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Abstract. A planar triangulation $G$ is a simple graph embedded in the plane so
that each faoe of $G$ is triangular and that any two faces share at most one edge.
A $(*)$ -orientation $D^{*}(G)$ of $G$ is an orientation of $G$ such that the outdegree
of each vertex on $\partial G$ is 1 and that of each vertex not on $\partial G$ is 3, where $\partial G$

denotes the outer 3-cycle of $G$ . In this paper, we shall show that for any planar
triangulation $G$ , there exists at least one (*)-orientation and that any two $t*$ ) $-$

orientations of $G$ can be transformed into each other by a sequenoe of 3-cycle
reversions, where the S-cycle reversion is a transformation in an oriented graph
which replaces an oriented 3-cycle with the one with the inverse orientation.
Finally, we shall show that in order to transform two (*)-orientations of $G$ , we
need at most $\lfloor\frac{1}{2}n^{2}-5n+\frac{27}{2}\rfloor$ 3-cycle reversions, where $n=|V(G)|$ . The order
of our estimation cannot be improved.

1. Introduction

Let $G$ be a graph. We denote the sets of the vertices and the edges of $G$

by $V(G)$ and $E(G)$ , respectively. We also denote the degree of $x\in V(G)$ by
deg$G(x)$ , the set of the neighbors of $x$ in $G$ by $N_{G}(x)$ , and the distance in $G$ of
$x,y\in V(G)$ by $d_{G}(x, y)$ . In this paper, we deal with only simple graphs, that is,
graphs with no loops and no multiple edges. When a graph $G$ is embedded in
the plane, $G$ is called the plane graph. We denote the set of the faces of $G$ by
$F(G)$ . For a plane graph $G$ , there is a closed walk $W$ of $G$ such that each edge
of $W$ is incident with the outer infinite face of $G$ . We call such a closed walk the
outer closed walk of $G$ . In particular, when all the vertices of $W$ are distinct, $W$

is called the outer cycle of $G$ .
Let $G$ be a plane graph. The union of faces $f_{1},$

$\ldots$ , $f_{m}$ of $G$ is called the region
of $G$ if the subgraph of the dual $G^{*}$ of $G$ induced by $\{f_{1}^{*}, \ldots , f_{m}^{*}\}$ is connected,
where $f_{1}^{*}$ is the vertex of $G^{*}$ corresponding to $f_{1}$ for $i=1,$ $\ldots$ , $m$ . If the closure
of a region $R$ is $hommorphic$ to a disk, then it is called the closed 2-cell region
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of $G$ . Then its boundary consists of precisely one cycle. Otherwise, $R$ has at
least two boundary cycles, say $C_{1},$

$\ldots,$ Ci, where $C_{1}$ and $C_{j}$ might share at most
one vertex for $1\leq i<j\leq l$ . In particular, when $C_{1}\cup\cdots\cup C_{l}$ is connected, $R$

is called an open 2-cell region. In this case, since $G$ is embedded in the plane,
there is precisely one cycle, say $C_{1}$ , which includes the others, $C_{2},$

$\ldots,$
$C_{l}$ , inside.

We call $C_{1}$ the outer boundary cycle of $R$ , and call each of $C_{2},$
$\ldots,$

$C_{\ell}$ the inner
boundary cycle of it. By the definition of regions, the inside of an inner boundary
cycle is empty. Note that among $\{C_{2}, \ldots, C_{\ell}\}$ , (Int $C_{1}$ ) $\cap$ (Int $C_{j}$ ) $=\emptyset$ for any $i$

and $j$ . Otherwise, $C_{1}$ and $C_{j}$ were not contained in the boundary of $R$ .
A triangulation $G$ of a closed surface $F^{2}$ is a simple graph embedded in $F^{2}$

so that each face of $G$ is triangular and that any two faces share at most one
edge. In this paper, we shall mainly deal with triangulations of the plane. We
simply call them planar $t$nangulations.

Let $D$ be an oriented graph and $x,$ $y\in V(D)$ . We denote an oriented edge
from $x$ to $y$ by $xy$ . Here, we have to notice that $xy\neq yx$ in $D$ . The outdegree
of $x\in V(D)$ is the number of outgoing edges from $x$ and denoted by $od_{D}(x)$ .
The indegree of $x$ is the number of incoming edges into $x$ and denoted by $id_{D}(x)$ .
Clearly, $\sum_{v\in V(D)}od_{D}(v)=\sum_{v\in V\langle D)}id_{D}(v)=|E(D)|$ .

Let $G$ be a planar triangulation with three vertices $v_{1},$ $v_{2}$ and $v_{3}$ on the outer
cycle of length 3. The $(*)$ -oriented triangulation $D^{*}(G)$ of the plane is defined as
an oriented triangulation with the underlying graph $G$ such that $od_{D(G)}(v_{i})=$

$1(i=1,2,3)$ and $od_{D^{*}(G)}(v)=3$ for any vertex $v\neq v_{i}$ . We also call such an
oriented planar triangulation simply a $(*)- 0\dot{n}entation$.

Let $D$ be an oriented graph and $C:=v_{1}v_{2}\cdots v_{n}v_{1}$ an oriented cycle in
$D$ . The cycle reversion of $C$ in $D$ is defined to replace the oriented edges
$v_{1}v_{2},v_{2}v_{3},$ $\ldots,$

$v_{n}v_{1}$ with $v_{2}v_{1,3}vv_{2},$ $\ldots,$
$v_{1}v_{n}$ , respectively. In particular, the cy-

cle reversion of a cycle of length $n$ is said to be the n-cycle reversion. Note that
a cycle reversion in $D$ changes neither outdegree nor indegree of each vertex of
$D$ .

In this paper, we first show the following two theorems in Section 2.

Theorem 1. Every planar triangulation has at least one $(*)$ -orientation.

Theorem 2. Any two $(*)$ -orientations of a fixed planar $tr\dot{v}ang$ lation can be
transformed into each other by a sequence of 3-cycle reversions.

Let $G$ be a planar triangulation and let $Di(G),$ $D_{2}^{*}(G),$
$\ldots$ , $D_{k}^{*}(G)$ be all the

(*)-orientations of $G$ . Define $d(G, D_{i}^{*}, D_{j}^{*})$ to be the minimum number of 3-cycle
reversions needed to transform $D_{1}^{*}(G)$ and $D_{j}^{*}(G)$ into each other. Let

$d(G)$ $:=\max\{d(G, D_{\ell}^{*}, D_{j}^{*}) : 1\leq i<j\leq k\}$ .
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In Section 3, we shall estimate the value of $d(G)$ by $|V(G)|$ , as follows.

Theorem 3. Let $G$ be a planar triangulation with $n$ vertices where $n\geq 7$ .
Then,

$ d(G)\leq[\frac{1}{2}n^{2}-5n+\frac{27}{2}\rfloor$ .

To get a good estimation, we shall introduce an invariant for the difference
between given two (*)-orientations of a fixed planar triangulation, which is equal
to the minimum number of 3-cycle reversions needed to transform the two $(*)-$

orientations.
In Section 4, with respect to Theorem 3, we shall actually construct a planar

triangulation $T$ with $n\geq 7$ vertices and two (*)-orientations $D_{1}^{*}(T)$ and $D_{2}^{*}(T)$

such that

$d(T, D_{1}^{*}, D_{2}^{*})=\frac{1}{3}n^{2}-3n+\frac{23}{3}$ ,

which gives a lower bound for the estimation in Theorem 3. Thus, the order of
our estimation of $d(G)$ for a planar triangulation $G$ cannot be improved though
the coefficient does not seem to be the best.

The (*)-orientation of a planar quadrangulation (i.e., a simple plane graph
whose faces are all quadrilateral) has already been defined, similarly to that
of a planar triangulation, so that the outdegree of each vertex on the outer
boundary cycle is 1 and those of other vertices are all 2 [1]. In the same paper,
they pointed out that there is some relation between the (*)-orientations of
planar quadrangulations and the orthogonal plane partitions. An orthogonal
plane partition is a partition of a square into rectangles by horizontal and vertical
segments, as shown in Figure 1. Notice that any two segments, except the four
segments of the outer square, intersect in the orthogonal plane partition if and
only if one of the endpoints of one segment coincides with an inner point of
the other segment. Corresponding a vertex to each segment of an orthogonal
partition $S$ , we can make a digraph $D_{S}$ from $S$ such that if an endpoint of a
segment $x_{i}$ and an inner point of a segment $x_{j}$ coincides, then we put a directed
edge $hom$ the vertex $x_{i}$ to the vertex $x_{j}$ . For the outer square of $S$ , we suppose
that the oriented cycles of length 4 corresponds to it in $D_{S}$ . Then, the resulting
digraph $D_{S}$ is a (*)-orientation of a planar quadrangulation. (Each inner vertex
in $D_{S}$ has outdegree 2 since each inner segment has both endpoints on two other
distinct segments.) Here, we do not describe the details for them.

In the present paper, we shall show that the phenomena of the (*)-orientations
of planar quadrangulations, shown in [1], also hold for the (*)-orientations of
planar triangulations, and estimate the minimum number of 3-cycle reversions
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Figure 1 An orthogonal plane partition

needed to transform given two (*)-orientations of planar triangulations. By this,

one can easily estimate the minimum number of 4-cycle reversions needed to
transform given two (*)-orientations of planar quadrangulations. $Mor\infty ver$ , one
will be able to find a relation between (*)-orientations of planar triangulations
and some partition of a triangle by several triangular disks.

2. Proof of Theorems 1 and 2

Let $G$ be a triangulation of a closed surface $F^{2}$ and $e$ an edge of $G$ . The
contraction of $e$ is defined to delete $e$ , identify its two ends and replace the two
pairs of multiple edges with two single edges, respectively. If the contraction of
$e$ breaks the simpleness of a graph, then we do not apply it, and otherwise, $e$

is said to be contractible. When $e$ is contractible, the resulting graph obtained
by the contraction of $e$ is also a triangulation. A triangulation $G$ is said to
be contractible to a triangulation $T$ if $T$ is obtained from $G$ by a sequence of
contractions of edges.

The following result proved by Steinitz and Rademacher is useful to establish
the (*)-orientability of planar triangulations.

Lemma 4. (Steinitz and Rademacher [2]) Every planar triangulation
is contractible to $K_{4}$ .

We shall show Theorem 1.
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Proof of Theorem 1. Let $G$ be a planar triangulation with $|V(G)|=$
$n$ . We use induction on $|V(G)|$ . If $G$ has no contractible edge, that is, $G$ is
isomorphic to $K_{4}$ by Lemma 4, then $G$ clearly has a (*)-orientation. Suppose
that $G$ has a contractible edge $e$ . By the contraction of $e,$ $G$ is deformed into the
triangulation, denoted by $G/e$ , with $|V(G/e)|=n-1$ . In this case, the union of
two faces of $G$ sharing $e$ is deformed into a path of length 2. By the hypothesis
of induction, $G/e$ has a (*)-orientation and the path has some orientation. By
applying one of the operations in Figure 2 depending on the orientation of the
edges incident with $[e]\in V(G/e)$ which is the contraction image of $e$ in $G$ , we can
construct a (*)-orientation of G. (In Figure 2, (1) represents the case when none
of the three edges starting from $[e]$ are toward the right.) Even if the outdegree
of $[e]$ is 1 (i.e., $[e]$ is on the boundary cycle of $G/e$), we can conclude the similar
argument as above. Thus, the theorem follows. $\blacksquare$

Figure 2

Let $G$ be a planar triangulation and $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ two (*)-orientations
of $G$ . Define the subtraction $D:=D_{1}^{*}(G)-D_{2}^{*}(G)$ so that $V(D)$ $:=V(G)$ and
$E(D):=\{uv\in E(D_{1}^{*}(G))$ : $uv\not\in E(D_{2}^{*}(G))$ for $uv\in E(G)\}$ . It is clear that
$D$ is a spanning subgraph of $D_{1}^{*}(G)$ .

Proposition 5. The subtraction $D$ is a union of pairwise edge-disjoin $t$ ori-
ented cycles.

Proof. For any $v\in V(G)$ , we have that $od_{D}i^{\langle G)}(v)=od_{D_{\dot{2}}(G)}(v)$ and
$id_{D}i^{\langle G)}(v)=id_{D_{\dot{2}}(G)}(v)$ . Thus, for each vertex $v$ of $G,$ $od_{D}(v)=id_{D}(v)$ , and
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hence each component of $D$ is eulerian. Therefore, the subtraction $D$ is a union
of pairwise edge-disjoint oriented cycles in $D_{1}^{*}(G)$ . $\blacksquare$

Let $D^{*}(G)$ be a (*)-orientation of a planar triangulation $G$ and $F$ a union of
faces of $D^{*}(G)$ whose interior is an open 2-cell. We denote the boundary walk
of $F$ by $\partial F$ , and the length of $\partial F$ by $|\partial F|$ . (In this case, $\partial F$ might not be an
oriented closed walk.) Also, we denote the interior of $F$ by Int $F$ . We write
$V$ (Int $F$) for $V(G)\cap IntF$ and $E(IntF)$ for $ E(G)\cap$ Int $F$ .

Lemma 6. Suppose that $|\partial F|=k\geq 3$ . Then, there are exactly $k-3$

$o$riented edges $e_{1},$
$\ldots,$ $e_{k-3}$ in $F$ such that each $e_{i}$ starts from a vertex on $\partial F$ ,

where $e_{i}\not\in E(\partial F)$ .

Proof. We denote the number of vertices and edges in Int $F$ by $p$ and $q$ ,
respectively. Applying Euler’s formula to $F$ , we have that $(k+p)-(k+q)+f=1$ ,
where $f$ denotes the number of faces in $F$ . Since $F$ is internally triangulated
and since $|\partial F|=k$ , we have that $3f=2q+k$ and hence we can obtain that
$q=3p+k-3$ . Here we have that $\sum_{v\in V\langle IntF)}od(v)=3p$ since od(v) $=3$ for
any $v\in V(IntF)$ . Thus, the number of edges in $F$ which start $hom\partial F$ but are
not contained in $\partial F$ is equal to $q-\sum_{v\in V\langle IntF)}od(v)=k-3$ . $\blacksquare$

The following lemma is the key to prove Theorem 2.

Lemma 7. Suppose that $|\partial F|>3$ . Then, there exists a pair of vertices
$u,$ $v\in V(\partial F)$ such that there is an oriented path $P$ in $F$ frvm $u$ to $v$ with
$ E(P)\cap E(\partial F)=\emptyset$ and $V(P)\cap V(\partial F)=\{u, v\}$ .

Proof. By Lemma 6, there are $k-3$ oriented edges, say $e_{1},$ $\ldots$ , $e_{k-3}$ , toward
inside from $\partial F$ , where $k=|\partial F|$ . Here we regard $\partial F$ as a cycle, even if $\partial F$ has
some repeated vertices. Let $v_{i}$ $(i=1, \ldots , k-3)$ be the starting point of $e_{i}$ .
Suppose that $v_{1},$ $\ldots$ , $v_{k-3}$ lie on $\partial F$ in this clockwise order. Note that $v_{i}$ and
$v_{i+1}$ may coincide for some $i$ and that $v_{i}$ and $v_{i+1}$ are not always adjacent in
$\partial F$ . Cutting $\partial F$ at each $v_{i}$ , we decompose $\partial F$ into $k-3$ (possibly non-oriented)
paths $L_{v_{1},v_{2}},$ $L_{v_{2},v_{3}},$

$\ldots,$
$L_{v_{k-3},v_{1}}$ , where the path $L_{v.,v:+1}$ joins $v_{i}$ and $v_{i+1}$ . If

$v_{i}=v:+1$ , then we define $L_{v_{i},v:+1}$ as an isolated vertex, that is, a path of length
$0$ .

Let $B_{v:}$ $(i=1, \ldots , k-3)$ be the maximal vertex set of $V(F)$ such that
$v_{i}\in B_{v:}$ and that for any $x\in B_{v}.$ , there exists an oriented path $P$ from $v_{i}$ to
$x$ with $E(P)\subset E(IntF)$ . We denote by $[B_{v_{i}}]$ the subgraph of $F$ induced by
$B_{v_{i}}$ . Since $[B_{v:}]\subset F$ , we can define the boundary of $[B_{v:}]$ , denoted by $\partial[B_{v_{i}}]$ .
If $|V(\partial F)\cap B_{v:}|\geq 2$ for some $i$ , then we can take the required path in $[B_{v:}]$ , by
the definition of $[B_{v:}]$ . So, we assume that for any $i,$ $V(\partial F)\cap B_{v_{i}}=\{v_{i}\}$ .
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Consider the average length of $L_{v:,v.+1}’ s$ . Since $|\partial F|=k$ with $k>3$ , we have
$\frac{k}{k-3}=1+\frac{3}{k-3}>1$ . Thus, for some $i$ , the length of $L_{v_{i},v:+1}$ is at least 2. Let
$L_{v_{m},v_{m+1}}$ be the path on $\partial F$ whose length is at least 2. Let $K$ be the union of
faces in Int $F$ but not in $\bigcup_{\dot{\iota}=1}^{k-3}$ Int $[B_{v}.]$ , where Int $[B_{v:}]$ $:=[B_{v_{i}}]-\partial[B_{v:}]$ . Since $K$

may be disconnected, we take the component $K$‘ of $K$ which contains $L_{v_{m},v_{m+1}}$

on $\partial K^{\prime}$ . By the maximality of $B_{v_{i}},$
$K^{\prime}$ has no oriented edge toward inside from

a vertex on $\partial K^{\prime}$ .
Here, if $|\partial K^{\prime}|=3$ , then the length of $L_{v_{m},v_{m+1}}$ has to be 2 and there exists

an oriented edge $v_{m}v_{m+1}$ or $v_{m+1}v_{m}$ through Int $F$ . In this case, this edge is
the required oriented path. So, we may suppose that $|\partial K^{\prime}|>3$ . However,
this situation contradicts to Lemma 6. Thus, for some $i,$ $|V(\partial F)\cap B_{v_{i}}|\geq 2$ .
Therefore, we can take the required path. $\blacksquare$

Now, we shall prove Theorem 2.

Proof of Theorem 2. By Theorem 1, for any planar triangulation $G$ ,
there is a (*)-orientation of $G$ . Let $Di(G)$ and $D_{2}^{*}(G)$ be two (*)-orientations of
$G$ , and $D:=Di(G)-D_{2}^{*}(G)$ . By Proposition 5, we let $D:=C_{1}\cup C_{2}\cup\cdots\cup C_{k}$ ,
where $C_{1},$

$\ldots$ , $C_{k}$ are pairwise edgadisjoint oriented cycles in $D_{1}^{*}(G)$ . Observe
that the cycle reversions of $c_{:}$ for $i=1,$ $\ldots$ , $k$ transform $Di(G)$ into $D_{2}^{*}(G)$ .
Thus, it suffices to show that the cycle reversion of each $C_{i}$ can be obtained by
a sequence of 3-cycle reversions. We fix $i$ and denote $C_{i}$ by $C$ in the following
argument.

We use induction on the number of faces in the 2-cell region bounded by $C$ .
If $|C|=3$ , then we can apply the 3-cycle reversion of $C$ . Note that $C$ might
not bound a face in this case. Now suppose that $|C|>3$ . By Lemma 7, since
$|C|>3$ , there is an oriented path $P$ (through the 2-cell region bounded by $C$)
from $u\in V(C)$ to $v\in V(C)$ . Since $C$ is an oriented cycle, $C$ is decomposed into
the two oriented paths, say $P_{1}$ and $P_{2}$ , connecting $u$ and $v$ , where we suppose
that $P_{1}$ is oriented ffom $v$ to $u$ and $P_{2}$ is ffom $u$ to $v$ . Now, we can find an
oriented cycle $P\cup P_{1}$ . Since $P\cup P_{1}$ bounds a less number of faces than $C$ , the
cycle reversion of $P\cup P_{1}$ can be obtained by a sequence of 3-cycle reversions, by
the hypothesis of induction. After this reversion, the union of the reversed $P$ and
$P_{2}$ also forms an oriented cycle bounding a less number of faces than $C$ . This
can be reversed similarly. By the two operations, we can reverse the direction of
only $C$ since $P$ is reversed twice. Thus, the cycle reversion of $C$ can be obtained
by a sequence of 3-cycle reversions. Therefore, the theorem follows. $\blacksquare$

In Theorem 2, the cycles applied 3-cycle reversions do not always bound
faces. In fact, we need such 3-cycle reversions in general. We can see this fact by
the following examples. Let $G$ be a planar triangulation which has several $(*)-$
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oreintations, say $D_{1}^{*}(G),$ $D_{2}^{*}(G),$
$\ldots$ . Let $\tilde{G}$ be the planar triangulation obtained

from $G$ by putting a vertex of degree 3 into each face (except the infinite face)
of $G$ . Since each vertex not on the boundary of $G$ has outdegree 3 in $(*)-$

orientations, the three edges incident with the added vertex of degree 3 must be
outgoing in (*)-orientations of $\tilde{G}$ . Thus, we can construct the two (*)-orientations
$D_{1}^{*}(\tilde{G})$ and $D_{2}^{*}(\tilde{G})$ of $\tilde{G}$ from $D:(G)$ and $D_{2}^{*}(G)$ by adding a vertex with three
outgoing edges to each finite face of $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ , respectively. Since both
$D_{1}^{*}(\tilde{G})$ and $D_{2}^{*}(\tilde{G})$ have no facial oriented cycle of length 3, $Di(\tilde{G})$ and $D_{2}^{*}(\tilde{G})$

cannot be transformed by a sequence of facial 3-cycle reversions. (However, if
we assume that $G$ is 4-connected, any two (*)-orientations can be transformed
by a sequence of facial 3-cycle reversions since all the 3-cycles of $G$ are facial.)

By the inductive algorithm used in the proof of Theorem 2, we can roughly
estimate the minimum number of 3-cycle reversions needed to transform two
(*)-orientations into each other.

Let $G$ be a planar triangulation with $n$ vertices. Let $D\ddagger(G)$ and $D_{2}^{*}(G)$ be two
(*)-orientations of $G$ and $D:=D_{1}^{*}(G)-D_{2}^{*}(G)$ . By Euler’s formula, we obtain
that $|E(G)|=3n-6$ and $|F(G)|=2n-4$ . By Proposition 5, $D$ is a union of
pairwise edge-disjoint oriented cycles. Let $k_{1}$ and $k_{2}$ be the numbers of oriented
cycles in $D$ of length more than 3 and that of length exactly 3 respectively, and
put $D$ $:=C_{1}\cup\cdots\cup C_{k_{1}}\cup C_{1}^{\prime}\cup\cdots\cup C_{k_{2}}^{\prime}$ , where $|C_{1}|\geq 4$ and $|C_{1}^{\prime}|=3$ for each
$i$ . Since $D\subset D_{1}^{*}(G)$ and since any two oriented cycles in $D$ share no edge, we
have that $4k_{1}+3k_{2}\leq|E(G)|$ .

By the inductive argument in the proof of Theorem 2, observe that in order
to reverse an oriented cycle $C_{1}$ , we need at most $|F(C_{1})|$ 3-cycle reversions, where
$|F(C_{1})|$ denotes the number of faces in the 2-cell bounded by $C_{1}$ . Thus, we have

$d(G, D_{1}^{*}, D_{2}^{*})\leq\sum_{i=1}^{k_{1}}|F(C_{i})|+k_{2}$

$\leq k_{1}(|F(G)|-1)+k_{2}$

$\leq\frac{1}{4}(|F(G)|-1)(4k_{1}+3k_{2})$

$\leq\frac{1}{4}(|F(G)|-1)|E(G)|$

$=\frac{3}{4}(2n-5)(n-2)$

$=\frac{3}{2}n^{2}-\frac{27}{4}+\frac{15}{2}$ .

In order to get a better estimation, we need more elaborate arguments as in the
following section.
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3. Estimation of the number of 3-cycle reversions

In this section, we first define a nice invariant for the subtraction of the two
(*)-orientations $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ of a planar triangulation $G$ , which is equal
to $d(G, D_{1}^{*}, D_{2}^{*})$ .

Let $G$ be a planar triangulation. We shall decompose $G$ into some plane
graphs $G_{1},$

$\ldots$ , $G_{k}$ , as follows. Let G\’o $:=G$ . Let $\Delta_{i}$ be the innermost triangular
region of $G_{i-1}^{\prime}$ (say bounded by $a_{i}b_{i}c_{i}$ where $a_{i},$ $b_{i},$ $c_{i}\in V(G_{i})$ ) but is not a face
of $G_{1-1}^{\prime}$ , that is, there is no such a region in $\Delta_{i}$ . Let $G_{i}:=\Delta_{i}-\{a_{i}, b_{i}, c_{i}\}$

and let $G_{i}^{\prime}$ $:=G_{-1}^{\prime}-V(G_{i})$ . Note that each $G_{i}$ is either an isolated vertex or
a 2-connected plane graph. Here, each $G_{i}^{\prime}$ is either a planar triangulation or a
cycle of length 3. Repeating this procedure, if we obtain the outer cycle of $G$ of
length 3 as $G_{k-1}^{\prime}$ , then put $G_{k}:=G_{k-1}^{\prime}$ . It is easy to see that each $G_{i}$ contains
no 3-cycle which does not bound a face. Also, any two triangular regions of $G$

are disjoint or otherwise one is contained in the other. Hence this decomposition
is unique, up to labeling of subscripts. We call such a decomposition of $G$ the
$\Delta$ -decomposition.

As is mentioned above, we can $\Delta$-decompose a planar triangulation $G$ into
$G_{1},$

$\ldots,$
$G_{k}$ so that $G_{k}$ is the outer 3-cyele of $G$ . By Proposition 5, for two $(*)-$

orientations $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ of $G$ , their subtraction $D$ is a union of pairwise
edge-disjoint oriented cycles, say $D$ $:=C_{1}\cup\cdots\cup C_{m}$ , where each $C_{1}$ is an oriented
cycle in $D_{1}^{*}(G)$ .

Let $D_{j}^{*}(G_{i})$ be the subgraph of $D_{j}^{*}(G)(j=1,2)$ induced by $V(G_{i})$ for $i=$

$1,$
$\ldots,$

$k$ .

Lemma 8. For any $i$ $(i=1, \ldots , m),$ $C_{i}$ is completely contained in some
$D_{1}^{*}(G_{j})$ .

Proof. Observe that for each $i$ $(i=1, \ldots , k-1),$ $G_{i}$ was surrounded by
some 3-cycle in $G$ . For a triangular region $\Delta$ of $G$ but is not a face of $G$ , there is
no oriented edge in $\Delta$ toward inside from a vertex on its boundary, by Lemma
6. Thus, for any (*)-orientation of $G$ , there is no oriented cycle which contains
$u\in V(Int\Delta)$ and $v\in V(G)-V(\Delta)$ simultaneously. Thus, the lemma follows.
$\blacksquare$

Let $G$ be a plane graph and $G^{*}$ its dual. Let $D$ be an orientation of a
subgraph of $G$ . For a path $p$ of $G^{*}$ with its starting point and endpoint prescribed,
$e\in E(D)$ is called a nght edge if for the direction of $p,$ $e$ crosses $p$ from the left
to the right. Similarly, $e$ is called a left edge for the path $p$ if $e$ crosses $p$ from
the right to the left for the direction of $p$ . See Figure 3.

Let $G$ be a planar triangulation and $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ two (*)-orientations
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$\perp$
$e$

$\uparrow$

$|_{p}$ $|_{p}$

$e$ : right $e$ : left

Figure 3 A right and left edges

of $G$ . Let $\{G_{1}, \ldots, G_{k}\}$ be the $\Delta$-decomposition of $G$ . By Lemma 8, if we put
$D_{i}=D_{1}^{*}(G_{i})-D_{2}^{*}(G_{i})$ for $i=1,$ $\ldots,$

$k$ , then $D_{i}$ consists of pairwise edge-disjoint
oriented cycles.

Now, suppose that $G_{i}$ is 2-connected. Let $f$ and $S$ be a finite face and the
infinite face of $G_{i}$ , and $f^{*}$ and $S^{*}$ the vertices of $c$; corresponding to $f$ and $S$ ,
respectively. For $f$ and a fixed path $p$ from $f^{*}$ to $S^{*}$ , let

$\phi_{D_{:}}(f,p)$ $:=|$ {$e\in E(D_{i})$ : $e$ is right for $p$} $|-|$ {$e\in E(D_{i})$ : $e$ is left for $p$} $|$ .

For $S$ , we define $\phi_{D_{:}}(S,p)=0$ .

Proposition 9. For each face $f,$ $\phi_{D:}(f,p)$ does not depend on the choice of
the path $p$ .

Proof. By Lemma 8, $D_{i}$ consists of several pairwise edge-disjoint oriented
cycles, say $C_{1},$

$\ldots$ , $C_{m}$ , in $D_{1}^{*}(G_{i})$ , respectively. Let $f$ and $S$ be a finite face
and the infinite face of $G_{i}$ . Let $p$ be a path in the dual $G_{1}^{*}$ of $G_{i}$ from $f^{*}$

to $S^{*}$ , where $f^{*}$ and $S^{*}$ are the vertices of $c$; corresponding to $f$ and $S$ in
$G_{i}$ , respectively. If the path $p$ from $f^{*}$ to $S^{*}$ crosses $C_{j}$ once to enter inside,
then the path must cross it again to exit outside. The directions of these two
edges of $C_{j}$ crossing $p$ are different and hence $C_{j}$ is not counted in $\phi_{D_{i}}(f,p)$ .
Thus, by the definition of the depth, $C_{j}$ is counted in $\phi_{D}.(f,p)$ as 1 or $-1$

(depending on the orientation of $C_{j}$ ) only if $f$ is inside $C_{j}$ . Therefore, $\phi_{D}.(f,p)=$

$|B(f)|-|B^{\prime}(f)|$ , where $B(f)$ (resp., $B^{\prime}(f)$ ) $\subset\{C_{1}, \ldots , C_{m}\}$ is the set of clockwise
(resp., counterclockwise) oriented cycles containing $f$ inside. $\blacksquare$

For each face $f$ , we simply write $\phi_{D_{i}}(f)$ instead of $\phi_{D_{:}}(f,p)$ for any path $p$ .
We call $|\phi_{D_{i}}(f)|$ the depth of $f$ in $D_{i}$ .

Let
$\Phi(D_{i})$

$:=\sum_{f\in F(G:)}|\phi_{D}:(f)|$
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for $i=1,$ $\ldots$ , $k$ . If $G_{i}$ is an isolated vertex, then we define that $\Phi(D_{i})=0$ . Let

$\Phi(D)$ $:=\sum_{:=1}^{k}\Phi(D_{i})$ .

We call this invariant $\Phi(D)$ the total depth of $D=D_{1}^{*}(G)-D_{2}^{*}(G)$ . Note that
$\Phi(D)$ is a non-negative integer.

By the definition of depths, we can see that any two faces of $D_{1}^{*}(G_{i})$ sharing
an edge in $D_{i}$ have different depths whose difference is exactly 1. So we can say
that $D_{i}$ divides the face set of $D_{1}^{*}(G_{i})$ into several regions so that any two faces
belonging to the same region have the same depth. We call the region with the
largest depth the deepest region.

Let $\{G_{1}, \ldots, G_{k}\}$ be the $\Delta$-decomposition of $G$ . By Proposition 5, $D$ is a
union of pairwise edge-disjoint oriented cycles of $D_{1}^{*}(G)$ . Observe that $ E(D)=\emptyset$

means $D_{1}^{*}(G)=D_{2}^{*}(G)$ . Thus, when $D_{1}^{*}(G)\neq D_{2}^{*}(G)$ , we have that $ E(D)\neq\emptyset$

and hence for some $s,$ $D_{s}:=D_{1}^{*}(G_{s})-D_{2}^{*}(G_{s})$ is not empty and consists of
some pairwise edge-disjoint oriented cycles in $D_{1}^{*}(G_{s})$ , by Lemma 8. Let $R$ be
the deepest region of $D_{1}^{*}(G_{s})$ .

Lemma 10. The deepest region $R$ has an outer oriented boundary cycle $C$

and inner oriented boundary cycles $C_{1}^{j},$

$\ldots,$
$C_{m}^{\prime}(m\geq 0)$ such that for any $i$ and

$j$ , (Int $C^{\prime}$ ) $\cap(IntC_{j}^{\prime})=\emptyset$ and that each C\’i has the orientation different flom $C$ .

Proof. Let $R$ be the deepest region of $D_{1}^{*}(G_{s})$ . Let $f$ and $S$ be a finite face
in $R$ and the infinite face of $G_{s}$ , respectively. We may suppose that $\phi_{D}.(f)$ $:=$

$M>0$ . (Otherwise, put $D:=D_{2}^{*}(G)-D_{1}^{*}(G).$ ) Consider a path $p$ of $G_{\epsilon}^{*}$ from
$f^{*}$ to $S^{*}$ , where $f^{*}$ and $S^{*}$ are the vertices of $G_{\epsilon}^{*}$ corresponding to $f$ and $S$ ,
respectively. Race $p$ from $f^{*}$ to $S^{*}$ .

We claim here that the edge in $D_{s}$ which $p$ first meets is a right edge. Notice
that when $p$ meets each $e\in E(D_{s})$ , if $e$ is right (resp., left), we get the value
+1 (resp., $-1$), and finally get the depth of $f$ as the summation of these values.
So, if the edge in $D_{s}$ which $p$ first meets was left, the vertex of $G_{\epsilon}^{*}$ then visited
by $p$ would have the depth equal to $\phi_{D}.(f)+1$ . This contradicts $f$ being in the
deepest region.

Since $R$ is a region, it has the outer boundary cycle, say $C$ , in $G$ and might
have several inner boundary cycles, say C\’i, .. ., $C_{m}^{\prime}$ , in $G$ . Notice that for any
$i$ and $j(1\leq i<j\leq m)$ , (Int $C_{1}^{\prime}$ ) $\cap(IntC_{j}^{\prime})=\emptyset$ since $C\cup C_{1}^{\prime}\cup\cdots\cup C_{m}^{\prime}$ forms
the boundary of $R$ . Observe that each edge on $C$, C\’i, .. ., $C_{m}^{\prime}$ is right in $Di(G)$ .
Thus, $C$ is clockwise oriented and C\’i, . . . , $C_{m}^{\prime}$ are counterclockwise oriented. $\blacksquare$

Lemma 11. Let $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ be two $(*)$ -onentations of a planar tri-
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angulation $G$ and $D$ $:=D_{1}^{*}(G)-D_{2}^{*}(G)$ . If $\Phi(D)>0$ , then there $ex\dot{u}ts$ a 3-cycle
$C$ in $Di(G)$ whose 3-cycle reversion decreases $\Phi(D)$ by 1.

Proof. Suppose that $D_{s}=D_{1}^{*}(G_{s})-D_{2}^{*}(G_{s})$ is not empty. Let $R$ be the
deepest region of $D_{1}^{*}(G_{s})$ . We may assume that $\phi_{D}.(f)>0$ for any $f$ in $R$ .
Suppose that $R$ has an outer boundary cycle $C$ with the clockwise orientation
and inner boundary cycles C\’i, .. . , $C_{m}^{\prime}$ with the counterclockwise orientations as
in Lemma 10.

We shall show that there exists a 3-cycle $K$ in $R$ with the same direction as
$C$ . Since any 3-cycle of $G_{s}$ bounds a face, $K$ must bound a face, say $f$ , in $G_{s}$ . If
there is $K$ , the 3-cycle reversion of $K$ decreases $\phi_{D}.(f)$ by 1, since for any path
$p$ from $f^{*}$ to $S^{*}$ in the dual of $G_{s}$ , the reversion either decreases one right edge
or increases one left edge of $D_{s}$ On the other hand, for any face $f^{\prime}\neq f$ , since $f^{\prime}$

is not inside $K,$ $\phi_{D}.(f^{j})$ is not changed by the 3-cycle reversion of $K$ . Thus, this

decreases the depth of only $f$ by 1 and the total depth of $D$ by 1.
In order to find such $K$ , we use induction on the number of faces in the region

$R$ . If the outer boundary cycle $C$ of $R$ bounds only one face, then $|C|=3$ and
hence $K=C$ . Then we consider the case of $|C|>3$ . By Lemma 7, since $|C|>3$ ,

there exist $u,$ $v\in V(C)$ such that $u$ and $v$ are joined by an oriented path $P$ in the

closed 2-cell bounded by $C$ with $V(C)\cap V(P)=\{u, v\}$ and $ E(C)\cap E(P)=\emptyset$ . If
$P$ runs through Int $C_{1}^{\prime}$ for some $i$ , then replace the subgraph of $P$ inside $C_{\dot{\iota}}^{\prime}$ with

the oriented path on $C_{1}^{\prime}$ , fixing its ends on $C_{1}^{\prime}$ , so that the resulting path forms

an oriented path between $u$ and $v$ . Repeating this operation, we can deform $P$

to run in the closure of $R$ .
Decompose $C$ into the two oriented paths joining $u$ and $v$ . Either of the two

paths and $P$ forms the oriented cycle, say $C^{\prime}$ , with the same orientation as $C$ ,

which bounds a less number of faces than $C$ . Since $C$ and each $C_{1}^{\prime}$ have the
different orientations, $C^{\prime}$ bounds a part of $R$ . By the hypothesis of induction,

there is the required 3-cycle $K$ in the 2-cell region bounded by $C^{\prime}$ . $\blacksquare$

Note that Lemma 11 is an altemative proof of Theorem 2. If we want to

show only Theorem 2, the method used in the proof of Theorem 2 is enough.
However, to get a good estimation of the minimum number of 3-cycle reversions
needed to transform given two (*)-orientations, we need a minute argument as
in Lemma 11.

The following is the most important theorem.

Theorem 12. Let $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ be two $(*)$ -orientations of a planar

triangulation $G$ and $D:=D_{1}^{*}(G)-D_{2}^{*}(G)$ . Then, $d(G, D_{1}^{*}, D_{2}^{*})=\Phi(D)$ .

Proof. It is easy to see that $d(G, Di, D_{2}^{*})\leq\Phi(D)$ , by Lemma 11. We shall
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show that $d(G, D_{1}^{*}, D_{2}^{*})\geq\Phi(D)$ . Let $\{G_{1}, \ldots , G_{k}\}$ be the $\Delta$-decomposition of
$G$ . Let $K$ be any 3-cycle in $G$ . Then, by the definition of $\Delta$-decomposition, $K$

bounds a finite face $f$ in some $G_{i}$ . Observe that the 3-cycle reversion of $K$ can
reduce only $\phi_{D}.(f)$ by 1 and preserves $\phi_{D_{:}}(f^{\prime})$ for any face $f^{\prime}\neq f$ of $G_{i}$ . So, in
order to transform $D_{1}^{*}(G_{i})$ into $D_{2}^{*}(G_{i})$ , each face $f$ in $G_{i}(i=1, \ldots,n)$ must be
applied at least $|\phi_{D}:(f)|$ 3-cycle reversions. So, we have that

$d(G_{i}, D_{1}^{*}, D_{2}^{*})\geq\sum_{f\in F(G_{i})}|\phi_{D}.(f)|=\Phi(D_{i})$
,

where $d(G_{i}, D_{1}^{*}, D_{2}^{*})$ denotes the minimum number of 3-cycle reversions needed
to transform $Di(G_{i})$ into $D_{2}^{*}(G_{i})$ . Thus, we have that

$d(G, D_{1}^{*}, D_{2}^{*})=\sum_{:=1}^{k}d(G_{i}, D_{1}^{*}, D_{2}^{*})\geq\sum_{1=1}^{k}\Phi(D_{i})=\Phi(D)$ .

Therefore, the theorem follows. $\blacksquare$

Now, using Theorem 12, we shall estimate the maximum value of $d(G)$ for
a planar triangulation $G$ . Let $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ be two (*)-orientations of $G$

and $D:=D_{1}^{*}(G)-D_{2}^{*}(G)$ . The value $\Phi(D)$ is obtained as $\sum_{1=1}^{k}\Phi(D_{i})$ , where
$\{G_{1}, \ldots , G_{k}\}$ is the $\Delta$-decomposition of $G$ and $D_{i}=D_{1}^{*}(G_{i})-D_{2}^{*}(G_{i})$ . The
following lemma estimates the value of each $\Phi(D_{i})$ .

Lemma 13. Let $n_{i}=|V(G_{i})|$ . If $n_{i}=1,$ $\Phi(D_{i})=0$ , and if $n_{i}\geq 3$ , then

$\Phi(D_{i})\leq\lfloor\frac{n_{1}^{2}}{2}-2n_{i}+3\rfloor$ .

Proof. By the definition of $\Delta$-decomposition, each $G_{i}$ is either an isolated
vertex or a 2-connected plane graph, and hence either $n_{i}=1$ or $n_{i}\geq 3$ for
$i=1,$

$\ldots,$
$k$ . If $n_{i}=1$ , then $G_{i}$ has no finite face and hence $\Phi(D_{i})=0$ . If $n_{i}=3$ ,

then $G_{i}$ has at most one finite face, and hence $\Phi(D_{i})\leq 1=L\frac{3^{2}}{2}-2\cdot 3+3\rfloor$ .
$i^{Rom}$ now, we suppose that $n_{i}\geq 4$ . Then $G_{i}$ has the outer cycle of length
$t\geq 4$ . (For if $t=3,$ $G_{i}$ was $\Delta$-decomposable.) Consider the dual $G^{*}$ of $G_{i}$ , and
let $f^{*}$ and $S^{*}$ be the vertices corresponding to a face $f$ in the deepest region
and the infinite face $S$ , respectively. It is obvious that deg$c:(S^{*})=t\geq 4$ and
for any $g^{*}\in V(G;)-\{S^{*}\},$ $\deg_{G_{i}}\cdot(g^{*})=3$ . Since $G_{i}$ has at least two faces,
there is a face, say $f^{\prime}(\neq S)$ , adjacent with $f$ in $G_{i}$ . Let $\tilde{G}_{1}^{*}$ be the plane graph
obtained from $G_{1}^{*}$ by contracting the edge $f^{*}f^{\prime}*$ , where $f^{\prime}*is$ the vertex of $c$;
corresponding to $f^{\prime}$ . (Here, contracting an edge is to delete it and identify its
both endpoints. This definition is different from that for triangulatons.) We
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denote by $[f^{*}f^{\prime}*]$ the vertex of $\tilde{G}_{1}^{*}$ which is the image of the edge $f^{*}f^{\prime}*by$ the
contraction. Observe that $G_{i}$ has no cycle of length 3 which does not bound a
face. Thus, by the relation between the cycle set of a plane graph and the cut
set of its dual, if an edge-set $E\subset E(\tilde{G};)$ separates $[f^{*}f^{\prime}*]$ and $S^{*}$ , then $|E|\geq 4$ .
Moreover, since every vertex of $\tilde{c};-\{[f^{*}f^{\prime}*], S^{*}\}$ has degree 3, any vertex-set
$V\subset\tilde{G}_{1}^{*}-\{[f^{*}f^{\prime}*], S^{*}\}$ separating $[f^{*}f^{\prime}*]$ and $S^{*}$ satisfies $|V|\geq 4$ . Therefore,
by well-known Menger’s Theorem, $\tilde{G}_{1}^{*}$ has at least four pairwise disjoint paths,
say $P_{1},$ $P_{2},$ $P_{3}$ and $P_{4}$ , connecting $[f^{*}f^{\prime}*]$ and $S^{*}$ .

Now consider the system of the four paths in $G_{1}^{*}$ . Then, in $G_{i}^{*},$ $P_{1}\cup P_{2}\cup P_{3}\cup P_{4}$

can be regarded as four paths between $\{f^{*}, f^{\prime}*\}$ and $S^{*}$ , say $P_{1}^{\prime}\cup P_{2}^{\prime}\cup P_{3}^{\prime}\cup P_{4}$ .
Define the subgraph $\mathcal{P}$ of $c$; by

$\mathcal{P}$ $:=P_{1}^{\prime}\cup P_{2}^{\prime}\cup P_{3}^{\prime}\cup P_{4}\cup f^{*}f^{\prime}*$

Suppose that $d_{\mathcal{P}}(f^{*}, S^{*})=r$ , where $d_{T}(a, b)$ denotes the distance in a graph $T$ of
$a,$ $b\in V(T)$ . Since two adjacent faces $x$ and $y$ of $G_{i}$ satisfies $|\phi_{D}:(x)-\phi_{D_{i}}(y)|\leq 1$

and since $\phi_{D}.(S)=0$ , we have that $|\phi_{D}:(f)|\leq r$ . Moreover, for each $v^{*}\in V(\mathcal{P})$ ,
we have that $|\phi_{D}:(v)|\leq d_{\mathcal{P}}(v^{*}, S^{*})$ . Observe that for any $v^{*}\in V(G_{1}^{*})-V(\mathcal{P})$ ,
$|\phi_{D}.(v)|\leq|\phi_{D}.(f)|\leq r$ . Since $G_{i}$ is internally triangulated on the plane with
the outer cycle of length $t$ , we have that $|F(G_{i})|=2n_{i}-t-1\leq 2n_{i}-5$ , by
Euler’s formula. Therefore, we have that

$\sum$ $|\phi_{D_{i}}(v)|=$ $\sum$ $|\phi_{D}:(v)|+$ $\sum$ $|\phi_{D}:(v)|$

$v\in F(c_{:})$ $v^{*}\in V\langle \mathcal{P}$ ) $v’\in V(G:)-V\langle \mathcal{P})$

$\leq\sum_{v\in V\langle \mathcal{P})}d_{\mathcal{P}}(v^{*}, S^{*})+r|V(G_{1}^{*})-V(\mathcal{P})|$

$\leq 4\sum_{j=1}^{r-2}j+3(r-1)+r+r(|F(G_{i})|-1-4(r-2)-3-1)$

$=-2r^{2}+(|F(G_{i})|+1)r+1$

$\leq-2r^{2}+(2n_{i}-4)r+1$

$=-2(r-\frac{n_{i}-2}{2})^{2}+\frac{n_{1}^{2}}{2}-2n_{i}+3$

$\leq\frac{n_{1}^{2}}{2}-2n:+3$ .

$\blacksquare$

Now, we shall show $Th\infty rem3$ .

Proof of Theorem 3. Let $G$ be a planar triangulation with $n$ vertices,
and $\{G_{1}, \ldots, G_{k}\}$ the $\Delta$-decomposition of $G$ such that $G_{k}$ is the outer 3-cycle of
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$G$ . Let $n_{i}:=|V(G_{i})|$ . Then $\sum_{1=1}^{k-1}n_{i}=n-3$ . Suppose that $n_{1}=\cdots=n_{a}=1$

and $n_{i}\geq 3$ for $a+1\leq i\leq k-1$ . By Lemma 13, we have that

$\Phi(D)=\sum_{1=1}^{k}\Phi(D_{i})$

$\leq\sum_{i=a+1}^{k-1}(\frac{1}{2}n^{2}-2n_{i}+3)+1$ .

It is easy to see that if $n_{p}\geq 3$ and $n_{q}\geq 3$ , then

$(\frac{1}{2}n_{p}^{2}-2n_{p}+3)+(\frac{1}{2}n_{q}^{2}-2n_{q}+3)$

Therefore, since $n\geq 7$ , we have that

$<\frac{1}{2}(n_{p}+n_{q})^{2}-2(n_{p}+n_{q})+3$ .

$\Phi(D)\leq\frac{1}{2}(\sum_{:=a+1}^{k-1}n_{i})^{2}-2\sum_{i=a+1}^{k-1}n_{i}+3+1$

$\leq\frac{1}{2}(n-3)^{2}-2(n-3)+3+1$

$=\frac{1}{2}n^{2}-5n+\frac{27}{2}$ .

$\blacksquare$

4. A lower bound in Theorem 3

Now, using Theorem 12, we shall consider the example which gives a lower
bound of $d(G)$ in Theorem 3. See Figure 4, in which the planar triangulation
$G$ with $n$ vertices is partially oriented, and is supposed to have $k$ pairwise edge-
disjoint non-oriented cycles of length 4. Then we have that $n=3k+4$ . For
$l\in\{0,1,2\}$ , adding $l$ vertices into the innermost non-oriented quadrilateral,
we can construct a planar triangulation with $n=3k+4+l$ vertices. Giving
the clockwise orientation to each non-oriented 4-cycle and the outer 3-cycle in
Figure 4, we suppose to obtain $Di(G)$ . Giving the counterclockwise orientations
to them, we obtain $D_{2}^{*}(G)$ . It is easily checked that both of them are $(*)-$

orientations of $G$ . Clearly, $D$ $:=D_{1}^{*}(G)-D_{2}^{*}(G)$ is the union of the non-oriented
cycles in Figure 4 with the clockwise orientation.

Consider the $\Delta$-decomposition of $G$ . Since $G$ is 4-connected, $G$ can be $\Delta-$

decomposed into the two graphs $G_{1}$ and $G_{2}$ , where $G_{2}$ is the outer cycle of
length 3 of $G$ and $G_{1}=G-G_{2}$ . Now consider the depths in $G_{1}$ , in which
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Figure 4

$D_{1}$ is $k$ pairwise edge-disjoint clockwise oriented 4-cycles. Observe that the
innermost quadrilateral has $2+2l$ faces, each of which has depth $k$ , and that the
region bounded by i-th 4-cycle and $(i+1)$ -th 4-cycle (counting from outside) for
$i=1,$

$\ldots,$
$k-1$ has six faces, in which each face has depth $i$ . For $G_{2},$ $D_{2}$ is just

a clockwise oriented 3-cycle, which has depth 1. Thus, we have that

$\Phi(D)=\Phi(D_{1})+\Phi(D_{2})$

$=(6+6\cdot 2+\cdots+6(k-1)+(2+2l)k)+1$

$=3k^{2}+(2l-1)k+1$

$=3(\frac{n-4-l}{3})^{2}-(2l-1)(\frac{n-4-l}{3})+1$

$=\frac{1}{3}n^{2}-3n+\frac{23}{3}+\frac{l-l^{2}}{3}$ ,

where $l\in\{0,1,2\}$ .
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Proposition 14. There enists a planar triangulation $G$ utth $n\geq 7$ vertices
and its two $(*)$ -orientations $D_{1}^{*}(G)$ and $D_{2}^{*}(G)$ such that

$ d(G, D_{1}^{*}, D_{2}^{*})=\lfloor\frac{1}{3}n^{2}-3n+\frac{23}{3}\rfloor$ .
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