\varphi)$ of $\varphi$ is defined as
follows;

$S(\varphi)=\frac{\varphi^{\prime\prime\prime}}{\varphi^{\prime}}-\frac{3}{2}(\frac{\varphi^{\prime\prime}}{\varphi^{\prime}})^{2}$
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For the meaning of Schwarzian drivative, refer, for example, to [4] or [5].
Now we will show the following $threm$ .

Theorem 2. For any positive $\sigma<\sigma_{0}$ , Schwarzian denvative of $f$ is negative
on the interud $[\tau, \sigma]$ except whe$rrf$ is discontinuous.

To prove Theorem 2, we need the following lemma proved implicitly in [3].

Lemma 3.1. Let $\varphi$ be a $C^{3}$ -map defined around a point $a\in R$ and $\psi^{-1}a$

$C^{3}$ -diffeomorphism defined around $\varphi(a)$ . Then Schwarzian derivative of $\psi^{-1}0\varphi$

at $a$ is negative if and only if the follosning inequdity holds;

$\frac{S(\varphi)(a)}{\varphi(a)^{2}}<\frac{S(\psi)(\psi^{-1}\circ\varphi(a))}{\psi(\psi^{-1}\circ\varphi(a))^{2}}$ .

Proof. Recall the following fundamental result about Schwarzian derivative:

Formula for Schwarzian derivative Let $\varphi,$
$\psi$ be $C^{3}$ -maps and the composi-

tion map $\varphi\circ\psi$ be defined. Then the follounng holds;

$S(\varphi\circ\psi)=\psi^{j2}\cdot(S(\varphi)\circ\psi)+S(\psi)$ .

Hence the compsoition map of maps having negative Schwarzian derivatives has
$dso$ negative Schwarzian derivative.

Put $ F=\psi^{-1}\circ\varphi$ then by the above formula the following holds;

$S(\varphi)=S(\psi\circ F)=F^{\prime 2}\cdot(S(\psi)\circ F)+S(F)$ .

Since the chain rule of derivative implies $F^{\prime}=\frac{\varphi^{\prime}}{\psi}$ , we have;

$S(F)=S(\varphi)-(\frac{\varphi^{\prime}}{\psi})^{2}\cdot(S(\psi)\circ F)$ .

This proves $Lemma3.1$ . $\blacksquare$

Now we prove $Th\infty rem2$ .

Proof of Theorem 2. On the interval $[\tau,a]$ the map $f$ is given as follows.
Let the solution curve through the point $(x, -1+\alpha)$ meet the line at the point
$(y, -1)$ and the x-axis at the point at $(x_{0},0)$ then the following holds;

$y=f(x)$ ,
$\sqrt{x^{2}+A^{2}}=e^{\sigma\tan^{-\iota}\langle A/x_{0})}\cdot x_{0}$ , where $A=1-a$ .

$\sqrt{y^{2}+1}=e^{\sigma\tan^{-1}\langle 1/x_{0})}\cdot x_{0}$ .
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Put $\varphi(x)=X_{0},$ $\psi(y)=X_{0}$ , then

$\varphi(x)=e^{-\sigma\tan(A/\varphi(x))}-1\sqrt{x^{2}+A^{2}}$ ,
$\psi(y)=e^{-\sigma\tan^{-1}\langle 1/\psi(x))}\cdot\sqrt{y^{2}+1}$

and
$ f=\psi^{-1}0\varphi$ .

By straightforward calculation we obtain the followings;

$\varphi^{\prime}(x)=\frac{x-A\sigma}{x^{2}+A^{2}}$ . $\varphi(x)$

$\varphi^{\prime\prime}(x)=\frac{A^{2}(1+\sigma^{2})}{(x^{2}+A^{2})^{2}}\cdot\varphi(x)$ ,

$\varphi^{u\prime}(x)=\frac{-A^{2}(1+\sigma^{2})3x+A\sigma}{(x^{2}+A^{2})^{3}}\cdot\varphi(x)$ ,

$S(\varphi)(x)=\frac{1}{2}\frac{\varphi^{\prime\prime\prime}(x)}{\varphi^{\prime}(x)}-\frac{3}{2}(\frac{\varphi^{\prime\prime}(x)}{\varphi^{\prime}(x)})^{2}$

$=\frac{-A^{2}(1+\sigma^{2})(}{2(x^{2}+}\frac{x^{2}-4A\sigma x+A^{2}(3+\sigma^{2})}{A^{2})^{2}(x-A\sigma)^{2})}6$

and
$\frac{S(\varphi)}{\varphi^{\prime 2}}=\frac{-A^{2}(1+\sigma^{2})(6x^{2}-4A\sigma x+A^{2}(3+\sigma^{2}))}{(x-A\sigma)^{4}\varphi^{2}(x)}$ .

Similarly we have;

$\frac{S(\psi)}{\psi^{2}}=\frac{-(1+\sigma^{2})(6y^{2}-4\sigma y+(3+\sigma^{2}))}{(y-\sigma)^{4}\psi^{2}(y)}$ .

By Lemma 3.1 we obtain that the map $f$ has negative Schwarzian derivative
if and only if;

$\frac{A^{2}(6x^{2}-4A\sigma x+A^{2}(3+\sigma^{2}))}{(x-A\sigma)^{4}}>\frac{(6y^{2}-4\sigma y+(3+\sigma^{2}))}{(y-\sigma)^{4}}$ .

(Note that $\psi(x)=\varphi(y)=x_{0}.$ )

Put $P(\xi)=\frac{6\xi^{2}-4\sigma\xi+(3+\sigma^{2})}{(\xi-\sigma)^{4}}$ and we see $f$ has negative Schwarzian
derivative if and only if;

$P(\xi/A)>P(y)$ .
Since the rational function $P(\xi)$ is monotone increasing on $(-\infty,\sigma)$ and mono-
tone decreasing on $(\sigma, \infty)$ , it is sufficient to show that ;

$ x<A\sigma$ and $x>Ay$ .
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The former condition is clearly satisfied (see Fig. 1) and the latter condition is
followed from the hypothesis $\sigma<\sigma_{0}$ , because it means $x>y$ by Theorem 1.
This proves Theorem 2. $\blacksquare$
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