Totally real submanifolds of a complex space form with nonzero parallel mean curvature vector

By

Noriaki Sato

(Received September 12,1995)

Abstract. Any pseudo-umbilical submanifold of a non-flat complex space form with nonzero parallel mean curvature vector is a totally real submanifold.

1. Introduction

The aim of this paper is to show that the class of totally real submanifolds of a non-flat complex space form contains all pseudo-umbilical submanifolds with nonzero parallel mean curvature vector.

Our result is as follows:

Theorem 1 Let M^n be an n-dimensional pseudo-umbilical submanifold of a complex m-dimensional complex space form $\tilde{M}^m(\tilde{c})(\tilde{c} \neq 0)$ with nonzero parallel mean curvature vector. Then 2m > n and M is a totally real submanifold of $\tilde{M}^m(\tilde{c})$.

As an immediate consequence of Theorem 1, we see the following fact; The mean curvature vector of a non-minimal, pseudo-umbilical submanifold of $\tilde{M}^m(\tilde{c})(\tilde{c} \neq 0)$ is not parallel unless it is totally real.

Moreover, we get the following

Corllary 1 Let M^n be a pseudo-umbilical submanifold of $\tilde{M}^m(\tilde{c})(\tilde{c} \neq 0)$ with nonzero parallel mean curvature vector. Then the scalar curvature ρ of M satisfies the inequality:

$$\rho \le n(n-1)(\frac{\tilde{c}}{4} + g(H, H)),$$
(1.1)

where H is the mean curvature vector of M in $\tilde{M}(\tilde{c})$.

If the equality sign of (1.1) holds, then M is a real space form immersed in $\tilde{M}(\tilde{c})$

1991 Mathematics Subject Classification: 53C25.

Key words and phrases: totally real, totally umbilical, pseudo-umbilical, parallel.

as a totally real and totally umbilical submanifold.

This case occurs only when 2m > n.

The author wishes to express his hearty thanks to Professor K. Ogiue and Professor S. Maeda for their useful comments and encouragement during the preparation of this paper.

2. Preliminaries

Let f be an isometric immersion of a Riemannian *n*-manifold M^n into a Kaehlerian *m*-manifold \tilde{M}^m with complex structure J. We denote by g the metric tensor of \tilde{M} as well as that induced on M. For all local formulas we regard f as an imbedding and thus identify $x \in M$ with $f(x) \in \tilde{M}$. The tangent space $T_x(M)$ is identified with a subspace of $T_x(\tilde{M})$. The normal space $T_x^{\perp}(M)$ is a subspace of $T_x(\tilde{M})$ consisting of all $X \in T_x(M)$ which are orthogonal to $T_x(M)$ with respect to the Riemannian metric g. Let $\tilde{\nabla}(\text{resp. }\nabla)$ be the Riemannian connection on $\tilde{M}(\text{resp. }M)$. Moreover, we denote by σ the second fundamental form of M in \tilde{M} . Then the Gauss formula and the Weingarten formula are given respectively by

$$\sigma(X,Y) = \nabla_X Y - \nabla_X Y, \quad \text{for} \quad X,Y \in T_x(M),$$

$$\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi, \quad \text{for} \quad \xi \in T_x^{\perp}(M),$$

where $-A_{\xi}X(\text{resp. } D_X\xi)$ denotes the tangential (resp. normal) component of $\tilde{\nabla}_X \xi$. A normal vector field ξ is said to be <u>parallel</u> if $D_X \xi = 0$ for all $X \in T_x(M)$. Let $H = \frac{1}{n}$ trace σ be the mean curvature vector of M in \tilde{M} . If the second fundamental form $\sigma(X,Y) = g(X,Y)H$, then M is said to be <u>totally umbilical</u>. M is said to be <u>pseudo-umbilical</u> if the second fundamental form σ is of the form $g(\sigma(X,Y),H) = g(X,Y)g(H,H)$, for $X,Y \in T_x(M)$, or equivalently, $A_H = ||H||^2 I$.

Let \tilde{R} (resp. R) be the Riemannian curvature for $\tilde{\nabla}$ (resp. ∇). Then the Gauss equation is given by

$$g(\tilde{R}(X,Y)Z,W) = g(R(X,Y)Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(Y,Z),\sigma(X,W)),$$

for $X, Y, Z, W \in T_x(M)$.

A Kaehlerian manifold of constant holomorphic sectional curvature \tilde{c} is called a <u>complex space form</u> and will be denoted by $\tilde{M}(\tilde{c})$, and a Riemannian manifold of constant sectional curvature is called a <u>real space form</u>. The Riemmannian curvature \tilde{R} of $\tilde{M}(\tilde{c})$ is given by

$$\tilde{R}(X,Y)Z \qquad (2.1)$$

$$= \frac{\tilde{c}}{4} \{g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ\},$$

for all vector fields X, Y, Z on $\tilde{M}(\tilde{c})$.

The submanifold M is called a <u>totally real</u> submanifold of \tilde{M} if $J(T_x(M))$ $T_x^{\perp}(M)$ (see, [1][2]).

3. Proof of Theorem

Proof of Theorem 1. Let M^n be a pseudo-umbilical submanifold of $\tilde{M}(\tilde{c})(\tilde{c} \neq o)$ with nonzero parallel mean curvature vector H. Then we get

$$\nabla_X H = -A_H X = -\|H\|^2$$
, for all $X, Y \in T_x(M)$,

where ||H|| is a constant. Therefore we have

$$\tilde{R}(X,Y)H = \tilde{\nabla}_X \tilde{\nabla}_Y H - \tilde{\nabla}_Y \tilde{\nabla}_X H - \tilde{\nabla}_{[X,Y]} H \qquad (3.1)$$

$$= \|H\|^2 (\tilde{\nabla}_Y X - \tilde{\nabla}_X Y + [X,Y])$$

$$= 0$$

for all $X, Y \in T_x(M)$.

On the other hand, from (2.1) we get

$$g(\tilde{R}(X,Y)H,JH) = \frac{\tilde{c}}{2}g(X,JY)g(H,H).$$
(3.2)

Since $\tilde{c} \neq 0$ and $g(H, H) \neq 0$, it follows from (3.1) and (3.2) that M is totally real in \tilde{M} .

Moreover, from (2.1) we get

$$g(\tilde{R}(X,Y)H,JX) = \frac{\tilde{c}}{4}g(g(X,X)JY - g(X,Y)JX,H).$$
(3.3)

Choose X in such a way that g(JX, H) = 0. Since $\tilde{c} \neq 0$, from (3.1) and (3.3) we have

$$g(JY,H) = 0$$
 for all $Y \in T_x(M)$. (3.4)

Noriaki Sato

Since M is a totally real submanifold of \tilde{M} , the normal space $T_x^{\perp}(M)$ is decomposed in the following way: $T_x^{\perp}(M) = JT_x(M) \oplus \nu_x$ at each point x of M, where ν_x denotes the orthogonal complement of $JT_x(M)$ in $T_x^{\perp}(M)$. Thus it follows from (3.4) that $H \in \nu_x$. This implies 2m > n. Q.E.D.

Proof of Corollary 1. Let M^n be a pseudo-umbilical submanifold of $\tilde{M}(\tilde{c})(\tilde{c} \neq 0)$ with nonzero parallel mean curvature vector H. Let $\{E_i\}_{i=1,\dots,n}$ be orthonormal tangent vector fields and $\{\xi_{\alpha}\}_{\alpha=1,\dots,2m-n}$ orthonormal normal vector fields such that the nonzero mean curvature vector H is equal to $||H||\xi_1$. Theorem 1 implies that M is totally real in \tilde{M} . By the Gauss equation the scalar curvature ρ is given by

$$\rho = n(n-1)(\frac{\tilde{c}}{4} + g(H,H)) - \sum_{i,j=1}^{n} \sum_{\alpha=2}^{2m-n} g(\sigma(E_i,E_j),\xi_\alpha)^2.$$
(3.5)

Thus we get (1.1). If the equality sign of (1.1) holds, it follows from (3.5) that M is totally umbilical in \tilde{M} . By the Gauss equation, we easily see that any totally real and totally umbilical submanifold in $\tilde{M}(\tilde{c})$ also has constant curvature $\frac{\tilde{c}}{4} + g(H, H)$. Thus we obtain M is a real space form immersed in \tilde{M} . Q.E.D.

References

- B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. A.M.S., 193 (1974), 257-266.
- [2] _____, Two theorems on Kaehler Manifolds, Michigan M. J., 21 (1974), 225-229.

Department of Mathematics Shirayuri Educational Institution Kudankita.Chiyodaku.Tokyo 102 JAPAN.