THE DIAGONAL FLIPS OF TRIANGULATIONS ON THE SPHERE

By

Hideo Komuro

(Received December 26, 1996)

Abstract

It will be shown that any two triangulations with n vertices on the sphere can be transformed into each other by at most $8 n-54$ diagonal flips if $n \geq 13$ and $8 n-48$ if $n \geq 7$.

1. Introduction

A triangulation G on a closed surface F^{2} is a simple graph embedded on F^{2} so that each face is triangular and any two faces meet along at most one edge. Let $a b c$ and $a c d$ be two triangular faces of G which have an edge $a c$ in common. The diagonal flip of $a c$ is to replace the diagonal $a c$ with $b d$ in the quadrilateral $a b c d$ (see Figure 1). We don't carry out this diagonal flip, not to make multiple edges, if there is an edge $b d$ in G.

Figure 1 Diagonal flip
Classically, Wagner proved in [8] that any two triangulations on the sphere with the same number of vertices can be transformed into each other by a finite sequence of diagonal flips. Also, Dewdney [2], Negami and Watanabe [5] has
shown the same results for the torus, the projective plane and the Klein bottle. The same fact does not hold for other surfaces in general, but Negami [3] has shown that there is a natural number $N=N\left(F^{2}\right)$ for each closed surface F^{2} such that two triangulations G_{1} and G_{2} can be transformed into each other by a finite sequence of diagonal flips if $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \geq N$. Moreover, there are several papers, for example [1] and [4], which include interesting theorems on diagonal flips.

Figure 2 The standard form of triangulations on the sphere
In this paper, we shall focus on how many diagonal flips are needed to transform two triangulations into each other. For example, the proof of Wanger's theorem found in Ore's book [6] on "Four Color Theorem" (also in [4]) gives us an easy algorithm to transform a given triangulation with n vertices on the sphere into the standard form Δ_{n-3}, shown in Figure 2. (The notation Δ_{m} is used for the consistency with [3], [4] and [5], meaning that the triangle contains m vertices inside.) Roughly speaking, his algorithm decreases the degree of vertices so that they form the vertical path $\Delta_{n-3}-\{v, w\}$ afterwards and suggests a quadratic upper bound for the number of diagonal flips with respect to the number of vertices n. However, we shall give a linear upper bound for it as follows:

Theorem 1. Any two triangulations with n vertices on the sphere can be transformed into each other, up to ambient isotopy, by at most $8 n-54$ diagonal fips if $n \geq 13$ and by at most $8 n-48$ diagonal fips if $n \geq 7$.

Unfortunately, we have never known whether or not these bounds are best possible, yet. It seems to be difficult to decide it. For example, Sleator, Tarjan and Thurston [7] have given a very big theory with 3-dimensional hyperbolic geometry and computer experiments to show a precise upper bound for the length of shortest sequences of diagonal flips which transform a given pair of polygons triangulated with only diagonals into each other. In Section 3, we shall
show that the order of our bounds cannot not be improved with respect to the number of vertices n.

2. Proof of Theorem

First, we shall show two lemmas on spherical triangulations. In particular, the first one is a core of our proof of Theorem 1. For the proof of the lemma, we define a constant $d_{G}(v, w)$ by:

$$
d_{G}(v, w)=3 \operatorname{deg} v+\operatorname{deg} w
$$

Lemma 2. Let G be a triangulation with n vertices on the sphere and let v and w be any pair of adjacent vertices of G. Then G can be transformed into Δ_{n-3}, up to ambient isotopy, by $4 n-4-(3 \operatorname{deg} v+\operatorname{deg} w)$ diagonal flips.

Proof. Let $u v w$ be a face sharing the edge $v w$ and let $w, w_{1}, w_{2}, \ldots, w_{l}, v$ be the neighbors of u lying around u in this order. First suppose that $\operatorname{deg} u \geq 4$. If w_{2} is not adjacent to w, then we replace $u w_{1}$ with $w w_{2}$. If w_{2} is adjacent to w, then we replace $u w$ with $v w_{1}$. In these cases, $d_{G}(v, w)$ increases by 1 or 2 , respectively, with one diagonal flip.

Now suppose that $\operatorname{deg} u=3$ and let u_{1} be the unique common neighbour of u, v and w. If $\operatorname{deg} u_{1} \geq 5$, then we shall deform G as follows. Let $u, w, h_{1}, h_{2}, \ldots, h_{k}, v$ be the neighbors of u_{1} lying around u_{1} in this order. If h_{2} is not adjacent to w, then we replace $u_{1} h_{1}$ with $h_{2} w$ and $d_{G}(v, w)$ increases by 1 with this diagonal flip. If h_{2} is adjacent to w, then we replace $u_{1} w$ with $h_{1} u$, and $u u_{1}$ with $h_{1} v$. (Since h_{2} is adjacent to w, v is not adjacent to h_{1}.) In this case, $d_{G}(v, w)$ increases by 2 with two diagonal flips.

The remaining case is that $\operatorname{deg} u_{1}=3$ or 4 . If $\operatorname{deg} u_{1}=3$, then G consists of only four vertices $\left\{u, v, w, u_{1}\right\}$ and is isomorphic to Δ_{1}. If $\operatorname{deg} u_{1}=4$, then there is another common neighbor u_{2} of u_{1}, v and w, different from u. Then we can carry out the same deformation inside the triangle $u_{1} v w$ as we did for the triangle $u v w$.

Repeating these deformations, we shall have a sequece of vertices u, u_{1}, u_{2}, \ldots, u_{n-3} so that they form a path and are adjacent to both v and w. This algorithm stops when $\operatorname{deg} u_{n-3}=3$ and we shall obtain the final form isomorphic to Δ_{n-3}. In this Δ_{n-3}, both v and w have degree $n-1$, and $d_{\Delta_{n-3}}(v, w)=4 n-4$. Since one diagonal flip corresponds to the increment 1 or 2 of $d_{G}(v, w)$ through the above deformations, the total number of those diagonal flips in this algorithm does not exceed:

$$
d_{\Delta_{n-3}}(v, w)-d_{G}(v, w)=4 n-4-(3 \operatorname{deg} v+\operatorname{deg} w)
$$

Thus, the lemma follows.
Obviously, the bigger the value of $3 \operatorname{deg} v+\operatorname{deg} w$ is, the smaller the number of diagonal flips in Lemma 2 is. So we would like to find two adjacent vertices which have large degree.

Lemma 3. Let G be a triangulation with n vertices on a closed surafce and $n \geq 6$. Then, any vertex of degree at least 5 in G is adjacent to a vertex of degree at least 5 unless G is isomorphic to $C_{n-2}+\overline{K_{2}}$ on the sphere.

Proof. Let v be a vertex of degree $k \geq 5$ in G and let u_{1}, \ldots, u_{k} be its neighbors lying around v in this order. Suppose that $\operatorname{deg} u_{i} \leq 4$ for all i. If $\operatorname{deg} u_{3}=3$, then u_{2} and u_{4} are adjacent so that $u_{2} u_{3} u_{4}$ forms a face of G. In this case, $\operatorname{deg} u_{2}=\operatorname{deg} u_{4}=4$, and u_{1} would coincide with u_{5} so that $u_{1} u_{2} u_{4}$ forms a face, which implies that $\operatorname{deg} v \leq 4$, a contradiction. Thus, $\operatorname{deg} u_{i}=4$ for all i. It however follows that u_{i} 's are adjacent to a common vertex v^{\prime} outside the star neighborhood of v. In this case, G consists of the cycle $u_{1} \cdots u_{k}$ with two vertices v and v^{\prime} and is isomorphic to $C_{n-2}+\overline{K_{2}}$ on the sphere.

Furthermore, it can be shown easily that all the vertices of degree at least 5 induce a connected subgraph in any triangulation. Lemma 3 is however enough for our purpose.

Proof of Theorem 1. First, we shall estimate the number of diagonal flips which transform a given triangulation G into the standard form Δ_{n-3}. We would like to find a pair of adjacent vertices u and v so as to maxmize the value of $3 \operatorname{deg} v+\operatorname{deg} w$ in Lemma 2. The unique exception $C_{n-2}+\overline{K_{2}}$ in Lemma 3 can be transformed into Δ_{n-3} by only one diagonal flip. Thus, we may neglect the case that G is isomorphic to $C_{n-2}+\overline{K_{2}}$.

If $n \geq 13$, there is a vertex of degree at least 6 . This follows from the well-known formula

$$
\sum_{i \geq 3}(6-i) V_{i}=12
$$

where V_{i} stands for the number of vertices of degree i. Choose such a vertex as v. By Lemma 3, there is a vertex w of degree at least 5 which is adjacent to v.

Thus, $3 \operatorname{deg} v+\operatorname{deg} w \geq 3 \times 6+5=23$ and the number of diagonal flips does not exceed $4 n-27$.

When $7 \leq n \leq 12, G$ may contain no vertex of degree at least 6 . If all vertices of G had degree at most 4 , then G would consist of at most 6 vertices. Thus, G has a vertex v of degree at least 5 and has another vertex w of degree at least 5 adjacent to v. So at most $4 n-24$ diagonal flips are needed to obtain Δ_{n-3} from
G in this case.
Now consider any two triangulations G_{1} and G_{2} with n vertices on the sphere. Since each of them can be transformed into Δ_{n-3}, G_{1} and G_{2} can be transformed into each other via Δ_{n-3} by twice many diagonal flips as we showed above. Thus, the theorem follows.

In our proof, we have evaluated only the length of a sequece from G_{1} and G_{2} which passes through Δ_{n-3}. The reader will expect a shorter sequence from G_{1} and G_{2}, not via Δ_{n-3}.

3. Lower bounds

In this section, we shall estimate some lower bounds for the number of diagonal flips which transform a given triangulation into another and show that the linear order of the bounds in Lemma 2 and also in Theorem 1 are best possible with respect to the number of vertices n of triangulations.

Let G and G^{\prime} be two triangulations on a closed surface with $V(G)=\left\{v_{1}, \ldots\right.$, $\left.v_{n}\right\}$ and $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and suppose that

$$
\operatorname{deg} v_{1} \leq \cdots \leq \operatorname{deg} v_{n} ; \quad \operatorname{deg} v_{1}^{\prime} \leq \cdots \leq \operatorname{deg} v_{n}^{\prime}
$$

Then we define the degree difference $D\left(G, G^{\prime}\right)$ by:

$$
D\left(G, G^{\prime}\right)=\sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{i}^{\prime}\right|
$$

Theorem 4. Let G and G^{\prime} be two triangulations on a closed surface. Any sequence of diagonal fips which transforms G into G^{\prime} contains at least $\frac{1}{4} D\left(G, G^{\prime}\right)$ diagonal fips.

Proof. Let D_{σ} denote the number of diagonal flips contained in the sequence and suppose that each vertex v_{i} of G corresponds to a vertex $v_{\sigma(i)}^{\prime}$ of G^{\prime} through the sequence. We need at least $\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|$ diagonal flips to adjust the degree of v_{i} while each diagonal flip changes the degrees of four vertices at the same time. Thus,

$$
D_{\sigma} \geq \frac{1}{4} \sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|
$$

Since the permutation σ over $\{1, \ldots, n\}$ is however unknown, we have just

$$
D_{\sigma} \geq \frac{1}{4} \min _{\sigma} \sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|
$$

It is not difficult to show that $\frac{1}{4} D\left(G, G^{\prime}\right)$ attains the right hand of this inequality. Let $d_{i}=\operatorname{deg} v_{i}$ and $d_{i}^{\prime}=\operatorname{deg} v_{i}^{\prime}$, and suppose that $d_{1} \leq \cdots \leq d_{n}$ and $d_{1}^{\prime} \leq \cdots \leq d_{n}^{\prime}$. We can show the following inequality only by a routine.

$$
\left(\left|d_{i}-d_{k}^{\prime}\right|+\left|d_{j}-d_{h}^{\prime}\right|\right)-\left(\left|d_{i}-d_{h}^{\prime}\right|+\left|d_{j}-d_{k}^{\prime}\right|\right) \leq 0 \quad(i<j ; k<h)
$$

For example, if $d_{k}^{\prime} \leq d_{i} \leq d_{h}^{\prime} \leq d_{j}$, then

$$
\left(\left|d_{i}-d_{k}^{\prime}\right|+\left|d_{j}-d_{h}^{\prime}\right|\right)-\left(\left|d_{i}-d_{h}^{\prime}\right|+\left|d_{j}-d_{k}^{\prime}\right|\right)=2\left(d_{i}-d_{h}^{\prime}\right) \leq 0
$$

This implies that

$$
\sum_{i=1}^{n}\left|d_{i}-d_{i}^{\prime}\right| \leq \sum_{i=1}^{n}\left|d_{i}-d_{\sigma(i)}^{\prime}\right|
$$

Thus, the theorem follows.
If we confine a pair of triangulations to the standard form Δ_{n-3} and another on the sphere, we shall obtain a more accurate lower bound, as shown in Theorem 5.

Figure 3 Making three vertices of degree 6
The standard form Δ_{n-3} has the degree sequence ($3,3,4, \ldots, 4, n-1, n-1$) which contains $n-44$'s. On the other hand, we can construct a triangulation G_{n} of sufficiently large size $n=12+3 m$ with degree sequence ($5, \ldots, 5,6, \ldots, 6$) including twelve 5's and $n-126$'s. For example, we can repeat the operation given in Figure 3 to construct G_{n}, starting with the icosahedron. (The numbers in the figure indicate the degrees of vertices.) Then we have:

$$
\begin{aligned}
D\left(\Delta_{n-3}, G_{n}\right) & =2 \cdot(5-3)+10 \cdot(5-4)+(n-14) \cdot(6-4)+2 \cdot(n-1-6) \\
& =4 n-28
\end{aligned}
$$

Thus, we need at least $n-7$ diagonal flips to transform G_{n} into Δ_{n-3}, by Theorem 4. But, the following thorem improve this lower bound to be $2 n-15$.

Theorem 5. Let G be a triangulation with n vertices on the sphere. Then at least $2 n-2 \Delta(G)-3$ diagonal fips are needed to transform G into the standard form Δ_{n-3}, where $\Delta(G)$ denotes the maximum degree of G.

Proof. Let v and w be the vertices of G which have degree $n-1$ in the final form Δ_{n-3} through a sequence of diagonal flips. Since $\operatorname{deg} v, \operatorname{deg} w \leq n-1$ in G at the initial stage, at least $n-1-\operatorname{deg} v$ diagonal flips in the sequence contributes to increasing the degree of v and $n-1-\operatorname{deg} w$ does for w. If a diagonal flip increases the degrees of v and w at the same time, then the resulting diagonal must be $v w$, which is unique. Thus, the two groups of diagonal flips mentioned above include at most one diagonal flip in common and the total sequence includes at least

$$
(n-1-\operatorname{deg} v)+(n-1-\operatorname{deg} w)-1=2 n-(\operatorname{deg} v+\operatorname{deg} w)-3
$$

diagonal flips. Replacing both $\operatorname{deg} v$ and $\operatorname{deg} w$ with $\Delta(G)$, we obtain the lower bound in the theorem.

Figure 4 A triangulation T_{1} on the sphere
Let T_{1} be the triangulation on the sphere given in Figure 4 and let u_{1}, \ldots, u_{h} and v_{1}, \ldots, v_{k} denote the vertices lying horizontally with labels 1 to h and vertically with labels 1 to k, respectively. It is clear that precisely $2(h-1)$ diagonal flips transform T_{1} to the standard form Δ_{n-3} with a vertical path $u u_{1} \cdots u_{h} v_{1} \cdots v_{k}$ inside $u v w$, where $n=h+k+3$. If $h<k$, then we have:

$$
\Delta\left(T_{1}\right)=k+3>\operatorname{deg} v_{1}=h+3
$$

In this case, the number of diagonal flips, $2(h-1)$ is greater than the bound in Theorem 5 by one.

$$
2(h-1)=2 h-2=2 n-2 \Delta\left(T_{1}\right)-2
$$

Now let T_{2} be the triangulations obtained from T_{1} by replacing the diagonal $v w$ with $u v_{k}$. Then $\Delta\left(T_{2}\right)=k+2$. The diagonal flip of $u v_{k}$ transforms T_{2} into T_{1} and the same sequnece as used for T_{1} above transforms it into Δ_{n-3}. So the number of diagonal flips in this sequence is:

$$
2 h-1=2 n-2 \Delta\left(T_{2}\right)-3
$$

This attains the bound for T_{2} in Theorem 5, but its value is bigger than that for T_{1}.

It is easy to construct triangulations with n vertices on the sphere whose maximum degree is 6 for $n \geq 7$, using the previous G_{n} with $n \geq 13$ for example. By Theorem 5, we need at least $2 n-15$ diagonal flips to transform them into Δ_{n-3}. However, we have never known whether or not they attain this bound.

Acknowledgement. The auther wishes to thank Prof. Hikoe Enomoto for his advice on the proof of our main theorem, and Prof. Kiyosi Ando and Prof. Seiya Negami for many conversations and their help.

References

[1] R. Brunet, A. Nakamoto and S. Negami, Diagonal flips of triangulations on closed surfaces preserving specified properties, to appear in J. Combin. Theorey, Ser. B.
[2] A.K. Dewdney, Wagner's theorem for the torus graphs, Discrete Math. 4 (1973), 139-149.
[3] S. Negami, Diagonal flips in triangulations of surfaces, Discrete Math 135 (1994), 225232.
[4] S. Negami and A. Nakamoto, Diagonal transformations of graphs on closed surfaces, Sci. Rep. Yokohama Nat. Univ., Sec. I 40 (1993), 71-97.
[5] S. Negami and S. Watanabe, Diagonal transformatons of triangulations on surfaces, Tsukuba J. Math. 14 (1990), 155-166.
[6] "The four-color problem", Academic Press, New York, 1967.
[7] S.D. Sleator, R.E. Tarjan, and W.P. Thurston, Rotation distance, Triangulations, and Hyperbolic geometry, J. Amer. Math. Soc. 1 (1988), 647-681.
[8] K. Wagner, Bemekungen zum Vierfarbenproblem, J. der Deut. Math. Ver. 46, Abt. 1, (1963), 26-32.

[^0]
[^0]: Department of Computer Science and Information Mathematics University of Electorical Communications, 1-5-1 Chofugaoka, Chofu-Shi Tokyo 182, Japan.
 Email: hide@yebisu.im.uec.ac.jp

