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Abstract. In this paper, we shall determine the complete list of irreducible
quadrangulations of the Klein bottle. By this result, we can easily list all the minor-
minimal 2-representative graphs on the Klein bottle. Moreover, we shall show that any
two bipartite quadrangulations of the Klein bottle with at least 10 vertices are
transformed into each other by a sequence of diagonal slides and a sequence of diagonal
rotations, up to homeomorphism, if they have the same number of vertices.

1. Introduction

A quadrangulation $G$ of a closed surface $F^{2}$ is a simple graph embedded in
$F^{2}$ so that each face of $G$ is quadrilateral. Let $f$ be a face of $G$ with the
boundary cycle abcd. The face contraction of $f$ at $\{b,d\}$ is to eliminate $f$ as
shown in Figure 1. However, if $b$ and $d$ are adjacent to each other or have a
common neighbor $v\neq a,c$ , then a face contraction of $f$ at $\{b,d\}$ yields a loop or
multiple edges. If a face contraction destroys the simpleness of $G$ , then we do
not apply this deformation. If we can apply a face contraction of $f$ at $\{b,d\}$ , then
$f$ is said to be contractible at $\{b,d\}$ . There are two ways to contract a face since
each face has two diagonal pairs of vertices. If $G$ is obtained from a
quadrangulation $T$ by a sequence of face contractions, then $T$ is said to be
contractible to $G$. A quadrangulation $G$ of $F^{2}$ is said to be irreducible if $G$ has
no contractible face.

Nakamoto and Ota have been shown that an irreducible quadrangulation of
a closed surface $F^{2}$ has at most $186(2-\chi(F^{2}))-64$ vertices, where $\chi(F^{2})$

denotes the Euler characteristic of $F^{2}[7]$ . This implies that for any closed
surface, there exist finitely many irreducible quadrangulations, up to
homeomorphism. For the sphere, the projective-plane and the torus, all the
irreducible quadrangulations have been already determined in [8] and [6]. There
exists only one irreducible quadrangulation of the sphere, which is the cycle of
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Figure 1 Face contraction at $\{b, d\}$

$Q_{P}^{1}$ $Q_{P}^{2}$

Figure 2 Irreducible quadrangulations of the projective plane

length 4. There exist two irreducible quadrangulations of the projective-plane
as shown in Figure 2. (Both of the octagon and the hexagon represent the
projective-planes by identifying each pair of antipodal points of them.) On the
torus, there exist eight irreducible quadrangulations [6].

In this paper, we shall give the complete list of irreducible
quadrangulations of the Klein bottle.

Theorem 1. There exist precisely ten irreducible quadrangulations of the
Klein bottle shown in Figures 3 and 4, up to homeomorphism.

In Figures 3 and 4, the top and bottom of each rectangle should be
identified in parallel and the pair of vertical sides in anti-parallel to represent
the Klein bottle. Figure 3 shows the five irreducible bipartite quadrangulations
of the Klein bottle while Figure 4 shows the five non-bipartite ones.

Our classification of irreducible quadrangulations of the Klein bottle has
several applications. Sections 3 and 4 present some of those, as follows.

A graph $G$ embedded in a closed surface $F^{2}$ is said to be n-representative if
every non-trivial simple closed curve on $F^{2}$ which intersects no edge of $G$ must
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$Q_{K}^{4}$ $Q_{K}^{5}$

Figure 3 Irreducible bipartite quadrangulations of the Klein bottle
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Figure 4 Irreducible non-bipartite quadrangulations of the Klein bottle

contain at least $n$ vertices of $G$ . The contraction of an edge $e$ of $G$ is to $e$ and to
identify its two endpoints. If $G$ is obtained from a graph $T$ by a sequence of
deletions and contractions of edges, then $G$ is said to be a minor of $T$ . A graph
$G$ 2-cell embedded in a closed surface $F^{2}$ is said to be minor-minimal n-
representative on $F^{2}$ if $G$ is n-representative on $F^{2}$ and no proper minor of $G$ is
n-representative. In Section 3, we shall list all the minor-minimal 2-
representative graphs on the Klein bottle. (These definition can also be found in
[9].)

There have been defined the two transformations of quadrangulations in
[3], called the diagonal slide and the diagonal rotation, as shown in Figure 5. If
the graph obtained by a diagonal slide is not a simple graph, then we don’t



128 A. NAKAMOTO

diagonal slide diagonal rotation

Figure 5 The diagonal slide and the diagonal rotation

carry out it. Two quadrangulations $G$ and $G^{\prime}$ of a closed surface $F^{2}$ are said to
be equivalent to each other (under diagonal slides and diagonal rotations),
denoted by $G\approx G^{\prime}$ , if they are transformed into each other by a sequence of
diagonal slides and diagonal rotations, up to homeomorphism. Observe that
both of the two transformations preserve the bipartiteness of quadrangulations.
Thus, a bipartite quadrangulation and a non-bipartite one are never equivalent
to each other. In [3], the author has shown the following theorem:

Theorem 2. (A. Nakamoto [3]) For any closed surface $F^{2}$ , there exists a
positive integer $N(F^{2})$ such that if $G_{1}$ and $G_{2}$ are two bipartite
quadrangulations of $F^{2}$ with $|V(G_{1})|=|V(G_{2})|\geq N(F^{2})$ , then $G_{1}$ and $G_{2}$ are
equivalent to each other.

It has been known that $N(S^{2})=4,N(P^{2})=7(8)$ and $N(T^{2})=10[6]$ , where
$S^{2},$ $P^{2}$ and $T^{2}$ denote the sphere, the projective plane and the torus. In Section
4, we shall determine $N(K^{2})$ for the Klein bottle $K^{2}$

Theorem 2 has been improved to hold for general quadrangulations [4]. Let
$G$ be a quadrangulation of a closed surface $F^{2}$ other than the sphere. It is easy
to see that two homotopic cycles of $G$ have the same parity of length. Thus
there exists a unique map $\rho_{G}$ : $\pi(F^{2})\rightarrow Z_{2}$ , which assigns the parity of length to
each cycle in $G$ . We call this map $\rho_{G}$ the cycle parity of G. Observe that a
diagonal slide and a diagonal rotation preserve the cycle parity. Thus, if two
quadrangulations $G_{1}$ and $G_{2}$ are transformed into each other by diagonal slides
and diagonal rotations, up to isotopy, then $\rho_{G_{1}}=\rho_{G_{2}}$ . Two cycle parities $\rho_{G_{1}}$ and

$\rho_{G_{2}}$ of $G_{1}$ and $G_{2}$ are said to be congruent, denoted by $\rho_{G_{1}}\equiv p_{G_{2}}$ , if there is a
homeomorphism $h:F^{2}\rightarrow F^{2}$ such that $\rho_{G_{I}}=\rho_{h(G_{2})}$ . So, if $G_{1}$ and $G_{2}$ are
transformed into each other by diagonal slides and diagonal rotations, up to
homeomorphism, then $\varphi_{G_{1}}\equiv\rho_{G_{2}}$ .

Theorem 3. (A. Nakamoto [4]) For any closed surface $F^{2}$ , there exists a
positive integer $N^{\prime}(F^{2})$ such that $G_{1}$ and $G_{2}$ are two quadrangulations of $F^{2}$
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with $|V(G_{1})|=|V(G_{2})|\geq N^{\prime}(F^{2})$ are equivalent to each other if and only if
$p_{G_{1}}\equiv p_{G_{2}}$ .

Since a bipartite quadrangulation $G$ can be characterized as one with the
trivial cycle parity, Theorem 3 implies Theorem 2. The projective plane and the
torus admit only one congruence class of non-bipartite quadrangulations,
respectively. It follows that any two non-bipartite quadrangulations of the
projective plane or the torus with the same number of vertices are equivalent to
each other $[8, 6]$ . However, in case of the Klein bottle, there are two different
congruence classes of non-bipartite quadrangulations [3]. In Section 4, we shall
also determine the value of $N^{\prime}(K^{2})$ for the Klein bottle $K^{2}$ in Theorem 3,
checking the equivalence of quadrangulations in each congruence class.

2. Proof of Theorem 1

This section is devoted to prove Theorem 1, that is, we shall determine the
complete list of irreducible quadrangulations of the Klein bottle.

We first give some general facts on irreducible quadrangulations. The
following Lemmas 4, 5 and 6 have been shown in [8], [3] and [6].

Lemma 4. Let $G$ be a quadrangulation of a closed surface $F^{2}$ . If there is a
2-cell region bounded by a cycle of length 4 in $G$ which is not a face of $G$ , then
there is a contractible face in this 2-cell.

Lemma 5. Let( $G$ be an irreducible quadrangulation of a closed surface
$F^{2}$ . Then, any 2-cell region bounded by a closed walk of length 6 in $G$ contains
either a single edge or a single vertex of degree 3.

Lemma 6. Let $G$ be an irreducible quadrangulation and $v$ a vertex of
degree 3 in $G$ with neighbors $v_{1},v_{3}$ and $v_{5}$ . Then there is a subgraph $H$ in $G$

with vertex set $\{v,v_{1},v_{2},v_{3},v_{4},v_{5},v_{6}\}$ such that:

(i) $v_{1}v_{2}\cdots v_{6}$ forms a closed walk of length 6 which bounds the union of
three faces of $G$ incident to $v$ .

(ii) each pair of $v_{j}$ and $v_{i+3}(i=1,2,3)$ are either adjacent or identical.

Note that if $v_{1},\cdots,v_{6}$ are all distinct, then $H$ is isomorphic to $K_{3.4}$ with partite
sets $\{v_{1},v_{3},v_{5}\}$ and $\{v,v_{2},v_{4},v_{6}\}$ . This case happens actually when $G$ is bipartite.

There are four types of simple closed curves on the Klein bottle [2]. Let $l$

be asimple closed curve on the Klein bottle. If $l$ bounds a2-cell, then 1is called
trivial. Otherwise, $l$ is called essential. If $l$ separates the Klein bottle into two
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M\"obius bands, then 1 is called an equator. If cutting the Klein bottle along $l$

yields one M\"obius band, then $l$ is called a longitude. In this case, a tubular
neighborhood of $l$ is homeomorphic to a M\"obius band. If cutting the Klein
bottle along $l$ yields an annulus, then $l$ is called a meridian.

If a quadrangulation of a closed surface has a vertex $v$ of degree 2, then a
face incident with $v$ is contractible. Hence any irreducible quadrangulation has
no vertex of degree less than 3. It can be easily obtained from the Euler’s
formula that the average degree of vertices in a quadrangulation of the Klein
bottle is equal to 4. Thus, either an irreducible quadrangulation of the Klein
bottle contains a vertex of degree 3 or it is 4-regular. We first consider
irreducible quadrangulations of the Klein bottle containing a vertex of degree 3.

Lemma 7. There exist precisely eight irreducible quadrangulations of the
Klein bottle which contain a vertex of degree 3, up to homeomorphism.

Proof. Let $G$ be a quadrangulation of the Klein bottle with a vertex $v$ of
degree 3. Let $H$ be the subgraph associated with $v$ as given in Lemma 6 and $R$

the hexagonal region bounded by the closed walk $v_{1}v_{2}v_{3}v_{4}v_{5}v_{6}$ in the Klein
bottle. Then we have three essential simple closed curves $l_{1},l_{2}$ and $l_{3}$ in the
Klein bottle such that $l_{i}$ runs across $R$ through $v_{j},v,v_{i+3}$ in this order and along
$v_{i+3}v_{j}$ . Since they cross one another at one point, at most one of $l_{1},l_{2}$ and $l_{3}$ is a
meridian.

(1) (2)

Figure 6 Case that $l_{1}$ is a meridian
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We first consider the case when one of $l_{1},l_{2}$ and $l_{3}$ , say $l_{1}$ , is a meridian.
Then there are the three cases (1), (2) and (3) shown in Figure 6, up to
homeomorphism. (Each rectangle represents the Klein bottle. Identify the top
and bottom lines in parallel and the both vertical lines in anti-parallel.) Note
that if $v_{2}=v_{5}$ but $v_{3}\neq v_{6}$ in Figure 6 (1), then the length of two homotopic
cycles $v_{2}v_{3}v$ and $v_{3}vv_{1}v_{6}$ would have different parities. By Lemma 4, a 2-cell
region bounded by a cycle of length 4 must be a face.

In Case (1), we have to quadrangulate the octagonal 2-cell region $F$

bounded by $v_{1}v_{2}v_{5}v_{4}v_{1}v_{6}v_{3}v_{4}$ .

Claim 1. There is a vertex of degree 3 in $IntF$ .

Proof. Since $H$ is the complete bipartite graph, $F$ includes no diagonal,
that is, no edge joining two vertices on $\partial F$ through $IntF$ . Thus, there is at least
one vertex in $IntF$ . Let $u_{1},\ldots,u_{m}$ be vertices in IntF and $K$ the graph induced by
$\{u_{I},\ldots,u_{m}\}$ . We denote the number of edges between $K$ and $\partial F$ by $e_{1}$ , and $|E(K)|$

by $e_{2}$ .
Suppose that any vertex in IntF has degree at least 4. By Euler’s formula

for a disk, we have that

$m+8-(e_{1}+e_{2}+8)+f=1\cdots\cdots(*)$

where $f$ denotes the number of faces of $G$ in $F$ . Since $F$ is quadrangulated, we
have that $4f=2(e_{1}+e_{2})+8$ . Since $\deg(v_{1})\geq 4$ for any $i$ , we have $\sum_{i=1}^{m}\deg(v_{1})$

$=e_{1}+2e_{2}\geq 4m$ . Substituting these two into $(*)$ , we obtain that $e_{1}\leq 4$ .
On the other hand, at least four faces are incident to $\partial F$ since $F$ contains no

diagonal. This implies that $e_{1}\leq 4$ and that if $e_{1}=4$ , then IntF contains only one
vertex which has degree 4. However, $G$ would have multiple edges in such a
case, a contradiction. Thus, the claim follows. $\blacksquare$

Figure 7
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Claim 2. There are two ways to quadrangulate $F$ , up to symmetry, $as$

shown in Figure 7.

Proof. Let $x$ be a vertex of degree 3 in $IntF$ , which exists actually by Claim
1. Then we can take the subgraph given in Lemma 6 for $x$ with vertices
$u_{1},\cdots,u_{6}$ , corresponding to $v_{1},\cdots,v_{6}$ . Now, we shall consider how the hexagonal
region bounded by $u_{1}u_{2}u_{3}u_{4}u_{5}u_{6}$ , denoted by $R^{\prime}$ , lies on $F$ . It is easy to see that
$\partial R^{\prime}\cap\partial F\neq\emptyset$ .

Since $F$ contains no diagonal, we have that $|\partial F\cap\{u_{1},\cdots,u_{6}\}|\leq 5$ and hence at
least one of $u_{1},\cdots,u_{6}$ , say $u_{1}$ , is contained in $IntF$ . Since there is an edge $u_{1}u_{4}$

outside $R^{\prime}$ and since the closed curve through $u_{1},x,u_{4}$ and along the edge $u_{1}u_{4}$

is essential, $u_{1}$ is joined to the vertices arising twice on $\partial F$ , say $v_{1}$ , and $u_{4}$

coincides with the antipodal $v_{1}$ . (See Figure 8 (1).)

Since $F$ contains no diagonal and no 2-cell region bounded by an odd cycle
and since there must be edges $u_{2}u_{5}$ and $u_{3}u_{6}$ outside $R^{\prime}$ , we can conclude that
$v_{5}=u_{2},$ $v_{4}=u_{3},$ $v_{6}=u_{5}$ and $v_{3}=u_{6}$ . Thus, we can obtain Figure 8 (2), up to
symmetry. Finally, there are two ways to add a vertex of degree 3 into $R^{\prime}$ .
Thus, we obtain Figure 7. $\blacksquare$

We have two irreducible bipartite quadrangulations of the Klein bottle
obtained from $H$ by adding (a) and (b) in Figure 7 to $F$ in Case (1) and denote
them by $Q_{K}^{2}$ and $Q_{K}^{3}$ , respectively. Note that $Q_{K}^{2}$ is isomorphic to $K_{3,6}$ .

In Cases (2) and (3), we have to quadrangulate the remaining hexagonal
regions $v_{1}v_{2}v_{4}v_{1}v_{3}v_{4}$ and $v_{1}v_{2}v_{5}v_{1}v_{6}v_{3}$ , respectively. In Case (2), we add a
$vertexuofdegree3byLemma5$ , since the addition of any edge yields multiple
edges. In the resulting quadrangulation, denoted by $Q_{K}^{7}$ , the vertex $u$ may be
assumed to be adjacent to $v_{1},v_{2}$ and $v_{4}$ , up to symmetry. In Case (3), there are
two ways to add an edge, $v_{3}v_{5}$ or $v_{2}v_{6}$ , to the hexagonal region to obtain $Q_{K}^{8}$ or
$Q_{K}^{9}$ , respectively.

Now, we consider the case when none of $l_{i}$ is a meridian. In this case, $l_{1},l_{2}$

Figure 8
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and $l_{3}$ are all longitude and homotopic to each other. Since the length of two
homotopic cycles have the same parity, $v_{1},\ldots,v_{6}$ have to be all distinct. Thus,
the embedding of $H$ of this type is essentially unique, up to homeomorphism, as
given in Figure 9. (Identify the top and bottom in parallel and the pair of
vertical sides in anti-parallel.) This embedding of $H$ into the Klein bottle is not
a 2-cell embedding since the face with the boundary cycle $v_{2}v_{3}v_{6}v_{5}$ is
homeomorphic to a M\"obius band. Then a quadrangulation of the projective
plane will be obtained from the quadrangulated M\"obius band by capping off its
boundary with an extra quadrilateral face. It is not difficult to see that each of
the faces of the projective plane, except the additional face, is not contractible.

Claim 3. There exists no quadrangulation of the projective plane with
precisely one contractible face.

Proof. Let $G$ be a quadrangulation of the projective plane with precisely
one contractible face $f$. We denote the quadrangulation obtained from $G$ by
contracting $f$ by $G/f$. Since a non-contractible face of $G$ is also non-contractible
in $G/f,$ $G/f$ is irreducible and hence $G$ can be obtained from either $Q_{P}^{1}$ or $Q_{P}^{2}$ by
splitting one vertex $v$ , that is, the inverse of a face contraction. If $\deg(v)\leq 3$ ,
then $G$ would have a vertex of degree 2 and there would be two contractible
faces of $G$ incident to the vertex, contrary to our assumption. Thus, we have
that $\deg(v)\geq 4$ and hence $G/f$ is not isomorphic to $Q_{P}^{2}$ . However, any splitting
of each vertex of degree 4 in $Q_{P}^{1}$ yields another contractible face other than $f$.
Therefore, the claim follows. $\blacksquare$

By Claim 3, the irreducible quadrangulations of the Klein bottle in question
must be those obtained from two irreudcible quadrangulations $P_{1}$ and $P_{2}$ of the
projective plane by pasting them together along one face. Therefore, we can
obtain three irreducible quadrangulations, namely $Q_{P}^{4},$ $Q_{P}^{5}$ and $Q_{P}^{10}$ , since
$P_{i}(i=1,2)$ is isomorphic to either of $Q_{P}^{1}$ or $Q_{P}^{2}$ shown in Figure 2.

Figure 9 Case that none of $l_{1},l_{2}$ and $l_{3}$ is a meridian



134 A. NAKAMOTO

Summarizing all, we have precisely eight irreducible quadrangulations; $Q_{K}^{2}$ ,
$Q_{K}^{3},Q_{K}^{4},Q_{K}^{5},Q_{K}^{6},Q_{K}^{7},Q_{K}^{8},Q_{K}^{9},Q_{K}^{10}$ . The proof of Lemma 7completes. $\blacksquare$

Nakamoto and Negami [5] have classified 4-regular quadrangulations of the
Klein bottle. Their classification plays an important role for our purpose.

Prepare the Cartesian product of $P_{\rho+1}\times P_{r+1}$ of two paths which
quadrangulates a rectangle of size $p\times r$ naturally, denoted by $R_{p.r}$ , where $P_{n}$

stands for a path with $n$ vertices. Identify the pair of horizontal sides of length $r$

in parallel and the pair of vertical sides of length $p$ in anti-parallel to get the
Klein bottle. The resulting 4-regular quadrangulation of the Klein bottle is
called the grid type and is denoted by $Q_{g}(p,r)$ . The simple closed curve which
comes from the vertical side of $R_{p,r}$ is a meridian. On the other hand, the
horizontal sides of $R_{p,r}$ form a longitude.

Now prepare $R_{2p.r}$ and identify the pair of its horizontal sides to get an
annulus with cycles $C$ and $C^{\prime}$ of length $2p$ on its ends. Attach two M\"obius

bands to $C$ and $C^{\prime}$ and add $p$ edges to join antipodal pairs of vertices on each of
$C$ and C’ in these M\"obius bands. The resulting 4-regular quadrangulation in the
Klein bottle is called the ladder type and denoted by $Q_{l}(2p,r)$ . This
quadrangulation $Q_{l}(2p,r)$ has “M\"obius ladders” at both ends. Note that $Q_{l}(2p,r)$

contains $p$ meridians of length $2r+2$ each of which is obtained from two
horizontal paths in $R_{2\rho.r}$ and two edges in the two M\"obius ladders.

The third type of 4-regular quadrangulations, called the mesh type, is
constructed as follows. Consider the rectangle

$\Omega=\{(x,y)\in R^{2}|0\leq x\leq r, 0\leq y\leq 2p\}$

and the set of points
$V=\{(x,y)\in\Omega\cap Z^{2}|x-y\equiv 1(mod 2)\}$

Let $M_{\rho,r}$ be the graph with vertex set $V$ such that each vertex $(x, y)$ is adjacent
to $(x\pm 1,y\pm 1)\in V$ . Identify the pair of horizontal sides of $\Omega$ in parallel to get a
cylinder and next glue its two ends incoherently to unify the vertices of $M_{\rho,r}$

along them in pair. The resulting graph in the Klein bottle is the mesh type and
is denoted by $Q_{m}(p,r)$ . Note that $Q_{m}(p,r)$ can be determined uniquely, not
depending on the way to glue the ends of the cylinder.

Lemma 8. (A. Nakamoto and S. Negami [5]) Every 4-regular qua-
drangulation of the Klein bottle can be uniquely presented as one of $Q_{g}(p,r)$ ,

$Q_{l}(2p,r)$ and $Q_{m}(p, r)$ with suitable parameters $p$ and $r$ .

Lemma 9. There exist precisely two irreducible 4-regular quadran-
gulations of the Klein bottle, up to homeomorphism.
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Proof. Observe that $Q_{g}(p,r)$ and $Q_{l}(2p, r)$ are not irreducible if they are
simple and that the only irreducible 4-regular quadrangulations of mesh type
are $Q_{m}(2,3)$ and $Q_{m}(2,4)$ , which are denoted by $Q_{K}^{6}$ and $Q_{K}^{1}$ , respectively, in our
classification. Thus, the lemma follows. $\blacksquare$

Theorem 1 follows from Lemmas 9 and 7.

3. Minor-minimal 2-representative graphs

In [11], it has been shown that there are precisely two minor-minimal 2-
representative graphs embedded in the projective-plane. Also, the author has
classified the seven minor-minimal 2-representative graphs on the torus [6]. In
this section, we shall determine such graphs on the Klein bottle as an
application of our classification of irreducible quadrangulations of the Klein
bottle.

The following two propositions are the keys to connect these two
classifications.

Proposition 10. Let $G$ be a 2-connected graph 2-cell embedded in a
closed surface $F^{2}$ . Then $G$ is 2-representative if and only if each face of $G$ is
bounded by a cycle.

Let $G$ be a graph 2-cell embedded in a closed surface $F^{2}$ with black
vertices. Put a white vertex into each face of $G$ , join it to the black vertices of $G$

lying along the boundary walk of the face and delete all the edges of $G$ . The
resulting graph is called the radial graph $R(G)$ of $G[1]$ . It is obvious that $R(G)$

is bipartite and each face of $R(G)$ is quadrilateral, but $R(G)$ is not always a
quadrangulation since it may not be simple. If there is a face of $G$ whose
boundary walk is not a cycle, then $R(G)$ has multiple edges.

Proposition 11. A graph $G$ is embedded in a closed surface $F^{2}$ so that
each face of $G$ is bounded by a cycle if and only if $R(G)$ is a bipartite
quadrangulation of $F^{2}$ .

Observe that a face contraction at white vertices in $R(G)$ corresponds to the
deletion of an edge in $G$ , and that a face contraction at black vertices in $R(G)$

corresponds to contraction of an edge in $G$ . Thus, a face contraction of $R(G)$

corresponds to one of two operations which produce a minor of $G$ . Therefore,
the following proposition holds immediately from Propositions 10 and 11.

Proposition 12. Let $G$ be a graph embedded in a closed surface $F^{2}$ with its



136 A. NAKAMOTO

radial graph $R(G)$ . Then, $G$ is minor-minimal 2-representative on $F^{2}$ if and
only if $R(G)$ is an irreducible bipartite quadrangulation of $F^{2}$ .

By Proposition 12, we can translate Theorem 1 into the following theorem,

regarding $Q_{k}^{i}(i=1,\cdots,5)$ as radial graphs.

Theorem 13. If $G$ is a minor-minimal 2-representative graph on the Klein
bottle, then $G$ is isomorphic to one of $B_{1},\cdots,B_{9}$ shown in Figure 10, up to
homeomorphism.

Four pairs $(B_{1},B_{2}),(B_{3},B_{4}),(B_{5},B_{6})$ and $(B_{8},B_{9})$ are dual pairs of graphs
while $B_{7}$ is a self-dual embedding. Moreover, $B_{3},B_{4},$ $B_{5}$ and $B_{6}$ are transformed
into each other by $Y-\Delta$ transformations, and so are $B_{7},B_{8}$ and $B_{9}$ . However,

$\{B_{3},B_{4},B_{5},B_{6}\}$ and $\{B_{7},B_{8},B_{9}\}$ are distinct $Y-\Delta$ equivalence classes.
In fact, the two minor-minimal 2-representative graphs on the projective-

plane, determined by Vitray [11], are obtained from $Q_{P}^{I}$ in Figure 2 by
regarding it as a radial graph. In [6], the minor-minimal 2-representative graphs
on the torus were determined from irreducible bipartite quadrangulations of the
torus. For the torus, Schrijver [10] has determined the number of $Y-\Delta$

equivalence classes of minor-minimal n-representative graphs and given the

$B_{1}$ $B_{2}$ $B_{3}$

$B_{4}$ $B_{5}$ $B_{6}$

$B_{7}$ $R$ $R$

Figure 10 Minor-minimal 2-representative graphs on the Klein bottle.
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concrete way to construct them for any $n$ . However, nothing had been known
about the Klein bottlal case until we did for $n=2$ .

4. Diagonal transformations in quadrangulations

Investigating the complete list of irreducible quadrangulations of the Klein
bottle, we shall determine the precise values of $N(K^{2})$ and $N^{\prime}(K^{2})$ in Theorems
2 and 3 for the Klein bottle $K^{2}$ . The following two lemmas have been shown in
[3].

Lemma 14. Any vertex of degree 2 of a quadrangulation of $F^{2}$ can be
moved into any face by a sequence of diagonal slides.

Let $\Gamma_{n}$ denote a quadrilateral region which contains $n$ vertices of degree 2
as shown in Figure 11. Let $T$ be a quadrangulation of a closed surface $F^{2}$ and
$\tau+r_{n}$ a quadrangulation of $F^{2}$ obtained from $T$ by adding $\Gamma_{n}$ to a face of $T$ .
Depending on our choice of a face of $T$ to add $\Gamma_{n},$ $\tau+r_{n}$ denotes various
quadrangulations. However, $T+\Gamma_{n}$ represents an unique equivalence class of
quadrangulations, by Lemma 14.

Lemma 15. Let $G$ and $T$ be two quadrangulations of a closed surface. If $G$

is contractible to $T$, then $G\approx T+\Gamma_{m}$ with $m=|V(G)|-|V(T)|$ .

Theorem 16. Any two bipartite quadrangulations $G_{1}$ and $G_{2}$ of the Klein
bottle $K^{2}$ are equivalent to each other if $|V(G_{1})|=|V(G_{2})|\geq N(K^{2})=10$ .
Furthermore, this lower bound is sharp.

Proof. Any bipartite quadrangulation $G$ of the Klein bottle with $m\geq 10$

vertices is contractible to one of $Q_{K}^{1},\cdots,Q_{K}^{5}$ , by Theorem 1, and hence it is
equivalent to one of $Q_{K}^{1}+\Gamma_{m-8},\cdots,Q_{K}^{5}+\Gamma_{m-10}$ , by Lemma 15. So it sufficies to
show that

$Q_{K}^{1}+\Gamma_{m-8}\approx Q_{K}^{2}+\Gamma_{m-9}\approx Q_{K}^{3}+\Gamma_{m-9}\approx Q_{K}^{4}+\Gamma_{m-10}\approx Q_{K}^{5}+\Gamma_{m-I0}$ .

Since any vertex of degree 2 can be carried into any face by Lemma 14, the

Figure 11 $\Gamma_{n}$
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above relation can be transformed into that

$Q_{K}^{1}+\Gamma_{2}+\Gamma_{m-10}\approx Q_{K}^{2}+\Gamma_{1}+\Gamma_{m-10}\approx Q_{K}^{3}+\Gamma_{1}+\Gamma_{m-10}$

$\approx Q_{K}^{4}+\Gamma_{m-10}\approx Q_{K}^{5}+\Gamma_{m-10}$

Notice that if two quadrangulations $G_{1}$ and $G_{2}$ are equivalent to each other,
then so are $G_{1}+\Gamma_{n}$ and $G_{2}+\Gamma_{n}$ for any $n\geq 0$ . So, the readers have only to
check that

$Q_{K}^{1}+\Gamma_{2}\approx Q_{K}^{2}+\Gamma_{1}\approx Q_{K}^{3}+\Gamma_{1}\approx Q_{K}^{4}\approx Q_{K}^{5}$ .

It can be done, and hence the minimum value of $N(K^{2})$ does not exceed 10.
Since $Q_{K}^{2}$ is a complete bipartite graph with 9 vertices, we can not apply

any diagonal slide and diagonal rotation to $Q_{K}^{2}$ . So, it is not equivalent to any
other quadrangulation. Thus, $Q_{K}^{2}$ and $Q_{K}^{1}+\Gamma_{1}$ are an inequivalent pair of
bipartite quadrangulations with $m=9$ . This implies that $N(K^{2})=10$ is sharp. $\blacksquare$

Observe that $Q_{K}^{7}$ has a meridian cycle of length 4 while $Q_{K}^{8}$ has a meridian
cycle of length3. Sincea meridian is unique on the Klein bottle, up to isotopy,
the cycle parities of $Q_{K}^{7}$ and $Q_{K}^{8}$ are not congruent. On the other hand, $\{Q_{K}^{6},Q_{K}^{7}\}$

and $\{Q_{K}^{8},Q_{K}^{9}, Q_{K}^{10}\}$ form two classes consisting of ones with congruent cycle
parities.

Theorem 17. Any two quadrangulations $G_{1}$ and $G_{2}$ of the Klein bottle $K^{2}$

with $|V(G_{1})|=|V(G_{2})|\geq N^{\prime}(K^{2})=10$ are equivalent to each other if and only if
their cycle parities are congruent.

Proof. Since the necessity is obvious, we shall show only the sufficiency.
Observe that $Q_{K}^{6}\approx Q_{K}^{7},Q_{K}^{8}+\Gamma_{1}\approx Q_{K}^{9}+\Gamma_{1}\approx Q_{K}^{10},Q_{K}^{8}\approx Q_{K}^{9}$ . Similarly to the proof of
Theorem 16, these imply that any two non-bipartite quadrangulations $G_{I}$ and
$G_{2}$ of the Klein bottle $K^{2}$ with $|V(G_{1})|=|V(G_{2})|\geq 7$ are equivalent to each other
under diagonal slides and diagonal rotations if $\rho_{G_{I}}\equiv\rho_{G_{2}}$ , since any face
contraction preserves the cycle parity [4]. Unifying Theorem 16 and the above,

we obtain the theorem. $\blacksquare$
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