YOKOHAMA MATHEMATICAL
JourNAL VoL. 44, 1997

APPROXIMATE MATRIX ORDER UNIT SPACES

By
ANIL KUuAR KARN*AND R VASUDEVAN

(Recelved November 1, 1995; Revised December 2, 1995)

Introduction. Kadison has shown in [4] that the C*-norm of a self-adjoint
element in a unital C*-algebra is the order unit norm. Generalizing Kadison’s
result to non-unital C*-algebras Ng [ . [6] introduced approximate order unit spaces
and has shown that the C*-norm of a self- ad301nt element in any C*-algebra is
the approximate order unit norm. In [2] . Choi and Effros introduced matrix order
unit spaces and extended Kadison’s result to an arbitrary element of a unital
C*- algebra. We 1ntroduce approximate matrix order unit spaces. It is shown
that any C*-algebra is an approximate matrix order unit space and hence the
C*-norm of any element in an arbitrary C*-algebra is the approx1mate matrix
order unit norm.

In Section I, we define matricially normed spaces (mn spaces) and matrix
order spaces and prove some properties of theses spaces. In Section II, we in-
troduce matricially Riesz normed spaces (mRn spaces) and approximate matrix
order unit spaces (amou spaces) and characterized them. We prove that every
C*-algebra is amou space. We also generalized a theorem due to Klee [5] in the
matrix order context. For (real) ordered vector spaces we have followed [3] and
(11).

Section I

1.1. Throughout this paper, M, m denotes the space of n X m matlnces of
complex numbers. We write M,, for M, , for all n € N, and identify 1t w1th
B(C™), whenever norm or order is considered. '

A complex vector space V, gives rise to a complex vector space M,,(V'), whose
elements are n x n matrices with entries from V, for all n € N. ]Furthermore,
for [a; ;] € M, a.nd [vi,;] € M, n(V) we define

[ 5][vs,5] = [Z ai,k”k,j] and  [v;5][es,5] = [Z ak,j.vi,k]'
k=1 _ k=1 .
so that M,(V) becomes a two-sided M,-bimodule for all n € N. Also, for
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v € Vp(V), w € M, (V) we define

v O
vOw = ( 0 w ) € Mpym(V), n,meN.
If || - ||ln is a (semi) norm on M,(V) for all n € N, we say {|| - |l»} is a matrix
(semi) norm on V.

A metrically (semi) normed space (m(s)n space) is a complex vector space V
together with a matrix (semi) norm {|| - ||} satisfying the following properties

(i) |v®0 llntm =|lvin and

(i) Nlavlalvells <llelillva
If ve My(V),0 € Mp(V), @« € M,, and n,m € N. For 1 < p < oo we say
that m(s)n space (V,{|| - |ln}) is an L? matricially (semi) norm space (LP m(s)n
space) if LP ;|| v® w |B, o=l v |IB + || w ||5, where v € M, (V), w € Mp(V)
and m,n € N.

We say that m(s)n space (V, {|| - ||} is an L* matricially (semi) normed space
(L m(s)n space) if L :|| v ® W [|n4m= max(|| v ||n, || w |lm) where v € M,(V),
w € M,,(V) and m,n € N, [9, 10].

We note that in an m(s)n space (V,{|| - lln}), || @V |ln=|| v ||n if v € Mp(V)
and a € M, is unitary. Furthermore, if v = [v; ;] € Mp(V) then

fvigli <loln < D llver N,
L,k=1
[9], so that
(a) if || - ||; is a norm on V then || - ||, is a norm on M, (V) for all n € N,
(b) if (V,|| - |l1) is complete, then (M, (V),|| - [|n) is complete for all n € N.

1.2. Given complex vector spaces V and W and linear map ¢ : V — W,
we define g : Mo(V) — Mo(W) given by ¢a([vi j]) = [¢(vs,;)] for every [uij] €
M,(V), n € N. Assuming (V,{|| - ||l»}) and (W, {|| - [ln}) to be m(s)n spaces for
a linear map ¢ : V — W we define

| ¢ lles = sup{|l ¢n [[:n €N

and say, ¢ is completely bounded if | ¢ ||cs< 00, @ is completely contractive if
| # lcs< 1, and ¢ is completely isometry if ¢,, is an isometry for all n € N.

1.3. Given a complex vector space V and a dual pair (V, V4), we define, for
each n € N, and [v; j; € Ma(V), [fi,;] € Mn(V9)

(igly i) = D (vigs fui)s

1,j=1
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[2]. Then, (Mp(V), Mn(V9)) is a dual pair for every n € N. We shall call this
duality to be the matriz duality of (V,V9).

In particular, if (V, {|| - ||»}) is an m(s)n space and if (V, || - ||}) is the Banach
dual of (V,|| - ||1), then giving M, (V') the dual norm || - ||, of (Mn(V),]| - |In)
for all n € N we get that (V',{|| - ||'}) is also m(s)n space [9]. If, in addition,
(Vi{ll - lln}) satisfies LP-condition (1 < p < oo) then (V',{|| - ||.}) satisfies
L3-condition ((1/p) + (1/q) = 1) [9]'. (V',{l| - ||.}) will be called the matriz
Banach dual of (V,{]| - |In})-

1.4. A complex vector space with an involution will be called a *-vector
space and the involution will be denoted by “x”.

Given a *-vector space V, we define [v; ;]* = [v};] for every [v; ;] € M, (V)
so that M, (V) is also a x-vector space for all n. The real vector space of all
self-adjoint elements of M, (V) will be denoted by M, (V),, for all n.

A cone in a (real) vector space V is a convex subset C for which IC C C for
every | > 0. It is a well known fact that there is a one to one correspondence
between the family of cones and the set of vector orderings in a given real vector

space [11].

A complex ordered vector space is a x-vector space V together with a cone
V*in V,,.

A matriz ordered space is a %-vector space V together with a cone M, (V)
in M, (V)sq for all n € N and with the following property: if v € M, (V)* and
Y € My e then v* Vy = M,,,(V)* for any n,m € N.

1.5. Given *-vector spaces V and W, and a linear map ¢ : V — W, we
define ¢*(v) = ¢(v*)* for every v € V. Then ¢* is also a linear map of V into
W. We say ¢ is self-adjoint if ¢* = ¢ or equivalently, ¢(V,s) C Wiq.

In general, (¢n)* = (¢*)n, so that if ¢ is self-adjoint, then ¢, is self-adjoint
for every n € N.

For complex ordered vector spaces (V,V+) and (W,W+) a linear map ¢ :
V — W is called positive if it is self-adjoint and ¢(V*+) c W+.

For matrix ordered spaces (V, {M,(V)*}) and (W, {M,(W)*}) a linear map
@ :V — W is called completely positive if ¢,, is positive for all n € N.

1.6. With the natural involution [o4;]* = [@j:] in M, and the natural
cone My}, in (M,)sa, M, is a complex ordered vector space for all n € N
and (C, {M,}'}) is a matrix ordered space. Thus, replacing (W, {M,(W)*}) by
(C,{M;}) it can be easily seen [2] that

(i) algebraic dual of a *-vector V is a x-vector space V*,

(ii) algebraic dual of a complex ordered vector space (V,V+) is a complex
ordered vector space (V*,(V*)*) where (V*)* = {f € (V*)sa : (V)
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2 O}a ’
(iii) algebraic matrix dual of a matrix ordered space (V, {M,(V)*}) is a matrix
ordered space (V*, {M,(V*)*}).

Let us say, for a -vector space V and a dual pair (V, V9), that Vd is self-
adjoint if f* € V¢ whenever f € V4. In this notation, by considering V¢ as a
self-adjoint subspace of V*, V* may be replaced by V¢ in (i), (ii) and (iii) [2].
(V4,{M,(V3)+}) will be called a matriz ordered dual of (V,{ma(V)*}).

For example, let (V, {||- |l»}) be an m(s)n space with a matrix order {M, (V)*}
and suppose that * is an isometry in (M,(V),|| - ||») for all n € N. Then the ma-
trix Banach dual (V',{|| - ||% }) is also a matrix ordered space in the dual matriz
order {Mn(V')*}, and « is an isometry in (Ma(V’), || - |I3) for all n € N. The
triple (V/,{|| - - ln}ts {M (V) t}) is called the matriz ordered Banach dual (or
simple matriz Banach dual, if there is no confusion) of (V,{|| - [ln}, {Mn(V)*}).

1.7. In a matrix ordered space (V,{|| - |ln (V)*}) we defirie the following
notations: o o

(a) V* is called proper if V+ N (=V+) = {0},
(b) V' is called generating if for any v € V there is u € V't such that

(o 2) <m0

(c) V* is called Archimedean if for any v € V,, and some u € V* we have
v € V* whenever ku+v € V* forall k£ > 0. _
(d) V't is called almost- Archimedean if for any v € V and for some u € V+ we

v ) € My(V)* for all k> 0.

have v = 0 whenever ( Iﬂ:
: 1 \ V* ku

1.8. Proposition. In a matriz ordered space (V, {M,(V)*}) the fdllowing
properties hold. . -

(i) Letve V, u eVt and suppose ( :; Z )'e M(V)* , then
e ‘ i0
u v + u v i
( v u ) € Mp(V)" and ( e o ) € M2(V)

for every 8 € [0,2n]. In particular, u=Rv eV, uxQJv e V+. Moreover
: if v="10"*, then

(4 7)emmr
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ifand only ifutv e VY. Thus ifve V' then
(¥ 2) emmy

v
if and only ifu—ve V.
(ii) V* is proper if and only if v = 0 whenever v € V and

( S : ) € My(V)*.

(iii) V'* is generating if and only if for every v € V there are v, vy, v2,v3 € V*
such that

3
v= E ikvk.
k=0

(iv) If V* is proper, then M, (V)" is proper for all n.
(v) If V* is generating then M, (V) is generating for all n. In this case, we
say (V,{M,(V)*}) is positively generated.
(vi) IfV* is almost-Archimedean, it is proper. If V* is proper and Archimedean
it is almost-Archimedean.
Nezt, assume that (V¢, {M,,(V9)*}) is a matriz dual of(V, {M,(V)1}), then
we have
(vi) V't is weakly closed if and only if V* = {v € Vo : f(v) > 0 for every f €
(V9)*}. In this case, V't is Archimedean. Thus, M, (Ve)* is Archimedean
for alln € N.
(viii) If V* is proper, then (V¥)* is proper.
(ix) If V't is proper then (V4)* is generating and V+ is weakly closed then V+
is proper.

Proof. (i) Let v € V and u € V* and suppose that ( ;i Z) € My(V)*.

Then
u v\ _ (0 1\/ u w 0 1 +
(3 0)=(F o) (& 2)(1 o) e
If 6 € [0,27], then

: u ey \ 1 0 \'/ u v 1 0
v(e'“"v* u )=(0 e“’) (v* u)(O e‘o)eMz(V)+'

Next,
*
u v 1/ u v* 01 +
(v* u)+§(v u)(l O)EMz(V)'
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Thus,

_ 1 u Rv 1 +
vomo = dan( 2 ®) (1) e

_ 1. u Rv 1 +
u-—?Rv—-2(1 1)(§Rv u)(—l)ev'

Letting 6 = m/2, we have

( “ i::* ) € My(V)*, as (:j 1:>GM2(V)+,

—1iv

and

so that

(iu* z::) e My(V)*

v

and hence

u Sv ) _1 u W 1 u +
(S}‘v u)_2(iv* u>+2(—z’v u)eMZ(V)'
Thus, as above u £ Qv € V.

If v = v*, then ( : Z ) € M(V)* implies u £ v € V*. Conversely, let

utv eVt withue VY, v € V. Then,

(u 3 ) =%( i )(‘“”’)(1 1“%( 2 )(u—v)(l _1) € My(V)*.

v u

Ifve VY thenu+v € V*. Hence

( : z ) € Mp(V)* ifandonlyifu—veVt.
8 ) € My(V)*. Then by (i) 0 £
Rv e Vt, 0+ Qv € V. Hence Rv = 0 = Qu or equivalently v = 0. Next, let

v = 0, whenever v € V and ( f* g ) € M3(V)* and suppose v € VT for

(ii) Let V't be proper and suppose ( 3*

some v € V,q, then by (i) ( g g ) € M,(V)* and whence v = 0 and V* is

proper.
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(iii) Let V* be generating and suppose v € V. Then there is u € V* such
that ( :* Z ) € Mp(V)*,so by (i), u+ Rv € V*, u+ Qv € V*. Putting
vo = 3(u+Rv), v1 = J(u+ D), vz = L(u — Rv), v3 = L(u — Sv) we get

3
v = Z ikvk,
k=0

where v, € V*,k=0,1,2,3.
Next, to prove the converse of (iii), let v € V and suppose that there are
v € VT £=0,1,2,3, such that

3
v = E z'kvk,
k=0

Then, Rv = vg — v2, Qv = v; — v3, and vg + vy £ RV, v; + v3 = v € V1 so that

v* u —1

('ﬁ v)=%(i>(vo+vz+3‘tv)(ll)+%( 1 )(vo+v2—?Rv)(1 ~1)

+%( _11 )(vl+v3+9§v)(1 1)+%( : )(v1+b3—9v)(1 —1)

€ M(V)*

where u =v; + v, +v3 € VT,

(iv) Proved in [2] as a part of Theorem 4.4.

(v) Assume that V+ is generating. Fix n € N and let v = [v; ;] € M, (V).
Then, for each pair (3, j), 1 <4,j < n, there is [u; ;] € V* such that

( u:vJ 'Ui’j ) c M2(V)+-

Vii Wij

Consider v;,; € Ma 3, with entries 1 at (1,i)th and (2,7 + j)th places and 0
elsewhere for all 7,5 =1,---,n. Then

D ( I )7.-,,- € My(V)*.

i,j=1 ’Ui"j Ui J

Since

n n
— j . +
u; = E Ui, j, uw = E Ui,j € %4
i=1 =1
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fori,j =1,.--,n, we have
n

= znja:u,.a,., E: &b, € My (V)*
=1 ‘ .

where 6; € M, , with entries 1 at (1 z)th place and O elsewhere. In these
notations, we have : '

i,7=1 ’J +J

( ) Z 71,.7 ( u:’J Z‘,J )7&,3 € M2n(V)

u+u v
v* u+u

v 0 _

0 u -
Sincee € M,,(V) and n € N are arbitrary, M,,(V)* is generating for evefyh eN.
(vi) Let V* be almost-Archimedean and suppose ( :* ' g ) € Mzn(_V)"',

Therefore, ( ) € My, (V), for

(o )(u')(l,."on)% (%)@ 1) € My

for some v € V. Since 0 € V* and k0 = O for all k£ > 0, by the hypothesis v = 0.
Hence by (ii) VT is proper. Next, let V* be proper and Archimedean. Suppose

that for some v € V, ( ,::: kvu ) € My(V)* for all k > 0 and a fixed u € V+.

Then by (i) ku £ Rv, ku £ Qv € V* for all £ > 0. Hence, by Archmedean
property, +Rv, Qv € V+. Since V+ is proper, ®v =0 = S‘v whence v =0 so
V* is almost-Archimedean.

(vii) Let V+ be weakly closed. If v € V* then f (v) > 0 for every f € (Vo)*.
Suppose that v ¢ V* with v € V,,. Since V¢ is self-adjoint (V,e)? may be
identified with (V4)s,. Thus, by the Hahn-Banach separation theorem there are
f € (V%),, and a € R such that f(v) < a < f(V1). Since V't is a cone we have
a = 0so that f € (V4)* and f(v) < 0. Hence

= {v € Via: f(v) >0 for all fe (Vd)+}

Next, assume that Vt = {v € V, : f(v) > 0forall f € (Vd)+} Suppose
that v lies in the weak closure of V*. Since V,, is weakly closed, v € V,,. Also
we get a net {y;} in V* such that v; — v weakly. But then for any f € (V¢)*
we have

f) = limf(u) 2 0

so that v € V', by the hypothesis. Thus, V* is weakly closed.
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Next, suppose that V* is weakly closed. Let v € V,, be such that u € |7
ku+v eVt forall k> 0. Let f € (V4)*. Then kf(u)+ f(v) > 0 for all k& > 0.
Since f(u) >0, f(v) € R=C,, and C* = R* is Archimedean, we get f(v) > 0.
Since f € (V9)* is arbitrary and V+ is weakly closed, by the first part of (vii),
v € V* and hence V* is Archimedean. The last part of (vii) follows from the
definition of M,,(V4)* and the second part of (vii), for all n € N. ;

(viii) First, let V* be generating and suppose that +f € (V4)+. Then for
every v € V*, f(v) = 0. Since V* is generating so by (jii) f(v) = 0 for every
v € V whence f = 0. Therefore (V9)t is proper.

To prove the converse, let V+ not be generating. Since V = V,, + iV,, we
have that

(V1)sa = {'u € Vaa : ( ; Z ) € My(V)T for some u € V+}

= {veV,’,a:uﬂ:veV+forsomeu€V+}'

is a proper subspace of V,,. Let v € V,, be such that v & (V1)sa- Then, we can
find f € V¥ such that f(v) # 0 = f((Vi)ea). Since V4 = (VY ga + i(V) o we
may assume that f € (V?),,. Then +f € (VI)*, for V¥ € (V1) sa. ’
Since f(v) # 0, f # 0 and consequently, (V4)* is not proper.
- Finally, using arguments given in the proof (viii), we can prove (ix). O

Section 11

2.1. Let (V,{M,(V)*}) be a positively generated matrix ordered space. A
(semi) norm || - || on V is called a Riesz (semi) norm if for each v € V we have

v = inf{llull:uGV""and ( ;i Z ) eMz(V)+}.
In this case, || v* ||=||v | forallv e V and || v ||<[| v || if 0 < v < w.

A matrix (semi) norm {|| - ||} on V will be called a matriz Riesz (sems)
norm if || - || is a Riesz (semi) norm on M, (V) for every n '€ N. An ( L?-)
matricially Riesz (semi) normed space ( (LP-) mR(s)n space) (1 < p < o) is
an (LP-)m(s)n space (V,{|| - ||n}) together with a matrix order {M,(V)*} such
that (V, {M,(V)}) is positively generated and {|| - ||} is a matrix Riesz (semi)
norm on V. o

2.2, Let (V,{M,(V)}) be a matrix ordered space. For A C V we define

S(A) = {UGV: ( ;i Z ) EMg(V)+forsomeueAﬁV+}.
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If ANV* # @ then S(A) is circled and self-adjoint subset of V. If, in addition,
A is convex then so is S(A). Note that if V* is generating S(V*) = V.

We say, A C V is solid if S(A) = A. In this terminology we have the following
result.

2.3. Lemma. Let (V,{M,(V)*}) be a matriz ordered space. If V* is
generating and || - || is a Riesz (semi) norm on V, then the open unit ball of
(V, || - ) is solid. Conversely, if || - || is a (semi) norm on V and the open unit
ball of (V,|| - ||) is solid, then V* is generating and || - || is a Riesz (semi) norm
onV.

Proof. First, let V* be generating and || - || a Riesz (semi) norm on V. Let
U denote the open unit ball of (V|| - ||). We show that S(U) =U.
Let v € S(U). Then, there is u € U NV such that ( ’; Z ) € My(V)*t.

Thus, by the definition of a Riesz (semi) norm, we have || v [|<|| u |[< 1 so that
. veU. IfveU, wecan find € > 0 such that || v ||< 1 —e. Then thereisu € V*

with || u ||< 1 — €/2 such that ( v ) € My(V)*. Thus v € S(U). Hence,

v
v* u
S{U)="U.
Next, we assume that S(U) = U. We show that V'* is generating and || - ||
is a Riesz (semi) norm on V. Let v € V. Then for any € > 0, (|| v || +€)" v e
U = S(U), so there is u € UN V™ such that

u (vl+o
(qonome 10 ) ey

or equivalently
(Aelrae v ) emor

v* (lwll +e)u

whence V* is generating. Let u; = (|| v || +€)u € V. We get ( :1 : )
1
€ My(V)* with || vy ||<|| v || +€. Thus
. . + u v +
|v|=inf<|lul:u€VT and o u € My(V)™ 5.
v
u

Also if ( ;i > € My(V)* with for any u € V* then for given € > 0,

up = (|ul|+€) lueUnVv?
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and

u (Il +e)~ v
( (Il | +le)‘lv* u ) e My(V)*

so that (|| u || +€)~'v € S(U) = U or equivalently, || v ||<|| u || +¢. Since € > 0

u v

is arbitrary ( o € M,(V)* impies || v ||<|| u || whence

”vllSinf{IIu”:uGV"’ and ( ;i Z ) €M2(V)+}.

Therefore | - || is a Riesz (semi) norm on V, and the lemma is proved. []

2.4. Next theorem shows an important and usefull property of cones in
nR(s)n spaces. This is a generalization of Klee’s theorem [5, 11] in the context
of mR(s)n spaces.

'Theorem. Let (Vi {M(V)*}) be a matriz ordered space and suppose that
| - Il s a Riesz semi norm on V. If V* is || - ||-complete, then V- D is a
Banach space.

Proof. Let V't be || - ||-complete. Suppose {v,} be a Cauchy sequence in
V. Then
lvn = v I = Il va — vm ||

for all n,m € N. Thus {v:} and consequently {Ruv,}, {Sv,} are all Cauchy
sequences in V. Hence we may assume that v, = v} for every n € N. For each
k € N we can find vy, in {v,} such that n; <ny <--- and

1

”v,,,c_,_l—vn,‘” < ok

for all k € N.
Let U denote the open unit ball of (V, | - ||). Then

1 1
Ungyr — Un, € -2—k'U =S (2_kU)
for all k. Thus, for each k € N there is u, € 2=%¥U N V+ such that

U V, — Y,
( k Nk+1 Nk ) € Mz(V)+
Ungy1 — Ung Uk
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or equivalently ux £ (Un,,, — Un,) € VT for all k. Put

P
- Sw v
k=1
for all p € N. Then
‘ » ' 1
| Zptr — Zp 1=l Upsr + -+ uppar || < o

for all r € N so that {z,} is Cauchy in V*. Since V' is complete {z,} converges
in V* so that u = 3 po, ui exists in V*. Also

P , .
(Z uk) £ (Unpyy —Vny) € VF
\k=1 /- - .
for all p. Hence, in particular, |

{u+vnpp —Vny Yooy © VE

Since
(u+vnps — Vny) = (U + Vngpn — Uni) = VUngpr — Ungsrs
{u+vn,,, — 'vm} is Cauchy in V*+. 'Again, using the completeness of V+
Ut Un,,y ~VUn, — v EVT

and hence we get v € V,, such that v,,,, — v for some v € V,a or eqmvalently
vp, — v. Hence (V, || - ||) is complete. [J

2.5. Let (V,{M,(V)*}) be a matrix ordered space. An increasing net
{ethiep in VT is called an approzimate order unit for V if given v € V there

arel € D and o > 0 such that ( ‘:‘ﬁ‘ a”e )e Mp(V)*. If v = v* then by 1.8
l

(i) ( ael a,l:z > € Mp(V)* if and only if ce; £ v € V+. Thus our definition
l
generahzes the definition of an apprommate order unit for real ordered vector
spaces [11}.
Further, note that if V has an appromma.te order unit, then it is pos1t1vely
generated. We have more to say,

2.6. Lemma. Let (V,{M,(V)*}) bea matm ordered space. If V has an
approzimate order unit, then My, (V) has an apprezimate order unit for every
n € N. '
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Proof. Let {e;};cp be an approximate order unit for V. We show that
{el' hep is an approximate order unit for M, (V) for all n € N, where ef =

( j,l : )’ L€ D. Let §; € My, with 1 at (1,3)th place and 0 elsewhere. Then
1

" :
ef =) 8ted; € My(V)*
: i=1 ' '
for every I and {e}'} is an increasing net in M, (V)*. Let v = [vi,;] € M, (V).
Then for each pair (3, j) there are [; ; € D and a; ; > 0 such that
Q;;€Li5 - Vij + -
€ My(V)™+.
( Vi Qijen; ) (V)
Since D is directed, there is I € D such that li; <1 for all z','j =1,---,n. Thus

*. Cveepy
'U'J a"J €

( Qa;jer Vi ) € My(V)t _forall i,j’= 1,---n.

Then usmg techniques of the "proof of 1.8 (v) and piitting |
n n
a = Za;j +"Za,~j >0 -
L=l i=1
we get '
ael’ v ‘ +
( o* ae? ) (S Mzn(V) .

Hence {el'} is an approximate order unit for M, (V). Since n e N is a.fbitra.ry,
the proof is complete. [] o

2.7. Let (V, {Mn(V)*}) be a matrix ordered space, and suppose that V' has
an approximate order unit {e1}iep. For each v € V, we define b

n . | i .
| v ||°= inf {a >0: ( aer v ) € My(V)* for some ! GD}.
‘ v* el . :
Then, || - ||* is a semi norm on V. We show that | - ||° is a Riesz semi norm on

V.
First we note that || ; ||*< 1 for all {.

Now, let v € V. If ( ;i Z ) € My(V)*. Then for any € > 0 there exists
l € D such that

Nul+de o s
( u (nu.u“+<-:)ez)G,Mz“”+
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or equivalently (|| u ||® +€)e; —u € V* by 1.8 (i). Thus
a
(Quieedn o ) emmt

v (Il w [|1* +e€)er

whence || v ||2<|| u ||* +e. Since € > 0 is arbitrary,
[|v|e< inf{ll u|®: ueV*tand ( :'* :i ) € Mz(V)"'}.

keg v
v* kez
Since ke; € V', || ket ||°< k and k >|| v ||® is arbitrary, we have

| vie> inf{ll u|® ueVtand ( : Z ) eM,(V)+}.

Hence || - ||® is a Riesz (semi) norm on V.

| - || is called the approzimate order unit semi norm on V determined by
{ethiep- Thus, an approximate order unit (semi) norm on V is a Riesz (semi)
norm on V. Conversely, we have the following lemma.

Next, let k£ >|| v ||*. Then, thereisl € D such that ( ) € My(V)*.

- 2.8. Lemma. Let (V,{M,(V)*}) be a matriz ordered space and suppose

|| - || be a Riesz (semi) norm on V. Then | - || is an approzimate order unit
(semi) norm on V if and only if the positive part U + of the open unit ball of
(V,|| - ||) is directed upwards. In this case, U + is an approzimate order for V.

(For real case [11] also see [1] and [6].)

Proof. First, let || - || be an approximate order unit norm on V' determined
by an approximate order unit {e;};cp of V. We show that U + is directed up-
wards. Let u;,uz € Ut. Choose € > 0 such that || ug |[< 1—¢, k = 1,2.
Therefore, there exists ar > 0 with || ug || +¢ > ar and [y € D k = 1,2

such that ( okl Uk ) € My(V)* or equvalently axe;, — ux € Mz(V)*,
Uk QK€

for k = 1,2. Since D is directed, there is ! € D such that L, <l <l.Put
u = ae;, where a = max{aj,az}. Then, u € Ut and u; < u,u2 < u. Hence
U+ is directed upwards. Then {u},cy+ is an increasing net in V*. Since || - ||
is a Riesz semi norm we have S(U%) = S(U) = U. Thus given v € V and € > 0
(Il v || +€)~'v € U so that we get a u € U+ such that

u  (lvl+oTty
(onsge T109T) cmn

Hence, U* becomes an approximate order unit for V. Also, then, we get that
| v ]le<|| v ||¢ if || - ||* is the approximate order unit semi norm corresponding to
U+. Since € > 0 is arbitrary, we get || v ||*<| v |
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Next, let || v ||*< k then there is u € U*t and || v ||°< k; < k such that

’:)l:‘ kvu ) € My(V)*. Thus by definition of a Riesz semi norm | v || semi
1

norm || v ||<|| kyu ||< k. Taking infimum over || v ||*< k we have v <] v|®

for all v € V. Therefore, || - ||*=|| - || and consequently || - || is an approximate

order unit semi norm. [J
Remark. U* will be called the canonical approzimate order unit for V.

2.9. A (semi) approximate matrix order unit space ((s) amou space) is an
L=-mR(s)n space (V,{|| - |In}, {Mn(V)*}) in which || - ||, is an approximate
order unit (semi) norm on M, (V) for every n € N.

2.10. Example. Let (V,{M,(V)*}) be a matriz ordered space with an
approzimate order unit. Then V is a (s) amou space.

Proof. Let {e;}iep be an approximate order unit for V. Then by lemma
2.6, {e}'} is an approximate order unit for M, (V)* for every n € N. So by 2.7
we get matrix Riesz semi norm {|| - ||2} on V such that || - ||, is an approximate
order unit semi norm on M, (V) for every n € N. Thus it only remains to show
that (V, {|| - I3}, {Mn(V)*}) is an L®-m(s)n space. For this, fix n,m € N and
let v € Mp(V), w € Mpo(V) and & >|| v || and 8 >|| w ||2,. Then there exist
k < max{a,3} and I € D such that

ket v + ke w +
( v kel ) € M3, (V)* and ( vt ke ) € M (V)™

Then
ken+m VO w ke v / k:e'{“ w
( v* ée w* ke?+m ) = {:,m ( ‘U*l ke{' ) £n,m + n:,m ( w* ke{" Mn,m

€ Maniom (V)

where
I, O 0, O
tm=( g0 oom o ) € Mamamean(*
and
— Om,n Im Om,n Om .
m = ( Oms" Om Omn Im ) € M2m,2n+2m(V) .
Thus

lv@®w [I74m< k < max{a, 8}.
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Taking infimum over o and 3 we get

| v w |5 4m< max{]| v I3, IIwII }-

Conversely, let k > | ve w ||n+,,; Then, there are | € D and k > ky >
| v® w ||, such that '

( ket ™ veow

v* D w* ken+m) € M2ﬁ+2m(V)+‘.

Thus ] o | ‘ .
ket v )\ _ kef™ vew \ . +
( v*  ke} ) _ﬁn’m( v ®w*  kept™ ) am € Man(V)

and similarly

o ke w . +
(5 i) & et
‘Therefo're' ' - _ |
max{HvII ,||'w||°} <k <k

and taking 1nﬁmum over k >|| v EB w ||n+m we get -

| v@w |if4m = max{||v |3, | wllm}-
Next, let a € M,,. First assume that || a ||< 1 so that ac* < I,. Now, if
k >|| v ||2, then there is | € D such that ( kep v ) € My, (V)*. Thus

v* . kep
kao*e} av \ _ [ kaefa* ov
va*  kep va*  kef

_a*O*ke?v a* 0 PR
“( 0 I,,)( v ke?)(‘o In) € Men(V)",
ke av
(av)* kep
Taking infimum over k >|| v ||, we get || av [|3<|| v [In-

Next, let @ € My, @ # 0 and put 8 =|| a ||™* a. Then || Bv I3<| v (7
whence || av ||2<]| a |||| v |3 for every v € Mp(V), @ € M,, as a = 0 is a trivial
case. Since, by the definition of || - |2, || v* ||2=]| v ||2 for all v € M, (V) so that

for efa* = a*e}. Hence, ( ) € My, (V)% so that || av ||n< k.

| ve |la=Il e*v* [IR<ll a* [Ill v* lln=1l a [l v* lI% -
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‘Therefore by the arbitrariness of v € M,,(V), w € M,,(V), a € M, and n,m € N
we conclude that (V, {|| - ||2}, {Mn(V)*}) is an L®-nR(s)n space. O]

Remark. If || - ||{ is a norm, then (V, {|| - [|2}, {M,.(V)*}) is an amou space
following 1.1.

2.11. Now, we come to the main result of this paper. We start with a
historical problem: given a C*-algebra, what can we say about its' norm in terms
of its order structure ? Three partial ansers of this question are already known.
In 1951, Kadison proved in [4] that the C*-norm on the self-adjoint part of any
unital C*-algebra is an order unit norm. Later in 1969 Ng proved in that
the C*-norm on the self-adjoint part of any C*-algebra is an approximate order
unit norm. Order theoretic characterization of the C*-norm on the non-self-
adjoint part of a C*-algebra first appeared in 1977 when Choi and Effros defined
a matrix order unit space [2]. Knowing the fact that every C*-algebra has a
matrix norm [9]; one can deduce, from Choi-Effros’ characterization for matrix
order unit spaces, that the matriz C*-norm on a unital C*-algebra is a matrix
order unit norm. We now prove that the matrix C*-norm of any C*-algebra is
an approximate matrix order unit norm.

2.12. Theorem. Every C*-algebra is an A-mR(s)n space.

Proof. Let A be a C*-algebra. Then for each n € N, M,,(A) is a C*-algebra
and with the corresponding matrix C*-norm, A is an L m(s)n space, [9]. More-
over, noting the fact that the positive part is generating and that the positive
part of the open unit ball of any C*-algebra is directed upwards [8], the theorem
follows from Lemma 2.8, if we show that the C*-norm is a Riesz norm.
 Let a € A with || a l< 1. First assume that a € A,, and let a =
at —a~ where a* and a~ are positive and negative parts of a, so that || a ||=
max{|| a* ||,]| @~ ||}. Thus at,a= € Ut where U™ is the positive parts of the
open unit ball of A. Since U* is directed upwards, we get u € Ut with a* < u,
a” <u. Thenutac At. .

Next, let a € A be arbitrary, with || @ ||< 1 then ( a0
Furthermore | |

SHE I B eI B e

by 1.1. Thus as above there is ( ui z ) € My(A)* with “( ui T ) <1

. o) € M)

such that ,



90 AK. KARN AND R. VASUDEVAN

u; 0 a +
(4 2)=( 2 8)emiar
Uy T U T
<1 1.1 1 =
(x* u2>2 soby 1.1, || ue lI< 1, k 1,2a,nd(z* uz)e
M,(A)* implies that u;,us € A%, so that there is u € U* such that u; < u,
ug < u. Hence

u T 0 a ) _ u rta +
(m* u)i(a* 0>—(x*:+:a* u >€M2(A)'

so by 1.8 (i)

( L ok ) _ ( I et ) € My(A)F

Therfore

u a ) _1 u z+a 1 u -r+a +
(a* u>—2(:c*+a* u >+2<—x*+a* u )GMz(A)'
This implies U C S(U), where U is the open unit ball of A.
We know from (7] that if u € At and a € A with ( :i ) € My(A)*

a
u
then || @ ||<|| u |l. Now, let A € S(U) then there is u € U* such that

( :* Z ) € My(A)*. Hence || a ||<|| u ||< 1 so that a € U and consequently

S(U) c U. Hence | - || is a Riesz norm on A, by Lemma 2.3. [1

Now, ‘
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