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Abstract. In this paper, we prove several fixed point theorems, which are general-
izations of the Banach contraction principle and Kannan'’s fixed point theorem. Further
we discuss a characterization of metric completeness.

1. Introduction

In 1922, Banach [1] proved the following famous fixed point theorem: Let X be
a complete metric space with metric d and let T' be a mapping from X into itself
such that there exists r € [0, 1) with d(T'z, Ty) < rd(z, y) for every x,y € X. Then
T has a unique fixed point. This theorem called the Banach contraction principle is
a very useful tool on nonlinear analysis. Later this theorem is generalized in several
directions. For example, Takahashi [7} . proved a nonconvex minimization theorem
and Clrlc [2] proved a fixed point theorem for a quasi-contraction. Recently, Kada,
Suzuki and Takahashi [3] introduced the concept of w-distance on a metric space
and improved Takahashi’s nonconvex mlnlmlzatlon theorem, Cirié's fixed point
theorem and so on. Suzuki and Takahashi [6] also proved a fixed point theorem for
a weakly contractive mapping, which is a genera.lization of the Banach contraction
principle. On the other hand, Kannan [4] proved the following interesting fixed
point theorem, which is not an extension of the Banach contraction principle: Let
X be a complete metric space with metric d and let T be a mapping from X into
itself such that there exists a € |0, ;) with d(T'z,Ty) < ad(z,Tx) + ad(y, Ty)
for every z,y € X. Then T has a unique fixed point.

In this paper, we prove several fixed point theorems, which are generalizations
of the Banach contraction principle and Kannan'’s fixed point theorem. Further
we discuss a characterization of metric completeness.

2. w-distance

In this Section, we state the definition of w-distance which was introduced by
Kada, Suzuki and Takahashi [3] and then give some Lemmas which are connected
with w-distance.
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Definition ([3]) Let X be a metric space with metric d. Then a function p :
X x X — [0,00) is called a w-distance on X if the following are satisfied:

(1) p(z, 2) < p(z,y) + p(y, 2) for any z,y,z € X;
(2) for any z € X, p(z,:) : X — [0, 00) is lower semicontinuous;

(3) for any & > 0, there exists § > 0 such that p(z,z) < 6 and p(z,y) < § imply
d(z,y) <e.

The metric d is a w-distance on X. Other examples of w-distance are stated in
[3] and [6]. The following two Lemmas generalizing Lemma 1 in [3] are crucial in
the proofs of our theorems.

Lemma 1 ([3]) Let X be a metric space with metric d, let p be a w-distance
on X, let {xn}, {yn} and {z,} be sequences in X and let z,y,z € X. Then the
following hold:

(i) If p(xpn,y) — 0 and p(z,, 2) — 0, then y = z. In particular, if p(z,y) = 0
and p(x,z) = 0, then y=z2;

(ii) if p(Zn,yn) — 0 and p(zn,2) — 0, then {y,} converges to z;

(iii) if p(Zn, yn) — 0 and p(zp, 2,) — 0, then {d(yn, zn)} converges to 0.

Proof. 1t is clear that (iii) = (ii) and (ii) = (i). So, to complete the proof, we
prove (iii). Let € > 0 be given. From the definition of w-distance, there exists
6 > 0 such that p(u,v) < 6 and p(u,w) < 6 imply d(v,w) < &. Choose nop € N
such that p(z,,yn) < 6 and p(z,, z,) < 6 for every n > ny. Then for any n > n,
we have d(yp, 2,) < &. This implies (iii). This completes the proof.

Lemma 2 Let X be a metric space with metric d, let p be a w-distance on X
and let {z,} be a sequence in X. Suppose that

lim sup mln{p(mm ZTm), P(Tm, xn)} 0.
n—00Om>n

Then {z,} is Cauchy. In particular, the following hold:

(i) If im sup p(zn,zm) = 0, then {x,} is Cauchy;
n—=Om>n

(ii) if lim sup p(Zm,zn) =0, then {z,} is Cauchy.
n="0m>n

Proof. Let € > 0 be given. From the definition of w-distance, there exists § > 0
such that p(u,v) < 36 and p(u, w) < 36 imply d(v,w) < £. Choose ng € N such
that sup min{p(z,, Zm), P(Zm,Tn)} < 6 for every n > ny. Let 4,75, k&, 2 be four

m>n

distinct integers with i, j,k,£ > no. Then there exists m € {i, j, k, £} such that
P(Tm, Tn) < 36 for every n € {3, j, k, £} \ {m}. So, we have

diam{z, : n € {i,4,k, £} \ {m}} <e.
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Therefore we have

min{diam{z;, z;, zx} , diam{z;, z;, z,},

diam{z;, T, z,} , diam{z;, zy, z,}} < ¢
for every four distinct integers 4, j, k, £ with 4, j, k, £ > no. So, we have

min{diam{Zn,, Tro+1, Tno+2} » diaM{Tno, Tro+1; Tno+3}s

diam{Zpn,, Tno+2, Tno+3} diam{xno+19xno+2,zno+3}} <e.
Without loss of generality, we may assume that diam{zp,, Tno+1; Tno+2} < €. Put
I={neN:n>no+4,d@pn,, Tn) > 2}.

Then I consists of at most one point. If not, then there exist m,n € I with m # n.
Since

min{diam{Zn,, Tno+1, Tm} , diam{Zny, Tno+1, Tn},

diam{ ey, Tm, Tn} , diam{Zp, 41, Tm, Tn}} <€,
we ha\}e
Min{d(Tnq; Zm ), A&Tnos Tn), ATno, Tm ), ATno+1,Tm)} < €
and hence d(Zny+1,Zm) < €. On the other hand, we have
A(Tno+1; Tm) = A Xpg, Tm) — d(Tngs Trg+1) > 26— =¢€.

This is a contradiction. Therefore we have the desired result.

3. Fixed Point Theorems

In this Section, we discuss some fixed point theorems in complete metric spaces.
We first give the following Theorem, which is essentially proved in [3].

Theorem 1 ([3]) Let X be a complete metric space and let p be a w-distance
on X. Let T be a mapping from X into itself. Suppose that there ezists r € [0, 1)
such that p(Tz,T?z) < rp(z,Tx) for every x € X. Assume that either of the
following holds:

(i) Ify # Ty, then inf{p(z,Tz) + p(z,y) : z € X} > 0;
(ii) if {zn} and {Tz,} converge to y, then y = Ty;
(iii) T is continuous.

Then there exists o € X such that o = Txzo. Moreover, if v = Tv, then
p(v,v) =0.
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Proof. In the case of (i), it is proved in [3]. Let us prove (ii) = (i). Suppose
that inf{p(x,Tx) + p(z,y) : £ € X} = 0. Then there exists {z,} such that
P(2n, T2,) — 0 and p(z,,y) — 0. By Lemma 1, we have Tz, — y. Since
P(zn, T2zn) < P(zn, Tzn) + p(T2n, Tzzn)
< (A+7)p(zn,Tzp) — 0,

by we have T?z, — y again. Put z, = Tz,. Then both {z,} and
{T'z,} converge to y. So we have y = T'y by (ii). This implies (ii) = (i). Finally,
we show (iii) = (ii). Let T be continuous. Further assume that {z,} and {Tz,}
converge to y. Then we have

Ty = T(nli_.rr;o Tp) = T}Lngo Tz, = y.

This completes the proof.
From Theorem 1, we have the following.

Corollary 1 Let X be a complete metric space and let p be a w-distance on X.
Let T be a mapping from X into itself. Suppose that there exists r € [0,1) such
that either (a) or (b) holds:

(a) max{p(T?z,Tx), p(Tz,T?z)} < rmax{p(Tz,z),p(z,Tx)} for every z € X;
(b) p(T?%z,Tx) + p(Tz, T?z) < rp(Tz, x) + rp(T, TT) for every x € X.
Further assume that either of the following holds:
(i) Ify # Ty, then inf {p(z, Tz) + p(Tz,z) + p(z,y) : x € X} > 0;
(ii) if {xn} and {Tx,} converge to y, then y = Ty;
(iii) T is continuous. |

Then there exists xo € X such that xo = Txo. Moreover, if v = Tv, then
p(v,v) = 0.
Before proving it, we prove the following Lemma.

Lemma 3 ([3]) Let X be a metric space with metric d, let p be a w-distance
on X and let a be a function from X into [0,00). Then two functions on X x X
defined as follows are w-distances on X:

(i) q(z,y) = max{a(z), p(z,y)} for every z,y € X;

(i) 9(z,y) = a(z) + p(z,y) for every z,y € X.

Proof. In the case of (i), it is proved in [3]. In the case of (ii), for every z,y, z € X,
we have

= a(z) +p(z,2)
< a(z) + a(y) + p(z,y) + p(y, 2)
q(z,y) +q(y, 2).

q(z, 2)
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Therefore (1) is satisfied. (2) is obvious. We show (3). Let € > 0 be fixed.
Then since p is a w-distance on X, there exists § > 0 such that p(z,z) < § and
p(z,y) < & imply d(z,y) < €. So, assume ¢(z,z) < 6 and ¢(2,y) < 6. Then
p(z,z) < 6 and p(z,y) < 8. Therefore d(z,y) < e.

Proof of In the case of (a), we define ¢; : X x X — [0,00) by
q1(z,y) = max{p(Tz, z), p(z,y)}. In the case of (b), we define g : X x X — [0, 00)

by g2(z,y) = p(Tz,z) + p(x, y). These two functions ¢; and g2 are w-distances by
[Lemma 3. Further we have that q;(Tz, T%z) < rq;(z, Tz) for every x € X and
i =1, 2. The conditions (ii) and (iii) are not connected with w-distance p. In the
case of (i), let y € X be an element with y # Ty. Then we have, for all i = 1,2,

0 % inf{p(z, Tz) + p(Tz,z) + p(z,y) : T € X}

<
< inf{g;(z,Tx) + qi(z,y) : z € X }.
From Theorem 1, we have that there exists o € X with o = Tzo. If v = T',
then for all i = 1,2, ¢;(v,v) = 0 from Theorem 1. This implies p(v,v) = 0.
In general, a w-distance p on X does not satisfy that p(z,y) = p(y, z) for every

z,y € X. Hence, p(T?z,Tz) < rp(Tz,z) differs from p(Tz, T?z) < rp(z, Tx).
So, the following Theorem is different from Theorem 1.

Theorem 2 Let X be a complete metric space with metric d and let p be a w-
distance on X. Let T be a mapping from X into itself. Suppose that there erists
r € [0,1) such that p(T?%z,Tz) < rp(Tx, ) for every x € X. Assume that either
of the following holds:

(i) If {zn} converges to y and {p(Tzy, )} converges to 0, then p(Ty,y) = 0;
(ii) if {zn} and {Tz,} converge to y, then y = va;
(iii) T is continuous.

Then there exists xo € X such that xo = Txo. Moreover, if v = Tv, then
p(v,v) = 0.

Proof. First, we shall show that p(Ty, y) = 0 is equivalent to Ty = y. If p(T'y,y) =
0, we have

p(T%y, Ty) < rp(Ty,y) =0
and
p(T%y,y) < p(T%y, Ty) + p(Ty,y) = 0.
So, we obtain Ty = y by Lemma 1. If Ty = y, we have
p(Ty,y) = p(T?y, Ty) < rp(Ty,y)

and hence p(Ty,y) = 0. Next, we shall show (ii) = (i). Let {z,} be a sequence
in X such that z,, - y and p(Tz,,z,) — 0. Then we have

p(Tz.'z:n, Tmn) < Tp(Txn, z,) — 0

and hence
p(IIQZm Ty) < p(T2$m Tzy)+ p(TTn,z,) — O.
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By Lemma 1|, we have d(Tz,,z,) — 0. From z,, — y, {Tz,} also converges
to y. So, from (ii), y = T'y. This implies (ii) = (i). We have (iii) = (ii) from the
proof of Theorem 1. So, we prove that T has a fixed point in the case of (i). Let
u € X and put u, = T"u for every n € N. Then we have

P(Un+1, Un) < TD(UnyUp—1) < -+ - < 1"p(ug, w)

for every n € N. So, if m > n,

p(um,un) < pum,um-1) + -+ + p(Unt1,un)
< ™ ip(uy,u) 4 -+ rp(ug, w)
rn
< EP(UI,U)-

By Lemma 2, {u,} is a Cauchy sequence. Since X is complete, {u,} converges
to some point zop € X. We also have

P(TUp,un) < r"p(uy,u) — 0.

So, by (i), we have p(T'zo,zo) = 0. Therefore z; is a fixed point of T. This
completes the proof.
The final result of this Section is a generalization of Meir-Keeler’s fixed point

theorem [5].

Theorem 3 Let X be a complete metric space, let p be a w-distance on X and
let T be a mapping from X into itself. Suppose that, for any € > 0, there erists
6 > 0 such that for every z,y € X, p(z,y) < € + 6 implies p(Tx, Ty) < €. Then
T has a unique fized point in X.

Proof. We first show p(Tz, Ty) < p(z,y) for every z,y € X. If not, there exist
z,y € X and £ > 0 such that

p(Tz, Ty) > € > p(z,y).

By the assumption, there exists § > 0 such that for every z,w € X, p(z2,w) < e+6
implies p(T'z, Tw) < €. So, we obtain p(T'z, Ty) < £. This is a contradiction. We
next show

nh_)ngo p(T"z,T"y) =0 for every =z,y € X. (3.1)

In fact, {p(T"z,T™y)} is nonincreasing and hence converges to some real num-
ber r. Assume r > 0. Then there exists § > 0 such that for every z,w € X,
p(z,w) < r+ 6 implies p(Tz, Tw) < r. For such §, we can choose m € N such that
p(T™z, T™y) < r+ 6. So, we have p(T™+1z, T™+1y) < r. This is a contradiction
and hence holds. Let u € X and put u, = T™u for every n € N. From (
3.1) we have nango P(Un, Unt+1) = 0. We shall show that

lim sup p(un, um) = 0. (3.2)

n—00 n<m

Let £ > 0 be arbitrary. Then without loss of generality, there exists 6§ € (0, )
such that for every z,w € X, p(z,w) < € + § implies p(Tz, Tw) < e. For such §,
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there exists ng € N such that p(uy,,uny1) < 6 for every n > mo. Assume that
there exists m > £ > ng such that p(ug, uy,) > 2. Since

p(ul?9ul+1) <e+ o< p(ula Um),
there exists k € N with £ < k < m such that
p(ue, ug) < €+ 6 < p(ug, ug41)-

Then since p(ug, ux) < € + 8, we have p(up41,ur+1) < €. On the other hand, we
have

p(ugsr, uk+1) = Plug, uks1) — P(Ue, uet1)
> e4+6-6
E.

This is a contradiction. Therefore m > n > ng implies p(un, uy) < 2 and hence
holds. From [Lemma 2, {u,} is Cauchy and hence there exists zo € X such
that {u,} converges to zo. Since for z € X, p(z,-) is lower semicontinuous, we
have

lim sup p(un, o) < limsupliminf p(un, um)
n—oo n—oo M—00

< lim sup p(un,um) = 0.

N0 pn<m

So,

limsup p(un, Tzo) < lim p(up_1,2o0) = 0.
n—oo

77— 00

By we have T'zo = zo. From [( 3.1), we obtain
p(2o,Z0) = lim p(T"zo, T"xo) = 0.
n—00

If 2 = Tz, then
p(xo, 2) = lim p(T"zo,T"z) = 0.

So, fromLemma 1, o = z. Therefore a fixed point of T is unique. This completes
the proof.

4. Kannan Mappings

In this Section, we shall discuss fixed point theorems for Kannan mappings
with respect to a w-distance p. Let X be a metric space and let T" be a mapping
from X into itself. Then T is called weakly Kannan or p-Kannan if there exist

a w-distance p on X and o € [O, %) such that either (a) or (b) holds:

(a) p(Tz, Ty) < ap(T'z,x) + ap(Ty,y) for every z,y € X;
(b) p(Tz, Ty) < ap(Tz,x) + ap(y, Ty) for every z,y € X.
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Theorem 4 Let X be a complete metric space. If a mapping T from X into
itself is p-Kannan, then T has a unique fized point ro € X. Further such zg
satisfies p(xo, xo) = 0.

2
p(Tz,Ty) < op(Tz, z) +ap(Ty,y) for every z,y € X. Putting r = i

Proof. In the case of (a), there are a w-distance p and and a € [O, 1 such that

~— e,

we have p(T?zx,Tx) < rp(Tz,z) for every x € X. Assume that z, — y and
p(Tzp, z,) — 0. Then we have

P(Ty,y) < liminfp(Ty,z,)
< liminf{p(Ty, Tzyp) + p(TTn, zn)}
n—oo
< linn_ligf{ap(Ty, y) + ap(Tzp, Tn) + p(TTn, Tn)}

ap(Ty,y)

and hence p(T'y,y) = 0. By Theorem 2, there exists xo € X such that zo = Tz,
and p(xo, ro) = 0. Further a fixed point of T is unique. In fact, if z = T'z, then
p(z,2) = 0 by Theorem 2. So, we have

p(Zo0,2) = p(TZo,T2) < ap(Tzo,Zo) + ap(Tz, 2)
= ap(xo, To) + ap(z, z) = 0.
From we have o = 2. In the case of (b), putting r = Ta_a € [0,1),

we have p(Tz, T?z) < rp(Tz, z) and p(T?z, Tz) < rp(x, Tz) for every z € X. So,
p(T%z, Tz) + p(Tx, T?x) < rp(Tx, x) + rp(z, TX)

for every x € X. Assume that p(zn, Tr,) — 0 and p(zy,y) — 0. Then {Tz,}
converges to y by Lemma 1. So, we have

p(Ty,y) < liminfp(Ty, Te,)
< liminf{ap(Ty, y) + ap(@n, Tn)}
= ap(Ty,y)

and hence p(Ty,y) = 0. Since p(Ty, T?y) < rp(Ty,y) = 0, we have y = T?y by
Lemma 1. So, p(y,Ty) = p(T?y, Ty) < rp(y, Ty) and hence p(y, Ty) = 0. We
also have p(y,y) < p(y, Ty) + p(Ty,y) = 0. So, we have y = T'y from Lemma 1.
Therefore y # Ty implies that

0 < inf{p(z,Tx)+p(z,y) : z € X}
< inf{p(z,Tz) + p(Tz,z) +p(z,y) : x € X}.

By [Corollary 1], there exists o € X such that zo = Tzo and p(zo,z0) = 0. As
in the case of (a), we obtain that a fixed point of T is unique.

A mapping T from a metric space X into itself is called weakly contractive
if there exist a w-distance p on X and r € [0,1) such that p(Tz, Ty) < rp(z,y)

for every z,y € X. We obtain the following.
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Proposition Let X be a metric space with metric d and let T be a weakly con-
tractive mapping from X into itself. Then T is weakly Kannan.

Proof. Since T is weakly contractive, there exist a w-distance p on X and r € [0, 1)
such that p(Tz, Ty) < rp(z,y) for every z,y € X. We first show

1
P(I"2,7) < —=—p(T2,2) and p(z,T"2) < 7—p(#,Ta)

for every x € X and n € N. In fact,

p(T"z,z) < p(T"z, T" 'z)+ p(T" 'z, T" 2%x) + .-+ p(Tz, )
< p(Tz,2) +r"?p(Tz,z) + -+ - + p(T2,T)
1
< —_— .
Similarly we have
p(z,T"z) < p(,Tz)+p(Tz, T22) + -+ + p(T" 'z, T"x)
< p(z,Tx) +rp(z, Tx) + - - 7" p(z, Tx)
1
< .
< =Pz Tr)

We next prove a function § from X into [0, c0) defined by f(z) = k]im p(T*z, x)
— 00

is well-defined and lower semicontinuous. Let z € X be fixed. Take m,n € N

with m > n. Then since p(T™z, z) < p(T™z,T"z) + p(T"z,z) and p(T"z,z) <

p(T"z, T™z) + p(T™z, ), we have

lp(T™z, ) — p(T"z, )| max{p(T™z, T"z), p(T"z, T"x)}

™ max{p(T™ "z, z),p(x, T™ "x)}

r_ r max{p(Tz, z), p(z, Tx)}.

IAIA

IA

1

So, {p(T™x,z)} is a Cauchy sequence and hence §(z) is well-defined for every
z € X. Let y € X be fixed. Take a sequence {z,} such that {z,} converges to y
and {(z,)} converges to some t € [0,00). Then {p(y,z,)} is bounded. In fact,
from

P(y,zn) < ply, T*y) + p(T*y, TFzp) + p(T 2y, z0)

< p(l’.l/, Ty) +r p(y,mn)+P(Tk‘”mm")

for every n,k € N, we have p(y, z,,) < p(ly, Ty) + B(x,,) for every n € N and

hence {p(y,z,)} is bounded. Let £ > 0 be arbltra.ry Then there exists ko € N
it ,

which satisfies p(T*y,y) > B(y) — &, T

every n € N. Let n € N be fixed. Then there exists k1 € N such that k; > ko
and p(T*z,,z,) < B(x,) + . We obtain that

TP Ty) < ¢ and rkop(y, ,,) < € for

p(T*y,z,) < p(Thoy, T*ry) + p(T*ry, T* 2,) + p(T* T, T1)



70

TOMONARI SUZUKI

ko

T
T—PW, Ty) +r°p(y, 20) + Blzn) + £

< e+e+PB(z,)+e
B(zy) + 3e.

IN

So we have
B(y) < p(T*y,y) +e < lirfgiogfp(T’my, Zn) +€ < lim B(zn) +4e =t +4e.

Since ¢ is arbitrary, we have G(y) < t. Therefore 3 is lower semicontinuous. Define
a function ¢ from X x X into [0, 00) by ¢(z,y) = B(z) + B(y). Let us prove that
q is a w-distance on X. (1) and (2) are obvious. To show (3), we let £ > 0 be
arbitrary. Then there exists § > 0 such that p(z,x) < 36 and p(z,y) < 36 imply
d(z,y) < e. Assume that g(z,z) < § and ¢(2,y) < 6. Then B(z) < § and B(y) < 6.
We take k; € N which satisfies p(T*3z,z) < B(z) + 6, p(T*3y,y) < B(y) + 6 and
r*3p(z,y) < 6. Then we have

p(TFz,2) < PB(r)+6<36
and
p(T*z,y) < p(T*z, T*y) + p(T*y,y)
< r*ip(z,y) + 6y) + 6
< 36 _
and hence d(z,y) < e. This implies (3). So, we obta,in that ¢ is a w-distance
on X. Finally, we prove that T" is g-Kannan. Put a = —1-+— € [O ;) Since

B(Tz) = klim p(T*Tz, Tz) < rklim p(T*z, z) = rf(x)
—00 —00

for every x € X, we have

q(Tr,Ty) = ﬁ(Trr)Jrﬁ(Ty)
- 1+
,
i+ B(T )+ ﬂ(w)+ ﬂ(Ty)+ ﬁ(y)

= oq(Tz,r)+ aq(Ty, )

for every z,y € X. This completes the proof.
As a direct consequence of Proposition, we obtain the following characterization
of metric completeness.

Corollary 2 Let X be a metric space. Then the following are equivalent:

(i) X is complete;

(ii) every weakly contractive mapping from X into itself has a fized point in X;
(iii) every weakly Kannan mapping from X into itself has a fized point in X.

Proof. In [6], we have that (i) and (ii) are equivalent. From Theorem 4, we
have that (i) implies (iii). From Proposition, we have that (iii) implies (ii). This
completes the proof.
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5. Appendix

In general, a w-distance p does not necessarily satisfy p(x,y) = p(y,z). So, in
our definition, a mapping T is not necessarily called weakly Kannan even if there

exist a w-distance p and o € [0, %) such that either (c) or (d) holds:

(c) p(Tz, Ty) < ap(zx, Tz) + ap(Ty,y) for every z,y € X;
(d) p(Tz,Ty) < ap(z, Tx) + ap(y, Ty) for every x,y € X.

We know the following Example.

Example Let X = [0,1] C R be a metric space with the usual metric. Define
a w-distance p on X by

9, if =0,
p(z,y) = y—-z, if 0<z<y,
3z — 3y, if x>y

and a mapping T from X into itself by

Ty — 1, if =0,
x/10, if £#0.

Then (c) and (d) hold in the case of a = —;; But T has not a fized point.

Proof. Since a function ¢ : X x X — [0, 00) defined by

y—x, lf T S Y,
T,y) =
9(=y) { 3r — 3y, if z>y

is a w-distance on X, p is also a w-distance on X from [Lemma 3. For every
T,y € X, we have

1 1
P(TO,Ty) = 3-3Ty<3=3p(0,70) < 3p(0,T0) + 3p(Ty,y) and
p(Tz,T0) = 1-Tz<1= %p(TO, 0) < %p(m, Tz) + %p(TO, 0).
If z # 0 and y # 0, then
' 1 3 3 3
Tz, Ty) = 5P 9) < ple -yl < 52+ 159
1 1
< 3P Tz)+ gp(Ty, y)-
We also have p(T'z,x) < p(z, Tz) for every x € X. Therefore
1 1 1 1
p(Tz,Ty) < 5p(z, T7) + 3p(Ty,y) < 3p(2, T2) + 3p(y, Ty)
for every z,y € X and hence (c) and (d) hold. Clearly, T has not a fixed point.

This completes the proof.
However, we have the following.



72

TOMONARI SUZUKI

Theorem 5 Let X be a complete metric space and let T' be a continuous mapping

from X into itself. Suppose that there ezist a w-distance p on X and a € [0, —21—
such that either (c) or (d) holds Then there exists a unique fized point xo € X
of T. Moreover, such xo satisfies p(xg, o) = 0.

Proof. In the case of (c), putting r = I%Q— € [0, 1), from p(T'z, T?z) < ap(z, TT)+
ap(T?z,Tz) and p(T%z, Tz) < ap(Tz, T?*z) + ap(Tz,z), we have

p(T%z, Tz) + p(Tz, T?z) < rp(Tz, z) + rp(z, TZ)

for every z € X. So, from , We prove the desired result. In the case
of (d), we have p(T'z, T?z) < rp(z, Tr) for every x € X. Therefore from Theorem
1, we prove the desired result. This completes the proof.
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