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Abstract. It will be shown that any two triangulations with $n$ vertices on the
sphere can be transformed into each other by at most $8n-54$ diagonal flips if
$n\geq 13$ and $8n-48$ if $n\geq 7$ .

1. Introduction

A triangulation $G$ on a closed surface $F^{2}$ is a simple graph embedded on $F^{2}$

so that each face is triangular and any two faces meet along at most one edge.
Let abc and acd be two triangular faces of $G$ which have an edge $ac$ in common.
The diagonal flip of $ac$ is to replace the diagonal $ac$ with $bd$ in the quadrilateral
abcd (see Figure 1). We don’t carry out this diagonal flip, not to make multiple
edges, if there is an edge $bd$ in $G$ .

Figure 1 Diagonal flip

Classically, Wagner proved in [8] that any two triangulations on the sphere
with the same number of vertices can be transformed into each other by a finite
sequence of diagonal flips. Also, Dewdney [2], Negami and Watanabe [5] has
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shown the same results for the torus, the projective plane and the Klein bottle.
The same fact does not hold for other surfaces in general, but Negami [3] has
shown that there is a natural number $N=N(F^{2})$ for each closed surface $F^{2}$

such that two triangulations $G_{1}$ and $G_{2}$ can be transformed into each other by
a finite sequence of diagonal flips if $|V(G_{1})|=|V(G_{2})|\geq N$ . $Morver$ , there
are several papers, for example [1] and [4], which include interesting theorems
on diagonal flips.

Figure 2 The standard form of triangulations on the sphere

In this paper, we shall focus on how many diagonal flips are needed to trans-
form two triangulations into each other. For example, the proof of Wanger’s
theorem found in Ore’s book [6] on “Four Color Theorem” (also in [4]) gives
us an easy algorithm to transform a given triangulation with $n$ vertices on the
sphere into the standard form $\Delta_{n-3}$ , shown in Figure 2. (The notation $\Delta_{m}$ is
used for the consistency with [3], [4] and [5], meaning that the triangle contains
$m$ vertices inside.) Roughly speaking, his algorithm decreases the degree of ver-
tices so that they form the vertical path $A_{n-3}-\{v, w\}$ afterwards and suggests
a quadratic upper bound for the number of diagonal flips with respect to the
number of vertices $n$ . However, we shall give a linear upper bound for it as
follows:

Theorem 1. Any two $tr\dot{\tau}angulations$ Utth $n$ vertices on the sphere can be
$tmnsf_{07}med$ into each other, up to ambient isotopy, by at most $8n-54$ diagond
flips if $n\geq 13$ and by at most $8n-48$ diagonal flips if $n\geq 7$ .

Unfortunately, we have never known whether or not these bounds are best
possible, yet. It seems to be difficult to decide it. For example, Sleator, Ihrjan
and Thurston [7] have given a very big theory with 3-dimensional hyperbolic
geometry and computer experiments to show a precise upper bound for the
length of shortest sequences of diagonal flips which transform a given pair of
polygons triangulated with only diagonals into each other. In Section 3, we shall
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show that the order of our bounds cannot not be improved with respect to the
number of vertices $n$ .

2. Proof of Theorem

First, we shall show two lemmas on spherical triangulations. In particular,
the first one is a core of our proof of Theorem 1. For the proof of the lemma, we
define a constant $d_{G}(v, w)$ by:

$d_{G}(v, w)=3\deg v+\deg w$

Lemma 2. Let $G$ be a triangulation with $n$ vertices on the sphere and let $v$

and $w$ be any pair of adjacent vertices of G. Then $G$ can be transformed into
$\Delta_{n-3}$ , up to ambient isotopy, by $4n-4-$ ( $3$ deg $v+\deg w$) diagonal flips.

Proof. Let uvw be a face sharing the edge $vw$ and let $w,$ $w_{1},$ $w_{2},$ $\ldots,$ $w_{\ell},v$

be the neighbors of $u$ lying around $u$ in this order. First suppose that deg $u\geq 4$ .
If $w_{2}$ is not adjacent to $w$ , then we replace $uw_{1}$ with $ww_{2}$ . If $w_{2}$ is adjacent to
$w$ , then we replace $uw$ with $vw_{1}$ . In these cases, $d_{G}(v, w)$ increases by 1 or 2,
respectively, with one diagonal flip.

Now suppose that degu $=3$ and let $u_{1}$ be the unique common neigh-
bour of $u,$ $v$ and $w$ . If deg $u_{1}\geq 5$ , then we shall deform $G$ as follows. Let
$u,$ $w,$ $h_{1},$ $h_{2},$

$\ldots,$
$h_{k},$ $v$ be the neighbors of $u_{1}$ lying around $u_{1}$ in this order. If $h_{2}$

is not adjacent to $w$ , then we replace $u_{1}h_{1}$ with $h_{2}w$ and $d_{G}(v, w)$ increases by
1 with this diagonal flip. If $h_{2}$ is adjacent to $w$ , then we replace $u_{1}w$ with $h_{1}u$ ,
and $uu_{1}$ with $h_{1}v$ . (Since $h_{2}$ is adjacent to $w,$ $v$ is not adjacent to $h_{1}.$ ) In this
case, $d_{G}(v, w)$ increases by 2 with two diagonal flips.

The remaining case is that deg $u_{1}=3$ or 4. If deg $u_{1}=3$ , then $G$ consists
of only four vertices $\{u, v, w, u_{1}\}$ and is isomorphic to $\Delta_{1}$ . If $\deg u_{1}=4$ , then
there is another common neighbor $u_{2}$ of $u_{1},$ $v$ and $w$ , different from $u$ . Then we
can carry out the same deformation inside the triangle $u_{1}vw$ as we did for the
triangle $uvw$ .

Repeating these deformations, we shall have a sequece of vertices $u,$ $u_{1},$ $u_{2},$ $\ldots$ ,
$u_{n-3}$ so that they form a path and are adjacent to both $v$ and $w$ . This algorithm
stops when deg $u_{n-3}=3$ and we shall obtain the final form isomorphic to $\Delta_{n-3}$ .
In this $A_{n-3}$ , both $v$ and $w$ have degree $n-1$ , and $d_{\Delta_{\mathfrak{n}-3}}(v, w)=4n-4$ . Since
one diagonal flip corresponds to the increment 1 or 2 of $d_{G}(v, w)$ through the
above deformations, the total number of those diagonal flips in this algorithm
does not exceed:

$d_{\Delta_{n-3}}(v,w)-d_{G}(v, w)=4n-4-(3\deg v+\deg w)$
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Thus, the lemma follows. $\blacksquare$

Obviously, the bigger the value of 3 deg $v+\deg w$ is, the smaller the number
of diagonal flips in Lemma 2 is. So we would like to find two adjacent vertices
which have large degree.

Lemma 3. Let $G$ be a triangulation with $nve\hslash ices$ on a closed survsfce and
$n\geq 6$ . Then, any venex of degree at least 5 in $G$ is adjacent to a vertex of degree
at least 5 unless $G$ is isomorphic to $C_{n-2}+\overline{K_{2}}$ on the sphere.

Proof. Let $v$ be a vertex of degree $k\geq 5$ in $G$ and let $u_{1},$
$\ldots,$

$u_{k}$ be its
neighbors lying around $v$ in this order. Suppose that deg $u_{i}\leq 4$ for all $i$ . If
deg $u_{3}=3$ , then $u_{2}$ and $u_{4}$ are adjacent so that $u_{2}u_{3}u_{4}$ forms a face of $G$ . In
this case, deg $u_{2}=$ deg $u_{4}=4$ , and $u_{1}$ would coincide with $u_{5}$ so that $u_{1}u_{2}u_{4}$

forms a face, which implies that deg $v\leq 4$ , a contradiction. Thus, deg $u_{i}=4$ for
all $i$ . It however follows that $u_{i}’ s$ are adjacent to a common vertex $v^{\prime}$ outside the
star neighborhood of $v$ . In this case, $G$ consists of the cycle $u_{1}\cdots u_{k}$ with two
vertices $v$ and $v^{\prime}$ and is isomorphic to $C_{n-2}+\overline{K_{2}}$ on the sphere. $\blacksquare$

Furthermore, it can be shown easily that all the vertices of degree at least 5
induce a connected subgraph in any triangulation. Lemma 3 is however enough
for our purpose.

Proof of Theorem 1. First, we shall estimate the number of diagonal flips
which transform a given triangulation $G$ into the standard form $\Delta_{n-3}$ . We would
like to find a pair of adjacent vertices $u$ and $v$ so as to mamize the value of
3 deg $v+\deg w$ in Lemma 2. The unique exception $C_{n-2}+\overline{K_{2}}$ in Lemma 3 can
be transformed into $\Delta_{n-3}$ by only one diagonal flip. Thus, we may neglect the
case that $G$ is isomorphic to $C_{n-2}+\overline{K_{2}}$ .

If $ n\geq$ L3, there is a vertex of degree at least 6. This follows from the
well-known formula

$\sum_{:\geq 3}(6-i)V:=12$

where $V_{:}$ stands for the number of vertices of degree $i$ . Choose such a vertex as
$v$ . By Lemma 3, there is a vertex $w$ of degree at least 5 which is adjacent to $v$ .

Thus, 3 deg $v+\deg w\geq 3\times 6+5=23$ and the number of diagonal flips does
not exceed $4n-27$ .

When $7\leq n\leq 12,$ $G$ may contain no vertex of degree at least 6. If all vertices
of $G$ had degree at most 4, then $G$ would consist of at most 6 vertices. Thus, $G$

has a vertex $v$ of degree at least 5 and has another vertex $w$ of degree at least 5
adjacent to $v$ . So at most $4n-24$ diagonal flips are needed to obtain $\Delta_{n-3}$ from
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$G$ in this case.
Now consider any two triangulations $G_{1}$ and $G_{2}$ with $n$ vertices on the sphere.

Since each of them can be transformed into $\Delta_{n-3},$ $G_{1}$ and $G_{2}$ can be transformed
into each other via $\Delta_{n-3}$ by twice many diagonal flips as we showed above. Thus,
the theorem follows. $\blacksquare$

In our proof, we have evaluated only the length of a sequece from $G_{1}$ and $G_{2}$

which passes through $\Delta_{n-3}$ . The reader will expect a shorter sequence from $G_{1}$

and $G_{2}$ , not via $\Delta_{n-3}$ .

3. Lower bounds

In this section, we shall estimate some lower bounds for the number of diag-
onal flips which transform a given triangulation into another and show that the
linear order of the bounds in Lemma 2 and also in Theorem 1 are best possible
with respect to the number of vertices $n$ of triangulations.

Let $G$ and $G^{\prime}$ be two triangulations on a closed surface with $V(G)=\{v_{1},$ $\ldots$ ,
$v_{n}\}$ and $V(G^{\prime})=\{v_{1}^{\prime}, \ldots, v_{n}^{j}\}$ and suppose that

deg $v_{1}\leq\cdots\leq\deg v_{n}$ ; deg $v_{1}^{\prime}\leq\cdots\leq\deg v_{n}^{\prime}$ .

Then we define the degree difference $D(G, G^{\prime})$ by:

$D(G, G^{j})=\sum_{1=1}^{n}$ deg $v_{i}$ –deg $v_{1}^{\prime}|$

Theorem 4. Let $G$ and $G^{\prime}$ be two tnangulations on a closed surface. Any
sequence of diagonal flips which transforms $G$ into $G^{\prime}$ contains at least $\frac{1}{4}D(G, G^{j})$

diagonal flips.

Proof. Let $D_{\sigma}$ denote the number of diagonal flips contained in the sequence
and suppose that each vertex $v_{i}$ of $G$ corresponds to a vertex $v_{\sigma(:)}^{j}$ of $G^{\prime}$ through
the sequence. We need at least deg $v_{i}$ –deg $v_{\sigma(i)}^{\prime}|$ diagonal flips to adjust the
degree of $v_{i}$ while each diagonal flip changes the degrees of four vertices at the
same time. Thus,

$D_{\sigma}\geq\frac{1}{4}\sum_{:=1}^{n}|\deg v_{i}$ –deg $v_{\sigma(i)}^{\prime}|$ .

Since the permutation $\sigma$ over $\{$ 1, $\ldots$ , $n\}$ is however unknown, we have just

$D_{\sigma}\geq\frac{1}{4}\min_{\sigma}\sum_{1=1}^{n}|\deg v_{i}$ –deg $v_{\sigma\langle i)}^{\prime}|$ .
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It is not difficult to show that $\frac{1}{4}D(G, G^{\prime})$ attains the right hand of this in-
equality. Let $d_{i}=\deg v_{i}$ and $d_{i}^{\prime}=\deg v_{1}^{\prime}$ , and suppose that $d_{1}\leq\cdots\leq d_{n}$ and
$d_{1}^{\prime}\leq\cdots\leq d_{n}^{\prime}$ . We can show the following inequality only by a routine.

$(|d_{i}-d_{k}^{\prime}|+|d_{j}-d_{h}^{\prime}|)-(|d_{i}-d_{h}^{\prime}|+|d_{j}-d_{k}^{\prime}|)\leq 0$ $(i<j;k<h)$

For example, if $d_{k}^{\prime}\leq d_{i}\leq d_{h}^{\prime}\leq d_{j}$ , then

$(|d_{i}-d_{k}^{\prime}|+|d_{j}-d_{h}^{\prime}|)-(|d_{i}-d_{h}^{\prime}|+|d_{j}-d_{k}^{\prime}|)=2(d_{i}-d_{h}^{\prime})\leq 0$

This implies that

$\sum_{:=1}^{n}|d_{i}-d_{1}^{\prime}|\leq\sum_{i=1}^{n}|d_{i}-d_{\sigma(i)}^{\prime}|$

Thus, the theorem follows. $\blacksquare$

If we confine a pair of triangulations to the standard form $\Delta_{n-3}$ and another
on the sphere, we shall obtain a more accurate lower bound, as shown in Theorem
5.

Figure 3 Making three vertices of degree 6

The standard form $\Delta_{n-3}$ has the degree sequence $(3, 3, 4, \ldots,4, n-1, n-1)$

which contains $n-44’ s$ . On the other hand, we can construct a triangulation
$G_{n}$ of sufficiently large size $n=12+3m$ with degree sequence (5,...,5,6,...,6)
including twelve $5’ s$ and $n-126’ s$ . For example, we can repeat the operation
given in Figure 3 to construct $G_{n}$ , starting with the icosahedron. (The numbers
in the figure indicate the degrees of vertices.) Then we have:

$D(\Delta_{n-3}, G_{n})=2\cdot(5-3)+10\cdot(5-4)+(n-14)\cdot(6-4)+2\cdot(n-1-6)$

$=4n-28$
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Thus, we need at least $n-7$ diagonal flips to transform $G_{n}$ into $\Delta_{n-3}$ , by
Theorem 4. But, the following thorem improve this lower bound to be $2n-15$ .

Theorem 5. Let $G$ be a $tr\dot{v}ang\tau dation$ with $n$ vertices on the sphere. Then
at least $2n-2\Delta(G)-3$ diagonal flips are needed to transform $G$ into the standard
form $\Delta_{n-3}$ , where $\Delta(G)$ denotes the maximum degree of $G$ .

Proof. Let $v$ and $w$ be the vertices of $G$ which have degree $n-1$ in the final
form $\Delta_{n-3}$ through a sequence of diagonal flips. Since deg $v$ , deg $w\leq n-1$ in $G$ at
the initial stage, at least $n-1$ -deg $v$ diagonal flips in the sequence contributes to
increasing the degree of $v$ and $n-1$ -deg $w$ does for $w$ . If a diagonal flip increases
the degrees of $v$ and $w$ at the same time, then the resulting diagonal must be
$vw$ , which is unique. Thus, the two groups of diagonal flips mentioned above
include at most one diagonal flip in common and the total sequence includes at
least

($n-1$ -deg $v$) $+$ ($n-1$ -deg $w$ ) $-1=2n-(\deg v+\deg w)-3$

diagonal flips. Replacing both deg $v$ and deg $w$ with $\Delta(G)$ , we obtain the lower
bound in the theorem. $\blacksquare$

$u$

Figure 4 A triangulation $T_{1}$ on the sphere

Let $T_{1}$ be the triangulation on the sphere given in Figure 4 and let $u_{1},$
$\ldots,$

$u_{h}$

and $v_{1},$ $\ldots$ , $v_{k}$ denote the vertices lying horizontally with labels 1 to $h$ and
vertically with labels 1 to $k$ , respectively. It is clear that precisely $2(h-1)$
diagonal flips transform $T_{1}$ to the standard form $\Delta_{n-3}$ with a vertical path
$uu_{1}\cdots u_{h}v_{1}\cdots v_{k}$ inside $uvw$ , where $n=h+k+3$ . If $h<k$ , then we have:

$\Delta(T_{1})=k+3>\deg v_{1}=h+3$



122 H. KOMURO

In this case, the number of diagonal flips, $2(h-1)$ is greater than the bound in
Theorem 5 by one.

$2(h-1)=2h-2=2n-2\Delta(T_{1})-2$

Now let $T_{2}$ be the triangulations obtained from $T_{1}$ by replacing the diagonal
$vw$ with $uv_{k}$ . Then $\Delta(T_{2})=k+2$ . The diagonal flip of $uv_{k}$ transforms $T_{2}$ into
$T_{1}$ and the same sequnece as used for $T_{1}$ above transforms it into $\Delta_{n-3}$ . So the
number of diagonal flips in this sequence is:

$2h-1=2n-2\Delta(T_{2})-3$

This attains the bound for $T_{2}$ in Theorem 5, but its value is bigger than that for
$T_{1}$ .

It is easy to construct triangulations with $n$ vertices on the sphere whose
maximum degree is 6 for $n\geq 7$ , using the previous $G_{n}$ with $n\geq 13$ for example.
By Theorem 5, we need at least $2n-15$ diagonal flips to transform them into
$\Delta_{n-3}$ . However, we have never known whether or not they attain this bound.
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