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Abstract. We study the Kervaire classes of tangential normal maps for the lens space
when the order of the fundamental group is a multiple of four. We obtain the vanishing
of the Kervaire classes upto certain dimension. The method used here is the relation
of the secondary cohomology operation corresponding to the element $h_{0}^{2}h_{2}(=h_{1}^{3})$ in the
cohomology of the mod 2 Steenrod algebra.

1. Introduction and statement of results

Let $M$ be a smooth manifold and let $f$ : $M\rightarrow F/O$ be a normal map. The
surgery obstruction for $M=CP^{n}$ was studied by Stolz [7]. His main result was to
show that when $n$ is odd, the Kevaire surgery obstruction of a tangential normal
map $f$ : $CP^{n}\rightarrow SF$ vanishes. The analogous result for a real projective space
$RP^{n}$ was given in [4].

We shall denote by $L^{2n-1}(4m;q_{1}, q_{2}, \ldots, q_{n})$ the lens space which is the quo-
tient of the $(2n-1)$-dimensional sphere $S^{2n-1}=\{(z_{1}, z_{2}, \ldots, z_{n})\in C^{n}|\sum|z_{k}|^{2}=$

$1\}$ under the free periodic action of order $4m$ , $(z_{1}, z_{2}, \ldots , z_{n})\mapsto(\omega^{q_{1}}z_{1},\omega^{q_{2}}z_{2},$ $\ldots$ ,
$\omega^{q_{n}}z_{n})$ , where $\omega=\exp(\pi\sqrt{-1}/2m)$ and $(q_{k}, 4m)=1(k=1,2, \ldots,n)$ . We shall
simply write $L^{2n-1}(4m)$ instead of $L^{2n-1}(4m;q_{1}, q_{2}, \ldots , q_{n})$ since the choice of
$q_{k}’ s$ is not important in this paper.

A tangential normal map with target space $L^{2n-1}(4m)$ is represented by a map
$f$ : $L^{2n-1}(4m)\rightarrow SF$ where $SF$ is the H-space of base point preserving degree
one maps $ s\infty\rightarrow s\infty$ . We shall denote by $k_{2}:+1-2(i\geq 1)$ the universal smooth
Kervaire class in $H^{2-2}(F/O):+1$ Here and throughout this paper, all cohomology
coefficients are $Z/2$ and will be omitted.These classes are characterized by Sul-
livan’s characteristic variety formula of the Kervaire invariant for a normal map
$g:M\rightarrow F/O$ in general

$c(g)=(V(M)^{2}\sum_{i\geq 1}g^{*}(k_{2^{i+1}-2}))[M]$
,
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where $V(M)$ is the total Wu class of $M$ .
Let $\lambda$ : $SF\rightarrow F/O$ be the natural projection. Our main results are the

following.

Theorem I. Let $f$ : $L^{2n-1}(4m)\rightarrow SF$ be a tangential normal map $n\geq 3$ . Then
$f^{*}\lambda^{*}k_{2}:+1-2$ vanishes if 3 $\cdot 2^{i-1}\leq n$ holds.

Theorem II. For any tangential normal map of $L^{2n-1}(4m)(n\geq 3)$ , its surgery
obstruction vanishes unless $n$ is a power of 2.

2. Universal Kervaire classes and secondary cohomology opera-
tions

Let us recall some facts concerning the characterization of universal smooth
Kervaire classes from the viewpoint of secondary cohomology operations. First
we shall explain the spaces and maps that appear in the diagram below.

$\overline{BS}F$
$\rightarrow$ $PK$

$\Sigma SF$
$\rightarrow^{h}$

$BSF\downarrow\tilde{p}$

$\rightarrow^{w}$

$ K\downarrow$

$\Sigma(F/O)\downarrow\Sigma\lambda$

Here $K$ is the product of Eilenberg-McLane spaces $\prod_{i\geq 2}K(Z/2,i)$ and $w$ classifies
the Stiefel-Whitney class $w_{i}$ for each $i\geq 2$ . The fibration $\tilde{p}:B\overline{S}F\rightarrow BSF$ is the
pull-back of the canonical path fibration $PK\rightarrow K$ via $w$ . The map $h$ : $\Sigma SF\rightarrow$

BSF classifies the fibration over $\Sigma SF$ with characteristic map $id$ : $SF\rightarrow SF$.
Let $\tilde{\gamma}=\tilde{p}^{*}\gamma$ be the pull-back of the universal spherical fibration $\gamma$ over $BSF$.
The Thom class of $\tilde{\gamma}$ will be denoted by $U(\tilde{\gamma})$ . The main results of [3] can be
summarized as follows (see also [6]).

Theorem ([3]) a) Let $\eta$ be a stable spherical fibration with vanishing Stiefel-
Whitney classes. Then $\phi_{r,r}(U(\eta))$ is defined with total inderminacy zero. In
particular, there exists a unique element $e_{r+1}$ in $H^{2^{\tau+1}-1}(B\overline{S}F)$ with $e_{r+1}\cup U(\tilde{\gamma})=$

$\phi_{r,r}(U(\tilde{\gamma}))$ . Here, $\phi_{r,r}$ is the Adams’ secondary cohomology operation ([1]) dual
to $h_{r}^{2}$ .
b) There exists a unique primitive element $\epsilon_{r+1}\in H^{2^{r+1}-1}(BSF)$ with the prop-
erties $\tilde{p}^{*}(\epsilon_{r+1})=e_{r+1}$ and $h^{*}(\epsilon_{r+1})=\Sigma\lambda^{*}(\Sigma k_{2^{f}+\iota-2})$ .

3. Proof of Theorems

We begin with the following lemma.

Lemma. $Sq^{1}H^{4}(B\overline{S}F)=0$ .



ON THE KERVAIRE CLASSES OF TANGENTIAL 57

Proof Recall that $H^{*}(B\overline{S}F)\cong C\otimes H^{*}(B\overline{S}O)$ , where $C=Z/2\square _{H(BSO)}H^{*}(BSF)$

is the exterior algebra ([2],[3],[5]), and BSO is the fiber of the map $ w:BSO\rightarrow$

$K$ , which classifies $\sum_{i\geq 2}w_{i}$ . In dimensions less than 5, $C$ is additively gener-
ated $bye_{0,1}$ and $e_{1,1}=Sq^{1}e_{0,1}$ with dim $e_{0,1}=3$ . We know that $H^{*}(B\overline{SO})=$

$Z/2$ [$u_{n,I}|n\geq 2,$ $I$ : admissible, $0<e(I)<n$], with dim $u_{n,I}=|I|+n-1$ .
Hence the generators of $H^{4}(B\overline{S}F)areSq^{1}e_{0,1}\otimes 1,1\otimes u_{2,(1)}^{2},$ $1\otimes u_{3,(2)}$ and
$1\otimes u_{4,(1)}$ . Since the inclusion of the fiber $i$ : $\Omega K\rightarrow B\overline{S}O$ induces an injec-
tive map $i^{*}$ : $H^{*}(\overline{BS}O)\rightarrow H^{*}(\Omega K),withi^{*}(\tau_{h,I})=Sq^{I}\iota_{n-1}$ , these generators
are annihilated by $Sq^{1}$ . This completes the proof of Lemma.

The main point of Theorem I is based on the following proposition. Recall
that the Adem relation $Sq^{2}Sq^{2}+Sq^{3}Sq^{1}=0$ defines the secondary cohomology
operation $\phi_{1,1}$ .
Proposition. Let $e_{2}$ be the secondary characteristic class in $H^{3}(\overline{BS}F)$ associated
to the Adem relation $Sq^{2}Sq^{2}+Sq^{3}Sq^{1}=0$ . Then we have $Sq^{2}e_{2}=0$ mod zero
indeterminacy.

Proof Consider the bar resolution $B(A)$ of $Z/2$ over the mod 2 Steenrod algebra
$A([1])$

$d-+\iota B(A)_{s}\rightarrow d\ldots-d_{3}B(A)_{2}\underline{d}3B(A)_{1}\underline{d};B(A)_{0}=A\rightarrow eZ/2\rightarrow 0$ ,

where $B(A)_{s}=A\otimes\overline{B}(A)_{s},\overline{B}(A)_{s}$ is the s-fold tensor product of $ I(A)=Ker(\epsilon$ :
$A\rightarrow Z/2)$ and the differential is given by

$d_{s}(a[a_{1}|a_{2}|\ldots|a_{s}])=aa_{1}[a_{2}|\ldots|a_{s}]+\sum_{i=1}^{s-1}a[a_{1}|\ldots|a_{i}a_{i+1}|\ldots|a_{s}]$ .

Adams defined a map $\theta$ : Ker $d_{s}\rightarrow Tor_{s+1,*}^{A}(Z/2, Z/2)$ by $\theta(z)=[1\otimes_{A}z^{\prime}]$ , where
$z^{\prime}\in B(A)_{s+1}$ satisfies $d_{s+1}(z^{\prime})=z$ . Take the following three elements in Ker $d_{1}$

$z_{1}$ $=$ $Sq^{1}[Sq^{1}]$

$z_{2}$ $=$ $Sq^{2}[Sq^{2}]+Sq^{3}[Sq^{1}]$

$z_{3}$ $=$ $Sq^{1}[Sq^{4}]+Sq^{4}[Sq^{1}]+Sq^{2}Sq^{1}[Sq^{2}]$

They have inverse images in $B(A)_{2}$ :

$z_{1}^{\prime}$ $=$ $[Sq^{1}|Sq^{1}]$

$z_{2}^{\prime}$ $=$ $[Sq^{2}|Sq^{2}]+[Sq^{3}|Sq^{1}]$

$z_{3}^{\prime}$ $=$ $[Sq^{1}|Sq^{4}]+[Sq^{4}|Sq^{1}]+[Sq^{2}Sq^{1}|Sq^{2}]$

It is easy to verify that the elements $z_{1},$ $z_{2}$ , and $z_{3}$ define secondary cohomology
operations $\phi_{0,0},$ $\phi_{1,1}$ and $\phi_{0,2}$ respectively. These elementsenjoy the relation

$Sq^{4}z_{1}+Sq^{2}z_{2}+Sq^{1}z_{3}=0$ .
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In fact if we put $z=Sq^{4}z_{1}^{\prime}+Sq^{2}z_{2}^{\prime}+Sq^{1}z_{3}^{\prime}$ , $z$ is in Ker $h$ and $\theta(z)$ is dual to
$h_{0}^{2}h_{2}=h_{1}^{3}$ . By Theorems 3.7.1 and 3.7.2 of [1], we get the relation

$Sq^{4}\phi_{0,0}(U(\tilde{\gamma}))+Sq^{2}\phi_{1,1}(U(\tilde{\gamma}))+Sq^{1}\phi_{0,2}(U(\tilde{\gamma}))\equiv 0$

modulo indeterminacy $Q=Sq^{4}Q_{1}+Sq^{2}Q_{2}+Sq^{1}Q_{3}$ where $Q_{i}$ is the total in-
determinacy of the secondary operation defined by $z_{i}(i=1,2,3)$ . The first two
indeterminacies $Q_{1}$ and $Q_{2}$ vanish since $z_{1}$ and $z_{2}$ are of the form $\sum Sq^{a_{J}}[Sq^{b_{j}}|$

with $a_{j}\geq b_{j}$ . $Q_{3}$ is contained in ${\rm Im} Sq^{1}+{\rm Im} Sq^{4}+{\rm Im} Sq^{2}Sq^{1}$ . Therefore $Q$ is con-
tained in ${\rm Im} Sq^{5}+{\rm Im} Sq^{3}Sq^{1}$ . But since $Sq^{5}(U(\tilde{\gamma}))=0$ and BSF is l-connected,
$Q$ vanishes. In the above relation, it is clear that $Sq^{4}\phi_{0,0}(U(\tilde{\gamma}))=0$, and by
Lemma $Sq^{1}\phi_{0,2}(U(\tilde{\gamma}))$ vanishes.These arguments show $thatSq^{2}\phi_{1,1}(U(\tilde{\gamma}))=0$

with zero indeterminacy. This is equivalent to $Sq^{2}(e_{2}\cup U(\tilde{\gamma}))=0$ and we get our
assertion.

Proof of Theorem $I$. Let $f$ : $L^{2n-1}(4m)\rightarrow SF$ be a tangential normal map
and $\pi$ : $RP^{2n-1}\rightarrow L^{2n-1}(4m)$ be the canonical $2m$-fold covering. Then we
have $\Sigma(fo\pi)^{*}h^{*}(w_{i})=0$ since the map $\pi^{*}$ : $H^{*}(L^{2n-1}(4m))\rightarrow H^{*}(RP^{2n-1})$

is zero in odd dimensions. Odd dimensional Stiefel-Whitney classes also vanish
since $w_{2i+1}=Sq^{1}w_{2i}$ for oriented fibrations. Therefore we have a lifting $g$ :
$\Sigma(RP^{2n-1})\rightarrow\overline{BS}F$ of $ho\Sigma(fo\pi)$ . We have

$Sq^{2}\Sigma\pi^{*}\Sigma f^{*}\Sigma\lambda^{*}(k_{2})=Sq^{2}\Sigma\pi^{*}\Sigma f^{*}h^{*}(\epsilon_{2})=Sq^{2}g^{*}(e_{2})=g^{*}(Sq^{2}e_{2})=0$ ,

by our Proposition. This shows that $Sq^{2}\pi^{*}f^{*}\lambda^{*}(k_{2})=0$ and since $Sq^{2}$ is an
isomorphism on $H^{2}(RP^{2n-1})$ , and $\pi^{*}$ is an isomorphism in even dimensions, we
have $f^{*}\lambda^{*}(k_{2})=0$ . The vanishing of $f^{*}\lambda^{*}(k_{2-2}:+1)$ for 3 $\cdot 2^{i-1}\leq n$ can be
deduced from Theorem $B$ of [4] by considering the class $\pi^{*}f^{*}\lambda^{*}(k_{2-2}:+1)$ . This
proves Theorem I.

Proof of Theorem II. If $n$ is odd, the surgery obstruction for $f$ : $ L^{2n-1}(4m)\rightarrow$

$SF$ vanishes since the surgery obstruction group $L_{2n-1}(Z/4m)=0$. We assume
that $n$ is even. It is known that the surgery obstruction coincides with the surgery
obstruction for $(fo\pi)|RP^{2n-2}$ : $RP^{2n-2}\rightarrow SF([8], Chap.14).By$ the characteristic
variety formula, it is not hard to see that this obstruction vanishes if and only
if$(fo\pi)^{*}k_{2^{\nu_{2}(n)+1}-2}$ vanishes, where $\nu_{2}(n)$ denotes the 2-order of $n$ . If $n$ is not a
power of 2, we have 2$v_{2}(n)\leq n/3$ . Hence by Theorem I, $(fo\pi)^{*}k_{2^{\nu_{2}\langle n)+1}-2}=0$.
This completes the proof of Theorem II.
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