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1. Introduction

A well known theorem due to Cohn-Vossen states that total curvature of a connected,
finitely connected, complete and nocompact Riemannian 2- manifold $M$ without boundary
dose not exceed $2\pi\chi(M)$ . Here $\chi(M)$ is the Euler characteristic of $M$ . Busemann discussed
the Cohn-Vossen theorem on Busemann G-surfaces on which he introduced the notion of
the Busemann total excess. He proved in $[B:(43.3)]$ the fundamental relation between the
excess and Euler characteristic of Busemann G-surfaces. The Busemann total excess was
recently discussed on Alexandrov surfaces in [$M$ : Theorem 1.8] with necaesary change for the
notion of total excess and used to define the Gaussian curvature on Alexandrov surfaces. Here
the fundamental relation between the total excess and Euler characteristic of on Alexandrov
surfaces is important.

Since the geometric meaning of total curvature on complete open Riemannian 2-manifold is
investigated in many aspects , it is interesting to study the geometric meaning of total excess
on complete noncompact Alexandrov surfaces. The total excess of Alexandrov surfaces will
play the same role as the total curvature of Riemannian 2-manifolds.

Throughout this note let $X$ be a connected, complete, finitely connected and noncompact
Alexandrov surface without boundary whose curvature is bounded below by $ k>-\infty$ . We
shall study the behavior of Busemann functions on $X$ . As is seen in Riemannian case [$S$ :
Main Theorem] the behavior of Busemann function is controled by the total curvature. It
was proved in [ST: Theorem $A$] that set of all copoints of an arbitrary fixed ray $\gamma$ on $X$ can
be viewed as the cut locus to the point $\gamma(+\infty)$ at infinity and has the structure of a local
tree whose interior consists of a countable union of rectifiable Jordan arcs. Moreover the set
Crit $(F_{\gamma})$ of all critical points of the Busemann function $F_{\gamma}$ for $\gamma$ is contained in the set of all
copoints of $\gamma$ . The structure of cut loci on $X$ was also discussed in [ST].

Our results are stated as follows.

Theorem A Assume that $X$ has one end. If the total excess $c(X)$ of $X$ satisfies

$ c(X)>(2\chi(X)-1)\pi$ ,
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then every Busemann function on $X$ is exhaustion.

In due course of the proof of Theorem $A$ , we obtain the following Corollary. The proof is
essentially the same as that of Theorem $A$ , and omitted there.

Corollary to Theorem A Under the same assumptions in Theorem $A,$ $Crit(F_{\gamma})$ for
every Busemann function $F_{\gamma}$ is bounded.

Theorem B Assume that $X$ has one end. If

$ c(X)<(2\chi(X)-1)\pi$ ,

then every Busemann function on $X$ is non-exhaustion. Note that if $ c(X)=(2\chi(X)-1)\pi$

then such an $X$ admits both exhaustion and non-exhaustion Busemann functions. Such an
example is seen in [$S$ : Example 3].

2. Deflnitions and notations

At a point $p\in X$ the space of direction is denoted by $\Sigma_{p}$ . The $\Sigma_{p}$ equipped with the
angle distance is a circle of length at most $ 2\pi$ . A point $p\in X$ is by definition singular if
and only if the length $L(\Sigma_{p})$ of $\Sigma_{p}$ is less than $ 2\pi$ . It is shown in [OS: Theorem $A$] that
the set of all singuler points on $X$ is countable. We consider a bounded domain $D\subset X$

such that the boundary $\partial D$ of $D$ consists of finite union of geodesic polygons. The class
of all such domains is denoted by $\mathcal{D}(X)$ . We decompose a $D\in \mathcal{D}(X)$ by finitely many
geodesic triangles $\triangle=\{\triangle_{i}\}_{i=1,\ldots,N}$ each triangle is bounding a disk. For such a small
geodesic triangle $\triangle(abc)$ , we set $\epsilon_{0}(\triangle(abc))=A+B+C-\pi$ , where $A,$ $B,$ $Care$ the angles.
Setting $\epsilon(D;\triangle)$ $:=\sum_{i=1}^{N}\epsilon_{0}(\triangle_{i})$ , the funamental relation between the excess and the Euler
characteristic $\chi(D)$ of $D$ is expressed by [$M$ : Theorem 1.8],

$\epsilon(D;\triangle)+\sum_{j=1}^{J}(2\pi-L(\Sigma_{q_{j}}))=2\pi\chi(D)-\sum_{k=1}^{\ell}(\pi-\omega_{k})$ . (1)

Here $q_{1},$
$\ldots,$

$q_{J}$ are all the vertices of $\triangle_{i}s$ lying in $D$ , and $\omega_{1},$
$\ldots,$

$\omega_{l}$ are all the inner angles
at corners of $\partial D$ . Then Machigashira [M;Theorem 2.0] proves that the first term on the left
hand side of (1) is bounded below by $k\cdot Area(D)$ . Let $\Phi_{\delta}(D)$ for $\delta>0$ be the class of all the
simplicial decompositions of $D$ by geodesic triangles such that the maximum circumference
of triangles of each $\triangle\in\Phi_{\delta}(D)$ is less than $\delta$ . We then see that $\lim_{\delta\rightarrow 0,\triangle\in\Phi_{\delta}(D)}\epsilon(D;\triangle)$ and
$\lim_{\delta\rightarrow 0,\triangle\in\Phi_{\delta}(D)}\sum(2\pi-L(\Sigma_{q_{j}}))$ exist, and therefore we define the excess $c(D)$ of $D$ as follows.

$c(D)$ $:=\lim_{\delta\rightarrow 0,\triangle\in\Phi_{\delta}(D)}(\epsilon(D;\triangle)+\sum(2\pi-L(\Sigma_{q_{j}}))$ .

Let $\{D_{k}\}_{k}$ be a monotone increasing sequence in $\mathcal{D}(X)$ such that $\cup D_{k}=X$ . We then have
a sequence $\{c(D_{k})\}_{k}$ of real numbers. The total excess $c(X)$ of $X$ is defined by

$c(X)$ $:=\lim_{k\rightarrow\infty}c(D_{k})$ ,
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where the limit is independent of the choice of $\{D_{k}\}$ . Let $\mathcal{T}$ $:=\{\{\triangle_{i}\}_{i=1}^{\infty}$ ; $\triangle_{i}\cap\triangle_{j}=$

$\phi$ for $i\neq j$} be the set of all small geodesic triangles of $X$ . Then the total excess of
$X$ exists if and only if $\sup_{T}\sum_{i=1}^{\infty}\epsilon(\triangle_{i})+\sum_{x\in X}(2\pi-L(\Sigma_{x}))<+\infty$ .

For a finitely connected, complete and noncompact $X$ with $m$ ends a compact set $C\subset X$ is
called a core of $X$ if $\overline{M\backslash C}$ consists of $m$ unbounded components each of which is homeomorphic
to a tube $ S^{1}\times[0, \infty$ ).
Let $\gamma$ : $[0, \infty$ ) $\rightarrow X$ be a ray. The Busemann function $F_{\gamma}$ : $X\rightarrow R$ for $\gamma$ is defined by
$F_{\gamma}(x)$ $:=\lim_{t\rightarrow\infty}(t-d(x, \gamma(t))),$ $x\in X$ . The right hand side is monotone non-decreasing in $t$

and bounded above by $d(\gamma(O), x)$ . Clealy
$|F_{\gamma}(x)-F_{\gamma}(y)|\leq d(x, y)$ , and hence $F_{\gamma}$ is Lipshitz continuous. A ray $\sigma$ : $[0, \infty$) $\rightarrow X$ is by
definition asymptotic to $\gamma$ iff there exist a monotone divergent sequence $\{t_{j}\}$ and points $\{q_{j}\}$

converging to $\sigma(0)$ such that geodesics joining $q_{j}$ to $\gamma(t_{j})$ converges to $\sigma$ . If $\sigma$ is asymptotic
to $\gamma$ , then $F_{\gamma}o\sigma(t)=F_{\gamma}o\sigma(0)+t,$ $t\geq 0$ , and the converce is true. A point $q\in X$ is by
definition a copoint of $\gamma$ iff it is the starting point of a $mal\dot{n}mal$ asymptotic ray to $\gamma$ . A
function $h$ : $X\rightarrow R$ is said to be an exhaustion if $h^{-1}((-\infty, a$]) is compact for all $a\in R$ .
By definitionh isanonexhaustion if it is not exhaustion. $Apointp\in Xisacriticalpoint$

of $F_{\gamma}$ if and only if there exists for every direction $\xi\in\Sigma_{p}$ a ray $\sigma$ asymptotic to $\gamma$ such
that $\sigma(0)=p$ and $\angle(\xi,\dot{\sigma}(0))\leq\pi/2$ . A point $p\in X$ is called non-critical of $F_{\gamma}$ if it is not a
critical point of $F_{\gamma}$ . If $p\in X$ has the property $ L(\Sigma_{p})\leq\pi$ , then $p$ is a critical point of every
Busemann function.

Now let $X$ have one end and $\gamma$ : $[0, \infty$ ) $\rightarrow X$ a ray. We may choose a core $C$ of $X$ such
that $\gamma(0)\in\partial C$ . Let $U=X-int(C)$ be a tube relative to $C$ . Let $\pi:\tilde{U}\rightarrow U$ be the univer-
sal covering of $U$ and $\pi$ the covering projection,and let $\hat{U}\subset\tilde{U}$ be the fundamental domain
whose boundary consists of two rays $\hat{\gamma}_{1},\hat{\gamma}_{2}$ : $[0, \infty$ ) $\rightarrow\tilde{U}$ and a broken geodesic $\hat{P}$ such that
$\pi\circ\hat{\gamma}_{1}=\pi\circ\hat{\gamma}_{2}=\gamma$ and $\pi(\hat{P})=P=\partial U$ . Let $\hat{d}$ be the distance function on $\hat{U}$ . Any two
points in $\hat{U}$ can be joined by a $\hat{d}$-segment whose length realizes the $\hat{d}$-distance between them.
Let $\Gamma(t)$ for every $t\geq 0$ be the set of all $\hat{d}-$ segment in $\hat{U}$ joining $\hat{\gamma}_{1}(t)$ to $\hat{\gamma}_{2}(t)$ . Namely, each
$\hat{P}(t)\in\hat{\Gamma}(t)$ has length $L(\hat{P}(t))=\hat{d}(\hat{\gamma}_{1}(t),\hat{\gamma}_{2}(t))$ . It follows ffom the $\hat{d}$-distance minimizing
property of $\hat{P}_{t}$ that if $\hat{P}_{t}\cap P=\phi$ for some $t>0$ and some $\hat{P}_{t}\in\hat{\Gamma}_{t}$ , then $\hat{P}_{t^{\prime}}\cap\hat{P}=\phi$ for
all $t^{\prime}>t$ and for all $\hat{P}_{t^{\prime}}\in\hat{\Gamma}_{t^{\prime}}$ . Also, if $\hat{P}_{t}\cap\hat{P}\neq\phi$ for some $t\geq 0$ and some $\hat{P}_{t}\in\hat{\Gamma}_{t}$ , then
$\hat{P}_{t^{\prime}}\cap\hat{P}\neq\phi$ for all $t^{\prime}<t$ and for all $\hat{P}_{t^{\prime}}\in\hat{\Gamma}_{t^{\prime}}$ . If $\hat{P}_{t}\cap\hat{P}=\phi$ , then $P_{t}$ $:=\pi(\hat{P}_{t})$ is a simple
geodesic loop on $X$ at $\gamma(t)$ . Note also that $P_{t}$ is freely homotopic to $P=\pi(\hat{P})$ for any $\hat{P}_{t}$ .
Now we prepare the following lemmas as same as in Riemannian case [ $S$ : Theorem 4.2 and
Theorem 4.3].

Lemma 1 If $\hat{P}(t)\cap\hat{P}\neq\phi$ holds for every $\hat{P}(t)\in\hat{\Gamma}(t)$ and for every $t\geq 0$ , then
$ c(X)\leq(2\chi(X)-1)\pi$ .

Proof. Let $\{t_{j}\}$ be a monotone divergent sequence and $D_{j}$ be a disk domain surrounded
by $\pi(\hat{P}(t_{j}))$ . If $\omega_{j}$ is the inner angle at $\gamma(t_{j})$ of $D_{j}$ , then from (1) we get $c(D_{j})\leq 2\pi\chi(D_{j})-$

$(\pi-\omega_{j})$ . Let $\{C_{j}\}$ be an increasing sequence of cores of $X$ such that $\bigcup_{j=1}^{\infty}C_{j}=X$ . For an
arbitrary given $\epsilon>0$ we find a subsequence $\{t_{k}\}$ of $\{t_{j}\}$ such that $\omega_{k}<\epsilon$ and such that
$\{D_{k}\}$ satisfies $C_{1}$ $:=C,$ $C_{k}\subset D_{k}\subset C_{k+1}\subset D_{k+1}$ . From the assumption that the total excess
exists, we get $ c(X)\leq(2\chi(X)-1)\pi$ . $\square $
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Lemma2 $Assumethatthereexistsat_{0}>0suchthat\hat{P}(t)\cap\hat{P}=\phi forall\hat{P}(t)\in\hat{\Gamma}(t)$ and
for all $t>t_{0}$ . If $g_{\gamma}(t)$ $:=t-\frac{1}{2}L(\hat{P}(t))$ is bounded above on $[0, \infty$), then $ c(X)\leq(2\chi(X)-1)\pi$ .

Proof. Let $\hat{D}(t)\subset\hat{U}$ be the disk domain bounded by $\hat{P},\hat{\gamma}_{1}[0, t]\cup\hat{P}(t)\cup\hat{\gamma}_{2}[0, t]$ . Let
$\hat{\alpha}_{1}(t),\hat{\alpha}_{2}(t)$ be the angle at $\hat{\gamma}_{1}(t),\hat{\gamma}_{2}(t)$ of $\hat{D}(t)$ . Because $g_{\gamma}$ is Lipschitz continuous and
increasing, the first variation formula [OS: Theorem 3.5] implies for almost all $t>0$ ,

$\frac{d}{dt}g_{\gamma}(t)=1-\frac{1}{2}(\cos\hat{\alpha}_{1}(t)+\cos\hat{\alpha}_{2}(t))$ .

From the boundness of $g_{\gamma}$ there exists a divergent sequence $\{t_{j}\}$ such that $g_{\gamma}$ is differentiable
at $t_{j}$ and

$\lim_{j\rightarrow\infty}\hat{\alpha}_{1}(t_{j})=\lim_{j\rightarrow\infty}\hat{\alpha}_{2}(t_{j})=0$ . (2)

Clearly $\{\hat{D}(t)\}_{t>0}$ is monotone increasing in $t$ . Assume tht $\bigcup_{t>0}\hat{D}(t)$ is a proper subset of $\hat{U}$ .
Then $\{\hat{P}(t)\}_{t>0}$ converges to a $\hat{d}$-stright line $\hat{P}_{\infty}$ in $\hat{U}$ . Let $\hat{H}\subset\hat{U}$ be the half plane bounded
by $P_{\infty}$ . Then $c(\hat{H})\leq\wedge 0$ is clear from the discussion in [CV: Satz 2(pl42)]. Setting $H:=\pi(\hat{H})$

and $D(t)$ $:=C\cup\pi(D(t))\subset X$ , that $D(t)$ has only one corner at $\gamma(t)$ , and from (1) and (2)

$\lim_{t\rightarrow\infty}c(D(t))=2\pi\chi(X)-\pi$ .

In particular
$ c(X)=c(H)+c(X\backslash H)\leq(2\chi(X)-1)\pi$ .

If $U_{t>0}\hat{D}(t)=\hat{U}$ , then the proof in this case is essentially contained the previous one. This
complete the proof of Lemma 2. $\square $

3. The behavior of Busemann functions

For an arbitrary fixed $\gamma$ we choose a core $C$ of $X$ and $U$ $:=X\backslash int(C)$ as before. For the first
statement of Theorem A we suppose that $ c(X)>(2\chi(X)-1)\pi$ and that $F_{\gamma}$ is nonaehaustion.
The function $g_{\gamma}$ plays an important role. The contrapositive of Lemmas 1 and 2 then imply
that there is a $t_{0}>0$ such that all the members of $\hat{\Gamma}(t)$ for all $t>t_{0}$ do not intersect $\hat{P}$ and
that $g_{\gamma}$ is unbounded on $[0, \infty$). Setting $\Gamma(t)$ $:=\pi(\hat{\Gamma}(t))$ and $P(t)$ $:=\pi(\hat{P}(t))$ , we see that the
midpoint of $P(t)$ for all large $t$ is the cut point to $\gamma(t)$ along $P(t)$ .

Lemma 3 Assume that there exists a $t_{0}>0$ such that all the segment in $\hat{\Gamma}(t)$ for all
$t>t_{0}$ do not meet $\hat{P}$ . Then we have for every point $x\in P(t)$ and for every $P(t)\in\Gamma(t)$ ,

$F_{\gamma}(x)\geq g_{\gamma}(t)$ , for all $t>t_{0}$ . (3)

Proof. Since $F_{\gamma}$ is l-Lipschitz, we have

1 $F_{\gamma}(x)-F_{\gamma}(\gamma(t))|\leq d(x, \gamma(t))\leq 1/2L(P_{t})$ .
Thus we get $F_{\gamma}(x)\geq t-1/2L(P_{t})=g_{\gamma}(t)$ . $\square $
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Let $\hat{\Omega}(t)\subset\hat{U}$ for large $t$ be the maximal disk domain bounded by two geodesics $\hat{P}^{+},\hat{P}^{-}\in$

$\Gamma(t)$ . Then $\hat{\Omega}(t)$ contains every $\hat{P}\in\hat{\Gamma}(t)$ except $\hat{P}^{\pm}(t)$ . Let $\hat{m}^{\pm}(t)\in P^{\pm}(t)$ be midpoint.
Then $m^{\pm}(t)$ $:=\pi(\hat{m}^{\pm}(t))$ is the cut point to $\gamma(t)$ along $P^{\pm}(t)$ . Set $\Omega(t)$ $:=\pi(\hat{\Omega}(t))$ . From
what we have supposed, there is a constant $c$ and an unbounded sequence $\{q_{j}\}$ in $U$ such that

$F_{\gamma}(q_{j})\leq c$ for $ j=1,2,\ldots$ (4)

Proposition 4 Let $ c(X)>(2\chi(X)-1)\pi$ . Suppose that $X$ admits a nonexhaustion
Busemann function $F_{\gamma}$ satisfying (4) $.Then$ there exists a monotone divergent sequence $\{t_{j}\}_{j}$

such that $q_{j}\in\Omega(t_{j})$ . In particular $F_{\gamma}$ has a local minimum (and of course a critical point of
$F_{\gamma})$ in $\Omega(t_{j})$ .

Proof. From the assumption, for an unbounded sequence $\{q_{j}\}$ , we choose a monotone
divergent sequence $\{t_{j}\}_{j}$ such that $q_{j}\in\Omega(t_{j})$ . From Lemmal and Lemma2, we may assume
that $g_{\gamma}(t_{j})>c$ for all $j$ . By Lemma 3, $F_{\gamma}$ takes value not less than $g_{\gamma}(t_{j})$ on $\partial\Omega(t_{j})$ .
Therfore $F_{\gamma}$ takes a local minimum in $\Omega(t_{j})$ . $\square $

The idea of the proof of Theorem A is as follows. Let $F_{\gamma}$ takes alocal minimum at $x_{j}\in\Omega(t_{j})$

and $\hat{x}_{j}\in\hat{\Omega}(t_{j})$ be such that $\pi(\hat{x}_{j})=x_{j}$ . We choose rays $\hat{\tau}_{j1},\hat{\tau}_{j2}$ : $[0, \infty$) $\rightarrow\hat{U}$ emanating
from $\hat{x}_{j}$ such that $\pi(\hat{\tau}_{ji})=\tau_{ji}$ for every $i=1,2$ is asymptotic to $\gamma$ and such that the half
plane $\hat{H}\subset\hat{U}$ bounded by $\hat{\tau}_{j1}[0, \infty$) $\cup\hat{\tau}_{j2}[0, \infty$ ) contains all the rays from $\hat{x}_{j}$ and asymptotic
to $\hat{\gamma}_{1}$ and $\hat{\gamma}_{2}$ . Let $\varphi_{j}$ be the angle at $\hat{x}_{j}$ of $\hat{H}$ . Setting $\epsilon:=c(X)-(2\chi(X)-1)\pi$ , we derive
a contradiction by constructing an infinite sequence $\{\triangle_{j}\}$ of disjoint geodesic triangles such
that $c(\triangle_{j})>\epsilon/2$ for all $j$ .

Lemma 5 Under th same assumptions as in Proposition 4, there exists a geodesic triangle
$\triangle_{j}$ with vertices at $x_{j},\hat{\gamma}_{1}(s_{j}),\hat{\gamma}_{2}(s_{j})$ such that $c(\triangle_{j})\geq\epsilon/2$ . Here $s_{j}>t_{j}$ is taken sufficiently
large.

Proof. From the choice of $\hat{\tau}_{j1}$ and $\hat{\tau}_{j2}$ we observe that if $\hat{\tau}_{jit}$ for $i=1,2$ and for $t>t_{j}$

is a $\hat{d}$-segment in $\hat{U}$ joining $\hat{x}_{j}$ to $\hat{\gamma}_{i}(t)$ , then $\lim_{t\rightarrow\infty}\hat{\tau}_{jit}=\hat{\tau}_{ji}$ . If $\hat{\alpha}_{ji}(t)$ is the angle at $\hat{\gamma}_{i}(t)$

between $\hat{\gamma}_{i}(t)$ and $\hat{\tau}_{ji}$ , then $\lim_{t\rightarrow\infty}\hat{\alpha}_{ji}(t)=0$ . If $\alpha(t)$ and $\beta(t)are$ the angles at $\gamma(t)$ and $x_{j}$

of the core $C(t)\subset X$ bounded by geodesic biangle $\tau_{j1t}$ $:=\pi(\hat{\tau}_{j1t})$ and $\tau_{j2t}$ $:=\pi(\hat{\tau}_{j2t})$ , then
$\alpha(t)=\hat{\alpha}_{j1}(t)+\hat{\alpha}_{j2}(t)$ and $\lim_{t\rightarrow\infty}\alpha(t)=0$ and $\lim_{t\rightarrow\infty}\beta(t)=L(\Sigma_{x_{j}})-\varphi_{j}=:\beta$ . We then
have
$c(C(t))+(\pi-\alpha(t))+(\pi-\beta(t))=2\pi\chi(X)$ . Setting $ E:=\bigcup_{t>0}(C(t)),andt\rightarrow\infty$ , we have

$ c(E)+\pi-\beta=(2\chi(X)-1)\pi$ (5)

To estimate the total excess of $H$ we choose $\hat{d}$-segments $\hat{Q}_{j}(t)$ joining $\hat{\tau}_{j1}(t)$ to $\hat{\tau}_{j2}(t)$ . Let
$\hat{\theta}_{ji}(t)$ be the angle at $\hat{\tau}_{ji}(t)$ of geodesic triangle $\triangle_{j}^{\wedge}(t)\subset\hat{U}$ bounding a disk and its edges
are $\hat{\tau}_{j1}[0,t],\hat{\tau}_{j2}[0, t]$ and $\hat{Q}_{j}(t)$ . Then we have $ c(\triangle_{j}(t))\wedge=\hat{\theta}_{j1}(t)+\hat{\theta}_{j2}+\varphi_{j}-\pi$ , and clearly
$\hat{H}=\bigcup_{t>0\triangle_{j}(t)}^{\wedge}$ . Setting $ t\rightarrow\infty$ and $H$ $:=\pi(\hat{H})$ , we observe $X=H\cup E$ . In view of
$c(H)=c(X)-c(E)$ and $L(\Sigma_{x_{j}})=\beta+\varphi_{j}$ , we have

$ c(H)=\epsilon+\pi-\beta\geq\epsilon$ . (6)
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Note that $x_{j}$ is a critical point of $F_{\gamma}$ , and hence $\beta\leq\pi$ . Thereore there is a large number
$s_{j}>t_{j}$ such that $\triangle_{j}^{\wedge}(s_{j})$ has its excess

$c(\triangle_{j}^{\wedge}(s_{j}))>\epsilon/2$ .

This completes the proof of Lemma $5.\square $

Proof of Theorem A
Assume that $ c(X)>(2\chi(X)-1)\pi$ . Suppose that $F_{\gamma}$ is nonexhaustion. Then Proposition 4
implies that there exists a divergent sequence $\{x_{j}\}$ of critical points of $F_{\gamma}$ . Lemma 5 implies
that there is an infinite sequence $t\triangle_{k}$ } of geodesic triangles bounding disks such that they
are all disjoint and $c(\triangle_{k})>\epsilon/2$ for all $k$ . This contradicts to the assumption that $X$ admits
total excess.

The following Lemma 6 is useful for the proof of Theorem B.

Lemma 6 If $F_{\gamma}$ is exhaustion, then there exists a $t_{0}>0$ such that every $\hat{P}(t)\in\hat{\Gamma}$ for
every $t>t_{0}$ dose not intersect $\hat{P}$ . Moreover if $\hat{D}(t)$ for $t>t_{0}$ is the domain in $\hat{U}$ bounded
by $P(t),\hat{\gamma}_{1}[0, t],\hat{\gamma}_{2}[0,t]$ and $\hat{P}$ , then $U_{t>to}\hat{D}(t)=U$ .

Proof. From Theorem $B$ in [ST] , there is a set $\mathcal{E}\subset[0, \infty$ ) of measure zero such that
if $t\not\in \mathcal{E}$ then $F_{\gamma}^{-1}(t)$ consists of a finite disjoint union of circles each of which is rectifiable.
So,we choose such a set $\mathcal{E}$ and $t\not\in \mathcal{E}$ form now on. Denote by $B(p, r)$ and $S(p, R)$ the r-
ball and metric r-sphere around $p$ respectively. Because $\lim_{s\rightarrow\infty}S(\gamma(s+t), s)=F_{\gamma}^{-1}(t)$ and
$X$ has one end, we observe that for a sufficiently large $s>>t$ the s-ball $\overline{B}(\gamma(s+t), s)$

is homeomorphic to a cylinder $S^{1}\times[0,1]$ and $S(\gamma(s+t), s)$ has two components pass-
ing through $\gamma(t)$ and $\gamma(2s+t)$ . The component passing through $\gamma(2s+t)$ diverges as
$ s\rightarrow\infty$ . Setting $\hat{F}_{\gamma}^{-1}(t)$ $:=\hat{U}\cap\pi^{-1}(F_{\gamma}^{-1}(t))$ , $\hat{B}(\gamma(t+s), s)$ $:=\hat{U}\cap\pi^{-1}(B(\gamma(t+s), s))$

and $\hat{S}(\gamma(t+s), s)$ $:=\hat{U}\cap\pi^{-1}(S(\gamma(t+s), s))$ , we observe that there are points $\hat{a}_{1},\hat{a}_{2}$ on each
component of $\partial\hat{B}(\gamma(t+s), s)$ such that $\hat{a}_{1}$ is close to $\hat{F}_{\gamma}^{-1}(t)$ and such that $\hat{d}(\hat{\gamma}_{i}(t+s),\hat{a}_{k})=s$

for all $i=1,2$ and for all $k=1,2$ . In view of TheoremB in [ST] we may consider that
each component of $\partial B(\gamma(t+s), s)$ is rectifiable and that the geodesic joining $\hat{\gamma}_{i}(t+s)$ to $\hat{a}_{k}$

for all $i,$ $k=1,2$ is perpendicular to $\partial\hat{S}(\gamma(t+s), s)$ . Clearly four $\hat{d}$-segments joining $\hat{a}_{k}$ to
$\hat{\gamma}_{i}(t+s)$ forms a convex disk domain in $\hat{U}$ Thus we find a $\hat{d}$-segment $\hat{P}(t+s)$ containing
in $\hat{B}(\gamma(t+s), s)$ . This proves the first statement of Lemma 6. The rest of the proof is clear
because $P(t+s)$ $:=\pi(\hat{P}(t+s))\subset X\backslash F_{\gamma}^{-1}([0, t])$ for all sufficiently large $t$ and $s.\square $

Proof of Theorem B Suppose that $X$ admits an $F_{\gamma}$ which is exhaustion. Then Lemma
6 implies that there exists for all sufficientlly large $t$ a geodesic loop $P(t)$ with base point at
$\gamma(t)$ which is ffeely homotopoic to the boundary of a core $C$ . Let $D(t)$ $:=C\cup\pi(\hat{D}(t))$ and $\alpha(t)$

the angle at $\gamma(t)$ of $D(t)$ . Then we have $\bigcup_{t\geq t_{O}}D(t)=X$ and $c(D(t))=(2\chi(X)-1)\pi+\alpha(t)$ .
Therefore we get $ c(X)=\lim_{t\rightarrow\infty}c(D(t))\geq(2\chi(X)-1)\pi$ , a contradiction.
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