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Abstract. In this paper we establish the uniqueness of the Lamperti transformation
leading from self-similar to stationary processes, and conversely. We discuss $\alpha$-stable
processes, which allow to understand better the difference between the Gaussian and
non-Gaussian cases. As a by-product we get a natural construction of two distinct $\alpha-$

stable Ornstein-Uhlenbeck processes via the Lamperti transformation for $0<\alpha<2$ .
Also a new class of mixed linear fractional $\alpha$-stable motions is introduced.

1. Introduction

Self-similar $(ss)$ processes, introduced by Lamperti [6], are the ones that
are invariant under suitable translations of time and scale (Definition 1. 1 below).
In the past few years there has been an explosive growth in the study of self-
similar processes, cf. e.g. Taqqu [11], Maejima [7], Samorodnitsky and Taqqu [9],
and Willinger et al. [12]. This caused that various examples of such processes
have been found and relationships with distinct types of processes have been
established.

Lamperti has defined a transformation which changes stationary processes to
the corresponding self-similar ones in the following way:
Proposition 1. 1 (Lamperti [6]) If $Y=(Y(t))_{t\in R}$ is a stationary process and
if for some $H>0$

$X(t)=t^{H}Y(\log t)$ , for $t>0,$ $X(O)=0$,

then $X=(X(t))$ is H-ss. Conversely, every non-trivial ss-process utth $X(O)=0$

is obtained in this way from some stationary process Y.
1991 Mathematlcs $Subj\propto t$ Claaeification: $60G18$ .
Key words and phrases: Self-similar process,Lamperti transformation,stationary processes,stable Omstein-
Uhlenbeck processes.
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In this context the question arises whether the transformations proposed by
Lamperti $are$ unique. In this paper we search for functions $\phi,$ $\psi,$ $\zeta$ and $\eta$ such
that

$X(t)=\phi(t)Y(\psi(t))$ is H-ss for a non–trivial stationary process $Y$

and

$Y(t)=\zeta(t)X(\eta(t))$ is stationary for a non–trivial H-ss process $X$.

There are two $th\infty rems$ presented in Section 3 which lead to the conclusion that
essentially $\phi(t)=t^{H},$ $\psi(t)=a$ log $t,$ $\zeta(t)=e^{-bHt}$ and $\eta(t)=e^{bt}$ for some $a,$ $ b\in$

$Rac$cording to our convention (see Definition 1. 4). In Section 2, a computer
visualization of the Lamperti transformation is provided. Section 4 is devoted to
the study of the influence of various $a’ s$ and $b’ s$ on distributions of these processes.
This is illustrated by four processes chosen to express a difference between the
Gaussian and non-Gaussian case. As a result of this investigation, we construct, in
a natural way, a pair of distinct $\alpha$-stable Ornstein-Uhlenbeck processes for $\alpha<2$ ,
already known in the literature (Adler et al. [1]). This supports the conjecture
that there are only two such processes. In the last section (Section 5), we discuss a
new class of self-similar stable processes whose corresponding stationary processes
$Y$ through the Lamperti transformation are stable mixed moving average.

We start with some basic definitions. $X(t)=dY(t)$ denotes the equality of
all finite-dimensional distributions and $X(t)\sim dY(t)$ means the equality of one
dimensional distributions for fixed $t$ .
Definition 1. 1 (Lamperti [6]) A prvcess $X=(X(t))_{t\geq 0}$ is self-srmilar $(ss)$ if
for some $H\in R,$ $X(ct)=dc^{H}X(t)$ for every $c>0$ .
We call this $X$ an H-ss process. $X$ is said to be trivial if $X(t)=t^{H}X(1)a.e.,$ $ t\geq$

$0$ .
Deflnition 1. 2 A process $Y=(Y(t))_{t\in R}$ is stationary if $Y(t+\sigma)=dY(t)$ for
every $\sigma\in R$ .
$Y$ is said to be trivial if $Y(t)=Y(O)a.e.,$ $t\in R$ .
Definition 1. 3 For $\alpha\in(0,2$], a prvcess $(X(t))_{t\in R}$ is called symmetnc $\alpha-$

stable (which wzll be referred to as $S\alpha S$) if for arbitrary $n\in N,$ $a_{1},$
$\ldots,$

$ a_{n}\in$

$R,$ $t_{1},$
$\ldots$ , $t_{n}\in R$ a random variable $\sum_{i=1}^{n}a_{i}X(t_{i})$ has an $S\alpha S$ distribution. $An$

$S\alpha S$ process $(X(t))_{t\in R}$ is called an $S\alpha SL\delta vy$ motion if it has stationary and
independent increments, is continuous in probability and $X(O)=0a.e$ . We denote
it by $Z_{\alpha}=(Z_{\alpha}(t))_{t\in R}$ .
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Deflnition 1. 4 When for two stochastic processes $X=(X(t))$ and $Y=(Y(t))$ ,
$X(t)=daY(t)$ for some $a\in R\backslash \{0\}$ , we say that $X$ and $Y$ are essentially equivalent.

Henceforth we will not distinguish between such processes. Furthermore, we will
assume that all considered processes throughout this paper are stochastically con-
tinuous.

2. Computer visualization of the Lamperti transformation

We find it interesting to illustrate the Lamperti transformation by demon-
strating graphically self-similar processes and corresponding stationary ones. We
generate the fractional stable motion with parameters $H$ and $\alpha$ , applying its in-
tegral representation, that is,

$X(t)=\int_{-\infty}^{0}(|t-u|^{H-\frac{1}{a}}-|u|^{H-\frac{1}{\alpha}})Z_{\alpha}(du)+\int_{0}^{t}|t-u|^{H-\frac{1}{\alpha}}Z_{\alpha}(du)$ , (2.1)

which is well defined for $0<H<1$ and $0<\alpha\leq 2$ .
In order to approximate the integral, we use the method introduced by Man-

delbrot and Wallis [8] replacing a sequence of Gaussian with $\alpha$-stable random
variables. In Fig.1 we can see four trajectories of the process (thin lines) for
$\alpha=1.8$ and $H=0.7$ . To give the insight view on the nature of the process,
we follow Janicki and Weron [4]. We evaluate a large number of realizations of
the process and compute quantiles in the points of discretization for some fixed $p$

$(0<p<0.5)$ , i.e. we compute $F^{-1}(p)$ and $F^{-1}(1-p)$ , where $F$ is the distribution
function. Fig. 1 and Fig.2 have the same graphical form of output. The number of
considered realizations is 4000. The thin lines represent four sample trajectories
of the process. The thick lines stand for quantile lines, the bottom one for $p=0.1$

and the top one for $1-p=0.9$ . The lines determine the subdomain of $R^{2}$ to which
the trajectories of the approximated process should belong with probabilities 0.8
at any fixed moment of time. In Fig. 2 we can see the corresponding process
transformed by the Lamperti transformation for the parameter $H=0.7$ . We can
see that the quantile lines are “parallel”. This means they are time invariant,
demonstrating the stationarity of the process.
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Figure 1: Visualization of the fractional stable motion for $H=0.7$ and $\alpha=1.8$ .

Figure 2: Visualization of the stationary process obtained from the fractional
stable motion by the Lamperti transformation.
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3. General results

In this section we establish the uniqueness of the Lamperti transformations
leading from stationary to self-similar procaeses, and conversely. The following
lemma on stationary processes makes a technical argument used in the proof of
$Th\infty rem3.1$ (ii).

Lemma 3. 1 Let $(Y(t))_{t\in R}$ be a non-trivial stochastically continuous stationary
process and let $f$ : $R\rightarrow R$ be a continuous monotone increasing junction. If

$Y(f(t))=dY(t)$ , (3.1)

then $f(t)=t+h$ for some $h\in R$ .
Proof. Suppose that the conclusion is not true. Then (i) there exist an interval
$[a, b]$ and $\theta\in(0,1)$ such that for every $t\in[a, b],$ $0\leq f(t)-f(a)<\theta(t-a)$ ,
or (ii) there exist an interval $[a, b]$ and $\theta>1$ such that for every $t\in[a, b]$ ,
$f(t)-f(a)>\theta(t-a)$ . Note that since $f$ is continuous and monotone increasing,
it follows ffom (3.1) that $Y(f^{-1}(t))=dY(t)$ . Thus without loss of generality, we
suppose (i).

For any $t_{0}\in(0, b-a$], define $t_{1}=f(a+t_{0})-f(a)$ . Then $0\leq t_{1}<\theta t_{0}$ . From
the assumption and the stationarity of $Y$ , we have

$(Y(O), Y(t_{0}))=d(Y(a), Y(a+t_{0}))=d(Y(f(a)), Y(f(a+t_{0})))=d(Y(O), Y(t_{1}))$ .
For every $n=2,3,$ $\ldots$ , define $t_{n}=f(a+t_{n-1})-f(a)$ . Then $0\leq t_{n}<\theta t_{n-1}$ and
by the same argument as above, we have

$(Y(O), Y(t_{0}))=d(Y(O), Y(t_{n}))$ .

Since $t_{n}\rightarrow 0$ as $ n\rightarrow\infty$ , it follows from the stochastic continuity of $Y$ that

$(Y(O), Y(t_{0}))=d(Y(O), Y(O))$ .

Namely
$Y(t_{0})=Y(0)a.s$ .

Since $t_{0}\in(0, b-a$] was taken $ar$bitrary, this together with the stationarity of $Y$

gives us that
$Y(t)=Y(O)a.s$ for every $t\in R$ ,

which is an contradiction to that $Y$ is non-trivial. Therefore it must be that for
some $h\in R$

$f(t)=t+h$ for any $t\in R$ $\square $
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Theorem 3. 1 Let $ 0<H<\infty$ .

(i) If $(Y(t))_{t\in R}$ is a statiionary process and $a\in R$ , then

$X(t)=\left\{\begin{array}{ll}t^{H}Y (a log t), & for t>0\\0, & for t=0\end{array}\right.$

is H–ss.

(ii) Conversely, if for some continuous functions $\phi,$ $\psi$ on $(0, \infty)$ and for non-
trivial stationary process $Y=(Y(t))_{t\in R}$ ,

$X(t)=\left\{\begin{array}{ll}\phi(t)Y(\psi(t)), & for t>0\\0, & for t=0\end{array}\right.$ (3.2)

is H–ss, then $\phi(t)=t^{H}$ and $\psi(t)=a$ log $t$ for some $a\in R$ .

Proof. (i) Note that

$X(ct)=c^{H}t^{H}Y$ ( $a$ log $t+a$ log $c$) $=dc^{H}X(t)$ ,

hence we conclude that $(X(t))_{t\geq 0}$ is H-ss.
(ii) Since $(X(t))_{t\geq 0}$ in (3.2) is H-ss, we have

$\phi(ct)Y(\psi(ct))=dc^{H}\phi(t)Y(\psi(t))$ for every $c>0$ , (3.3)

which leads to

$\phi(ct)=c^{H}\phi(t)$ for every $t>0$ and $c>0$ ,

since (3.3) must agree with respect to marginal distributions as well. Conse
quently, $\phi(t)=t^{H}\phi(1),t>0$ . The constant $\phi(1)$ is of no importance by Definition
1. 4, thus we consider $\phi(t)$ only of the form $\phi(t)=t^{H},$ $t>0$. Now (3.3) can be
phrased as

$c^{H}t^{H}Y(\psi(ct))=dc^{H}t^{H}Y(\psi(t))$ ,

namely
$Y(\psi(ct))=dY(\psi(t))$ for every $c>0$ . (3.4)

This yields that $\psi$ is monotone on $(0, \infty)$ . In order to see it, suppose a’contrario
that $\psi(t_{1})=\psi(t_{2})$ for some $t_{1}\neq t_{2}$ . Since

$(Y(\psi(ct_{1})), Y(\psi(ct_{2})))=d(Y(\psi(t_{1})), Y(\psi(t_{2})))=d(Y(O), Y(O))$

for every $c>0,$ $\psi(ct_{1})-\psi(ct_{2})$ is continuous with respect to variable $c$ and $Y$

is stationary, we infer that $Y(t)=Y(O)$ a.s. for every $t\in R$ . Thus $Y$ is trivial.
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Therefore $\psi$ must be monotone on $(0, \infty)$ . Furthermore $\psi$ takes every value in $R$ .
One can see this ffom (3.4) letting $c\rightarrow 0$ and $ c\rightarrow\infty$ .

Taking
$f_{c}(t)=\psi(c\psi^{-1}(t))$ , (3.5)

we obtain by Lemma 3. 1 that for some $h\in R$

$\psi(c\psi^{-1}(t))=t+h$ , for every $t\in R$ . (3.6)

Notice that $\psi$ can be either decreasing or increasing. Nevertheless $f_{c}$ defined by $($

3.5) is always increasing. Clearly, (3.6) can be rewritten as

$\psi(ct)=\psi(t)+h(c)$ , for any $t>0$ and $c>0$,

where $h(c)$ is a function depending only on $c$. From this and Definition 1. 4, one
can easily see that for some $a\in R$

$\psi(t)=a$ log $t,$ $t>0$ . $\square $

Theorem 3. 2 Let $ 0<H<\infty$ .

(i) If $(X(t))_{t\geq 0}$ is an H–ss prvcess and $b\in R$ , then

$Y(t)=e^{-bHt}X(e^{bt}),$ $t\in R$ ,

is stationary.

(ii) Conversely, if for some continuous functions $\zeta,$
$\eta$ , where $\eta$ is invertible, and

for a non-trivial H–ss process (X $(t)$ ),

$Y(t)=\zeta(t)X(\eta(t)),$ $t\in R$ ,

is stationary, then

$\zeta(t)=e^{-bHt}$ and $\eta(t)=e^{bt}$ for some $b\in R$ .

Proof. (i) We have

$Y(t+\sigma)=e^{-bH(t+\sigma)}X(e^{b(t+\sigma)})=e^{-bH(t+\sigma)}e^{bH\sigma}X(e^{bt})=Y(t)d$ .
Thus we conclude that $Y$ is stationary.

(ii) Since $Y(t)=\zeta(t)X(\eta(t))$ is stationary and $\eta$ is invertible, one can easily
claim that the process

$\frac{1}{\zeta(\eta^{-1}(t))}Y(\eta^{-1}(t))=X(t)$
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is H–ss. Thus, by Theorem 3. 1 we obtain

$\eta^{-1}(t)=a$ log $t$ for some $a\in R\backslash \{0\}$ .

This is equivalent to
$\eta(t)=e^{bt}$ , some $b\in R$.

Using the same arguments for $\zeta$ , we have $\zeta$ (a log $t$) $=t^{-H}$ . This yields $\zeta(t)=$

$e^{-bHt}$ . $\square $

Remarks.

$\bullet$ Marginal distributions do not depend on the choice of $a$ and $b$ , that is,

$X(t)=t^{H}Y$ ( $a$ log $t$) $\sim dt^{H}Y(1)$

since $Y$ is stationary, and

$Y(t)=e^{-bHt}X(e^{bt})\sim X(1)d$

since $X$ is H–ss.

$\bullet$ The parameters $a$ and $b$ are meaningful when considering finitedimensional
distributions. The influence of $a$ and $b$ will be discussed in the sequel.

4. Finite-dimensional distributions

We want to establish the influence of $a’ s$ and $b’ s$ on distributions of the
corresponding processes. To this end we need the following lemma

Lemma 4. 1 If $Y=(Y(t))_{t\in R}$ is a non-trivial stationary stochastic prvcess and

if
$Y(ct)=dY(t)$ , for some $c\in R\backslash \{0\}$ , (4.1)

then either $c=-1$ or $c=1$ .
Proof. It is enough to prove that if $Y$ satisfies (4.1) for some $c$ with $0<|c|<1$ ,
then $Y$ is trivial. Since

$(Y(t_{1}), \ldots , Y(t_{m}))=d(Y(c^{n}t_{1}), \ldots , Y(c^{n}t_{m}))$

for $0\leq t_{1}<\ldots<t_{m}$ , and $n\geq 1$ , it follows from the stochastic continuity that

$(Y(t_{1}), \ldots, Y(t_{m}))=d(Y(O), \ldots,Y(O))$ $\square $

The following theorem is a direct consequence of Lemma 4. 1.
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Theorem 4. 1 Let $ 0<H<\infty$ .
(i) If $Y=(Y(t))_{t\in R}$ is a non-trivial stationary process and if for some $a,$

$ a^{\prime}\in$

$R\backslash \{0\}$

$t^{H}Y$ (a log $t$) $=dt^{H}Y$ ( $a^{\prime}$ log $t$),

then either $a=a^{\prime}$ or $a=-a^{\prime}$ .
(ii) If $X=(X(t))_{t\geq 0}$ is a non-trivial H–ss prvcess and if for some $b,$ $ b^{\prime}\in$

$R\backslash \{0\}$

$e^{-bHt}X(e^{bt})=e^{-b^{\prime}Ht}X(e^{b^{\prime}t})d$

then $ei\theta\iota\alpha\cdot b=b^{\prime}$ or $b=-b^{\prime}$ .
Proof. Part (i) follows directly ffom Lemma 4. 1. In order to prove (ii) it is
enough to apply Lemma 4. 1 to $Y(t)=e^{-Ht}X(e^{t})$ . $\square $

Up to now we have considered processes merely assuming that they are stochas-
tically continuous. In order to gain insight into the influence of different $a’ s$ and $b’ s$

on finitedimensional distributions of corresponding processes we are to concen-
trate on $\alpha$-stable processes. We will study Gaussian and non-Gaussian examples
to take a different view of the foregoing results.

Note that for Gaussian stationary processes $Y(t)=dY(-t)$ . Hence if $Y$ is Gaus-
sian, then the statement (i) in Theorem 4. 1 can be replaced by that $t^{H}Y$ ( $a$ log $t$) $=d$

$t^{H}Y$ ( $a^{\prime}$ log t) if and only if $a=\pm a^{\prime}$ , and if $X$ is Gaussian, then (ii) can be replaced
by that $e^{-bHt}X(e^{bt})=de^{-b^{\prime}Ht}X(e^{b^{\prime}t})$ if and only if $b=\pm b^{\prime}$ . Therefore we have
the following.

Example 4. 1 Let $ 0<H<\infty$ and $(Y_{\lambda}(t))_{t\in R}$ be a Gaussian Omstezn- Uhlenbeck
process, namely

$Y_{\lambda}(t)=\int_{-\infty}^{t}e^{-\lambda(t-x)}B(dx),$ $t\in R$ ,

where $(B(t))$ is a standard Broumian motion. Then

$t^{H}Y_{\lambda}$ (a log $t$) $=dt^{H}Y_{\lambda}$ ( $a^{\prime}$ log $t$), $t>0$

if and only if $a=\pm a^{\prime}$ .
Example 4. 2 Let $(X(t))_{t\geq 0}$ be a Gaussian H–ss process and $0<H<1$ .
(If, in addition, it has stationary increments, it is the fractional Brownian motion
defined by the stochastic integral unth $\alpha=2$ in (2.1)). Then

$e^{-bHt}X(e^{bt})=e^{-b^{\prime}Ht}X(e^{b^{\prime}t})d$ $t\in R$,

if and only if $b=\pm b^{\prime}$ .
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Remarks.

$\bullet$ Let us recall that the Gaussian Ornstein-Uhlenbeck process can be obtained
by transforming the Brownian motion by the Lamperti transformation and
there exists only one such a process (this was observed by Doob [2] and It\^o

[3]). How does this fact match the above $threms$ and examples? Compar-
ing the covariance functions of the transformed Brownian motion and the
Gaussian Ornstein-Uhlenbeck procaes (characterized by parameter $\lambda$ ) leads
to the conclusion
Brownian motion G.O.U. process
$B(t)$

$Lamp\Rightarrow^{..tr.}$with a
$Y_{\lambda}(at)$

(where $\lambda=\frac{1}{2}$ ).
$Y_{\lambda}(at)$ and $Y_{\lambda}(a^{\prime}t)are$ different processes when $a\neq\pm a^{\prime}$ (with respect to
finitedimensional distributions) but nevertheless they are still in the same
class of processes because $Y_{\lambda}(at)=d\sqrt{a}Y_{a\lambda}(t)$ , (see Example 4. 1).

$\bullet$ Due to the above generalization of the Lamperti theorem we are able to ob-
tain the complete class of Ornstein-Uhlenbeck processes from the standard
Brownian motion.

$\bullet$ Using the generalized Lamperti transformation with different $a’ s$ , one can
generate the entire class of H-ss Gaussian Markov processes starting from
the standard Ornstein-Uhlenbeck process with $\lambda=1$ , (see Example 4. 1).

They are given by the covariance function in the following way:

$E[X(t)X(s)]$ $=$ $t^{H}s^{H}E$ [$Y_{1}(a\log t)Y_{1}$ (alog s)]

$=$ $t^{H}s^{H}e^{-a(\log t-\log s)}=t^{H-a_{S}H+a}$ ,

where $a>0$ and $s<t$ .

We proceed to non-Gaussian stable cases.

Example 4. 3 Let $ 0<H<\infty$ and $(Y_{\lambda}(t))_{t\in R}$ be an $S\alpha S$ Omstein-Uhlenbeck
process, namely

$Y_{\lambda}(t)=\int_{-\infty}^{t}e^{-\lambda(t-x)}Z_{\alpha}(dx),$ $t\in R$

where $0<\alpha<2$ . $\mathfrak{R}en$

$t^{H}Y_{\lambda}$ (a log $t$) $=dt^{H}Y_{\lambda}$ ( $a^{\prime}$ log $t$), $t>0$, (4.2)

if and only if $a=a^{\prime}$ .
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Proof. We compute the characteristic function of vector ( $Y_{\lambda}$ (as), $Y_{\lambda}$ (at)). Fixing
$s<t$ and $a>0$ , we have the following equations:

$ E\exp${$i(\theta_{1}Y_{\lambda}(as)+\theta_{2}Y_{\lambda}$ (at))}

$=$ $ E\exp${$i([\theta_{1}+\theta_{2}e^{-\lambda a(t-s)}]Y_{\lambda}(as)+\theta_{2}[Y_{\lambda}(at)-e^{-\lambda a(t-s)}Y_{\lambda}$ (as)])}

$=$ $E\exp\{i(\theta_{1}+\theta_{2}e^{-\lambda a(t-s)})\int_{-\infty}^{as}e^{-\lambda(as-x)}Z_{\alpha}(\&)\}$

$E\exp\{i\theta_{2}\int_{as}^{at}e^{-\lambda(at-x)}Z_{\alpha}(dx)\}$

$=$ $\exp\{-(|\theta_{1}+\theta_{2}e^{-\lambda a(t-s)}|^{\alpha}\int_{-\infty}^{as}e^{-\alpha\lambda(as-x)}dx+|\theta_{2}|^{\alpha}\int_{as}^{at}e^{-\alpha\lambda(at-x)}dx)\}$

$=$ $\exp\{-\frac{1}{\alpha\lambda}[(1-e^{-\alpha\lambda a(t-s)})|\theta_{2}|^{\alpha}$

$+|1+e^{-2\lambda a(t-s)}|^{\alpha/2}\cdot|\frac{\theta_{1}}{|1+e^{-2\lambda a(t-s)}|^{1/2}}+\frac{\theta_{2}e^{-\lambda a(t-s)}}{|1+e^{-2\lambda a(t-s)}|^{1/2}}|^{\alpha}]\}$ .

Thus the spectral measure of vector ( $Y_{\lambda}$ (as), $Y_{\lambda}$ (at)) is given by the formula

$\Gamma$ $=$ $\frac{1}{2\alpha\lambda}[(1-e^{-\alpha\lambda a(t-s)})(\delta(0,1)+\delta(0, -1))$

$+$ $(1+e^{-2\lambda a(t-s)})^{\alpha/2}(\delta(c, d)+\delta(-c, -d))$ ],

where

$c=\frac{1}{(1+e^{-2\lambda a(t-s)})^{1/2}}$ , $d=\frac{e^{-\lambda a(t-s)}}{(1+e^{-2\lambda a(t-s)})^{1/2}}$

and $\delta(p, q)$ is the delta measure at $(p, q)\in R^{2}$ . Similarly, when $a<0$ the spectral
measure of vector $(Y_{\lambda}(as), Y_{\lambda}(at))$ is given by

$\Gamma$ $=$ $\frac{1}{2\alpha\lambda}[(1-e^{-\alpha\lambda a(s-t)})(\delta(1,0)+\delta(-1,0))$

$+$ $(1+e^{-2\lambda a(s-t)})^{\alpha/2}(\delta(d, c)+\delta(-d, -c))$ ].

Because of the uniqueness of the spectral measure $\Gamma$ , formula (4.2) (as concerns
bivariate distributions) holds only if $a=a^{\prime}$ . This completes the proof. $\square $

Example 4. 4 Let $0<\alpha<2,$ $H=\frac{1}{\alpha}$ and $(Z_{\alpha}(t))_{t\geq 0}$ be an $S\alpha S$ L\’evy motion.
Then

$e^{-bHt}Z_{\alpha}(e^{bt})=e^{-b^{\prime}Ht}Z_{\alpha}(e^{b^{\prime}t})d$ $t\in R$

if and only if $b=b^{\prime}$ .
Proof. By $Th\infty rem4.1$ it is enough to show that

$e^{-Ht}Z_{\alpha}(e^{t})\neq e^{Ht}Z_{\alpha}(e^{-t})d$
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which is equivalent to

$Z_{\alpha}(t)\neq t^{2H}Z_{\alpha}(t^{-1})d$ .

For that, we show that the process on the right hand side does not have inde-
pendent increments. To this end, it suffices to represent the process by a stable
integral $t^{2H}\int_{0}^{t^{-1}}dZ_{\alpha}(u)$ and to check its increments. Use the fact that two non-
Gaussian stable random variables $\int fdZ_{\alpha}$ and $\int gae_{\alpha}$ are independent if and only
if $f\cdot g=0a.e$ . $\square $

Remarks.

$\bullet$ As in the Gaussian case there is a correspondence between the $S\alpha S$ L\’evy
motion (characterized by the parameter $\alpha$ ) and the $S\alpha S$ Ornstein-Uhlenbeck
process (determined by $\alpha$ and $\lambda$) through the Lamperti transformation:
$S\alpha S$ L\’evy motion $S\alpha S$ O.U. process
$Z_{\alpha}(t)$

$Lamp\Rightarrow^{..tr.}$with a
$Y_{\lambda}(at)$

(where $\lambda=\frac{1}{\alpha}$ ).
(See Adler et al. [1], Theorem 5.1 for $1<\alpha<2$ and for general $0<\alpha<2$

compute and compare the characteristic functions of processes $\{e^{-at/\alpha}Z_{\alpha}(e^{at})\}$

and { $Y_{1/\alpha}$ (at)}, which can be calculated in a way similar to the above proof
of Example 4.3.)

$\bullet$ Contrary to the Gaussian case, $Y_{\lambda}$ (at) defines distinct processes for $a$ and
for $-a$ (see Example 4. 3). For example, $a=1$ and $a^{\prime}=-1$ produce the
$S\alpha S$ Ornstein-Uhlenbeck and the reverse $S\alpha S$ Ornstein-Uhlenbeck procaes,
respectively (which are different when $0<\alpha<2$), (see Adler et al. [1]).
Since $Y_{\lambda}(at)=da^{1/\alpha}Y_{a\lambda}(t)$ , so we can construct only two different Ornstein-
Uhlenbeck processes.

5. Mixed linear Ractional $\alpha$-stable motions

In the paper, Surgailis et al. [10], a new class of stationary non-Gaussian
$S\alpha S$ processes, namely stable mixed moving averages, is introduced. This includes
the well-studied class of moving averages. In this section, we discuss the self-
similar stable processes whose corresponding stationary processes $(Y(t))$ through
the Lamperti transformation are stable mixed moving averages.

Although more general class is introduced in Surgailis et al. [10], we focus here
only on the following type of stable mixed moving averages (which are sums of
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independent usual moving average):

$Y(t)=\sum_{k=1}^{K}\int_{-\infty}^{\infty}f_{k}(t-v)Z_{\alpha}^{(k)}(dv)$ , $t\in R$ , (5.1)

where the $Z_{\alpha}^{(k)}’ s$ are independent $S\alpha S$ L\’evy motions, $f_{k}\in L^{\alpha}(-\infty, \infty)$ and where
the $f_{k}^{\prime}s$ are not “equivalent” in the sense that for $ k\neq\ell$ , there do not exist $c$ and
$\tau$ such that $f_{k}(\cdot)=cf_{\ell}(\cdot-\tau)$ . We call the process (5.1) the K-sum stable moving
average. It is observed in Surgailis et al. [10] that K-sum stable moving average
with $K\geq 2$ is different in law from the ordinary moving average.

We remark here that (5.1) is a special case of stable mixed moving averages
introduced in Surgailis et al. [10], but finite sums of independent $S\alpha S$ moving
averages as in (5.1) are dense in the class of stable mixed moving averages.

In the following, we give examples of self-similar processes with stationary
increments, whose corresponding stationary processes are K-sum stable moving
averages.

Deflnition 5. 1 Let $0<H<1,0<\alpha<2,$ $H\neq\frac{1}{\alpha}$ , and

$X(t)$ $=$ $\sum_{n=1}^{N}\int_{-\infty}^{\infty}\{p_{n}[(t-u)_{+}^{H-\frac{1}{\alpha}}-(-u)_{+}^{H-\frac{1}{\alpha}}]$

$+$ $q_{n}[(t-u)_{-}^{H-\frac{1}{\alpha}}-(-u)_{-}^{H-\frac{1}{a}}]$ } $Z_{\alpha}^{(n)}(du)$ , (5.2)

where $a+and$ a-stand for $\max\{a, 0\}$ and $\max\{-a, 0\}$ , respectively. The process
(X $(t)$ ) is called mixed linear fmcbional stable motion.

It is easy to check that $(X(t))$ is H-self-similar and has stationary increments.
When $N=1$ and $p_{n}=1,$ $q_{n}=1$ , it is alinear fractional stable motion in (2.1). The
distribution of $(X(t))$ is distinct for different collection of $\{p_{n}, q_{n}, n=1, \cdots, N\}$

unless $p_{n}=p,$ $q_{n}=q$ for all $n$ .
In the following, we restrict ourselves to the stationary process $Y_{+}(t)=e^{-Ht}X(e^{t})$ .

However, as we pointed out in Section 4, $(Y_{+}(t))$ is distinct Rom $(Y_{-}(t))$ , where
$Y_{-}(t)=e^{Ht}X(e^{-t})$ , since we are dealing with non-Gaussian stable case. As to
$(Y_{-}(t))$ , we have a similar argument. We shall write below $Y(t)$ for $Y_{+}(t)$ and
$\beta=H-\frac{1}{\alpha}$ for the notational simplicity.

Theorem 5. 1 The mixed linenr fractional stable motion $X(t)\dot{\varphi}ven$ by (5.2)
corresponds nia the Lamperti transformation to a K-sum stable moving average
for some $K\leq 2N$ .
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Proof. From (5.2), we have

$Y(t)$ $=$ $e^{-Ht}X(e^{t})$

$\sum_{n=1}^{N}e^{-Ht}\int_{-\infty}^{\infty}\{p_{n}[(e^{t}-u)_{+}^{\beta}-(-u)_{+}^{\beta}]$

$+q_{n}[(e^{t}-u)_{-}^{\beta}-(-u)_{-}^{\beta}]\}Z_{\alpha}^{(n)}(du)$

$\sum_{n=1}^{N}e^{-Ht}\{p_{n}\int_{-\infty}^{0}[(e^{t}-u)^{\beta}-(-u)^{\beta}]Z_{\alpha}^{(n)}(du)$

$+\int_{0}^{e^{t}}|p_{n}(e^{t}-u)^{\beta}-q_{n}u^{\beta}]Z_{\alpha}^{(n)}(du)$

$+q_{n}\int_{e^{t}}^{\infty}[(u-e^{t})^{\beta}-u^{\beta}]Z_{\alpha}^{(n)}(du)\}$

$\sum_{n=1}^{N}e^{-Ht}\{\int_{-\infty}^{0}p_{n}[(e^{t}-u)^{\beta}-(-u)^{\beta}]Z_{\alpha}^{(n)}(du)$

$+\int_{0}^{\infty}(I[0<u<e^{t}]|p_{n}(e^{t}-u)^{\beta}-q_{n}u^{\beta}]$

$+I[e^{t}<u]q_{n}[(u-e^{t})^{\beta}-u^{\beta}])Z_{\alpha}^{(n)}(du)\}$ .

Thus, for $c_{j}\in R$ ,

$-\log E[\exp\{i\sum_{j}c_{j}Y(t_{j})\}]$

$\sum_{n=1}^{N}\{\int_{-\infty}^{0}|\sum_{j}c_{j}e^{-Ht_{j}}p_{n}[(e^{t_{j}}-u)^{\beta}-(-u)^{\beta}]|^{\alpha}du$

$+\int_{0}^{\infty}|\sum_{j}c_{j}e^{-Ht_{j}}\{I[0<u<e^{t_{j}}]L(e^{t_{j}}-u)^{\beta}-q_{n}u^{\beta}]$

$+I[e^{t_{j}}<u]q_{n}[(u-e^{t_{f}})^{\beta}-u^{\beta}]\}|^{\alpha_{du}}\}$

by the change of variables $|u|=e^{v}$ ,

$\sum_{n=1}^{N}\{\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-Ht_{j}}p_{n}[(e^{t_{j}}+e^{v})^{\beta}-e^{\beta v}]|^{\alpha}e^{v}dv$

$+\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-Ht_{j}}\{I[v<t_{j}]|p_{n}(e^{t_{j}}-e^{v})^{\beta}-q_{n}e^{\beta v}]$

$+I[t_{j}<v]q_{n}[(e^{v}-e^{t_{j}})^{\beta}-e^{\beta v}]|^{\alpha}e^{v}dv\}$
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$=$ $\sum_{n=1}^{N}\{\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-Ht_{j}+\beta v}p_{n}[(e^{t_{j}-v}+1)^{\beta}-1]|^{\alpha}e^{v}dv$

$+\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-Ht_{j}+\beta v}\{I[t_{j}-v>0]|p_{n}(e^{t_{j}-v}-1)^{\beta}-q_{n}]$

$+I[t_{j}-v<0]q_{n}[(1-e^{t_{j}-v})^{\beta}-1]\}|^{\alpha}e^{v}dv\}$

$=$ $\sum_{n=1}^{N}\{\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-H(t_{j}-v)}p_{n}[(e^{t_{j}-v}+1)^{\beta}-1]|^{\alpha}dv$

$+\int_{-\infty}^{\infty}|\sum_{j}c_{j}e^{-H(t_{j}-v)}\{I[t_{j}-v<0]q_{n}[(1-e^{t_{j}-v})^{\beta}-1]$

$+I[t_{j}-v>0]|p_{n}(e^{t_{g}-v}-1)^{\beta}-q_{n}]\}|^{\alpha}dv\}$

$=$ $\sum_{n=1}^{N}\{\int_{-\infty}^{\infty}|\sum_{j}c_{j}f_{n}(t_{j}-v)|^{\alpha}dv+\int_{-\infty}^{\infty}|\sum_{j}c_{j}g_{n}(t_{j}-v)|^{\alpha}dv\}$ ,

where

$f_{n}(t)$ $=$ $e^{-Ht}p_{n}[(e^{t}+1)^{\beta}-1]$

$g_{n}(t)$ $=$ $e^{-Ht}\{I[t<0]q_{n}[(1-e^{t})^{\beta}-1]+I[t>0]|p_{n}(e^{t}-1)^{\beta}-q_{n}]\}$ .

Thus we have

$Y(t)$
$=d$

$\sum_{n=1}^{N}\int_{-\infty}^{\infty}f_{n}(t-v)Z_{\alpha}^{(n)}(dv)$

$+\sum_{n=1}^{N}\int_{-\infty}^{\infty}g_{n}(t-v)Z_{\alpha}^{(N+n)}(dv)$ ,

where $Z_{\alpha}^{(n)},$ $n=1,2,$ $\cdots,$
$2N$ are independent stable motions. $\square $

Example 5. 1 If $N=1,p_{1}=0,$ $q_{1}\neq 0$ , then

$Y(t)=d\int_{-\infty}^{\infty}g_{1}(t-v)Z_{\alpha}(dv)$ ,

and hence $K=1$ . The linear fiuctional stable motion corresponds to a stable
momng average.

Example 5. 2 If $N=1,p_{1}\neq 0$ (whatever $q_{1}$ is), then $f_{1}(\cdot)=\pm cg_{1}(\cdot+\tau)$ is not
true. Hence

$Y(t)=d\int_{-\infty}^{\infty}f_{1}(t-v)Z_{\alpha}^{(1)}(dv)+\int_{-\infty}^{\infty}g_{1}(t-v)Z_{\alpha}^{(2)}(dv)$ ,
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which is 2-sum stable moving average. Thus, $H\iota e$ linear fractional stable motion
can also correspond to a stable mixed moving average.

Example 5. 3 Let $K\geq 3$ and choose $N$ sruch $\theta\iota at2N\geq K$ . Then by choosing $p_{n}$

and $q_{n}$ , zero or non-zero suitably, we can construct K-sum stable moving average
ffom the mixed linear fractional stable motion.

Next we consider the case of $H=\frac{1}{\alpha}$ .
Example 5. 4 Let $0<\alpha<2,$ $H=\frac{1}{\alpha}$ and $X(t)=Z_{\alpha}(t)$ . Then

$Y(t)$ $=$ $e^{-\frac{1}{\alpha}t}X(e^{t})=e^{-\frac{1}{\alpha}t}Z_{\alpha}(e^{t})$

$=$ $e^{-\perp t}\circ\int_{0}^{e^{t}}Z_{\alpha}(du)=e^{-\perp t}\circ\int_{-\infty}^{s}Z_{\alpha}(e^{v}dv)$

$=d$
$e^{-\frac{1}{a}t}\int_{-\infty}^{s}e^{\frac{1}{a}v}Z_{\alpha}(dv)=\int_{-\infty}^{s}e^{-\perp}\alpha(t-v)Z_{\alpha}(dv)$

$=$ $\int_{-\infty}^{\infty}f(t-v)Z_{\alpha}(du)$ ,

where
$f(t)=e^{-\frac{1}{\alpha}t}I[t>0]$ .

Example 5. 5 Let $1<\alpha<2,$ $H=\frac{1}{\alpha}$ and

$X(t)=\int_{-\infty}^{\infty}\log|\frac{t-u}{u}|Z_{\alpha}(du)$ .

This $(X(t))$ is called a log-fiuctional stable motion. (See Kasahara et al. $[5J.$)
Then

$Y(t)$ $=$ $e^{-\frac{1}{\alpha}t}X(e^{t})$

$=$ $e^{-\perp t}\circ\int_{-\infty}^{0}$ log $|\frac{e^{t}-u}{u}|Z_{\alpha}(du)+e^{-\frac{1}{\alpha}t}\int_{0}^{\infty}$ log $|\frac{e^{t}-u}{u}|Z_{\alpha}(du)$

$=d$
$e^{-\frac{1}{\alpha}t}\int_{-\infty}^{\infty}$ log $|\frac{e^{t}-e^{v}}{e^{v}}|Z_{\alpha}^{(1)}(-e^{v}dv)+e^{-\perp t}\circ\int_{-\infty}^{\infty}$ log $|\frac{e^{t}-e^{v}}{e^{v}}|Z_{\alpha}^{(2)}(e^{v}dv)$

$=d$
$e^{-\frac{1}{\alpha}t}\int_{-\infty}^{\infty}$ log $|\frac{e^{t}-e^{v}}{e^{v}}|e^{\frac{1}{\alpha}v}(Z_{\alpha}^{(1)}(dv)+Z_{\alpha}^{(2)}(dv))$

$=$ $\int_{-\infty}^{\infty}e^{-\perp}\alpha(t-v)$ log $|e^{t-v}-1|(Z_{\alpha}^{(1)}(dv)+Z_{\alpha}^{(2)}(dv))$

$=$ $\int_{-\infty}^{\infty}f(t-v)(Z_{\alpha}^{(1)}(dv)+Z_{\alpha}^{(2)}(dv))$ ,

where
$f(t)=e^{-\frac{1}{a}t}$ log $|e^{t}-1|$ .

Thus, the log-fiactional stable motion also corresponds to a 2-sum moving avemge
as in the case of $d\iota e$ linear fractional stable motion in Example 5.2.
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