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Abstract. A dipolarization in a Lie algebra g is a pair of polarizations (g*, f ) and
(8 , f ) satisfying the conditions: the two subalgebras gi span g , and the
intersection ' 8 is the isotropy subalgebra at the linear form f with respect to
the coadjoint representation of g. We construct here a class of dipolarizations in
certain solvable Lie algebras for which the two subalgebras of dipolarization are not
isomorphic.

Introduction

Let g be a real Lie algebra. In we define a dipolarization of g as a triple
{g*,g‘,f},where g® are subalgebras of g, f is a linear function on g, and the

following conditions are satisfied:

(D1) s=g8"+g,
(D2) f([X,8])=0 if and only if Xeg* Ny,
(D3) f(s*.8")=f([8".871)=0.

A dipolarization is called symmetric if the two subalgebras g* and g~ are
isomorphic to each other. Otherwise it is called nonsymmetric.

The background of this definition is the geometry of homogeneous
parakaehler manifolds. In [2] Kaneyuki obtained a remarkable class of
symmetric dipolarizations in real semisimple Lie algebras by using gradations.
In [3] the authors gave an example of nonsymmetric dipolarization in the Lie
algebra of upper triangular matrices, which is the first known nonsymmetric
dipolarization. In this note we shall construct a large class of nonsymmetric
dipolarizations in subalgebras of some real forms of complex semisimple Lie
algebras, which can be viewed as a generalization of the example of [3].
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Let f;" be a complex semisimple Lie algebra, b° be a Cartan subalgebra of
§°, and A be the root system of §° with respect to b°. Select a basis of §° mod
b {X,|X, €(&),, 0 € A} such that:

[Xa’ X,B] = caﬂXa+ﬂ’
where Cqp are real numbers (such a basis must exist, for example, a Chevalley
basis will do). Let H, =[X,,X_,]1(a € A), denote the space ¥ , ,RH, by b; set
g=b+ Y RX,.

aeAd

Then & is a real form of §°. Select a positive root system A" of A, and let IT
be the set of simple roots of A*. We set

g=b+ 3 RX,.

aeAt

. Then g is a real Lie algebra. We define the subalgebras of g:

gt = X RX,,
aeat
g =b+ RX,, .
aeat -1

Let (,) be an inner product in g such that {Ha,-’Xa| a,.el'[,aeA*} is an

orthonormal basis of g. We define a linear form fon g by

f(X)=X (X.H,)+ Zn (X,X,).

aell

Theorem. Let g, 8*,8  and f be defined as above, then {8*,5”,f} is a
dipolarization of w. Furthermore if 8¢ contains a simple ideal which is not
isomorphic to 381(2,C), then the dipolarization is nonsymmetric.

Proof. We first prove that {g*,g’,f} is a dipolarization of g. It is obvious
that g=g*+g , so [DI) is satisfied. If Yeg ' ng =X __.  RX,, then
[Y,slc X aem_nRXa. By the definition of f we see that f([Y,g]) = 0. Conversely,
suppose that Y e g and that f([Y,8]) = 0. We shall prove Yeg*ng . We write
Y=H+Y _,.y,X,, where Heb and y, €R. First we prove H=0.1f H#0,
then one can select a B eIl such that S(H)#0. Then

[Y,X51= BH)X, +Y,,
where Y eX . - RX,.Hence
FAY. X = F(B(H)X,+Y,) = B(HK X, X,) % 0.
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This is a contradiction. So H = 0. Now we will prove y,=0,Vaell.
Otherwise there exists a y e IT such that y, #0. Select an H,€b such that
Y(H,)#0 and a(H,)=0, Va e IT —{y}, then

[Y, Ho] = ""Y(H() )yyXy + Y2 ’
where Y, €Y ., RX,; thus,
f([Y9H0]) = _f(y(HO)yyXy)= _Y(Ho)yy<Xy’Xy> * O *

This also contradicts f([Y,5])=0. Thus y, =0,Vaell, that is, Yeg"  Nng™ so
(D2) is also satisfied. Next we prove [D3). Since [s*.8*1cX o RX,»
[g‘,g‘]cZaeA+_nRXa by the definition, we have f([g*,8"])=f (8,8 1) =0,
thus is satisfied and {g¢*,8", f} is a dipolarization of g

Now suppose that g contains a simple ideal that is not isomorphic to
3[(2,C), Then A" -1IT is not empty. Thus

[87.8"]1= X RX,.

aeat -1

Using this iteratively we see that g~ is not a nilpotent Lie algebra. But it is
obvious that g* is nilpotent, thus g* is not isomorphic to g~ and the
dipolarization is nonsymmetric. Q.E.D.

Next we shall give the matrix realizations of {g*,7,f} in the case §°=
A(I122), B (I22), C,(I23) or D,(I24).

- In the following, if A denotes a matrix, we always use a; to denote the (i,))
element of A.

Case 1. §° = A =3[(I+1,C)(122)

In this case we select

i=l

b= {diag(h, k)

1+1
S h =0 }

Then
a={x(a-2,)1i<j}.
where
A; (diag(h,,hy, -k, ) =h. .
Select

A ={r-4li<j}
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then
IT={A, -4, |1Si<l}.

By direct computation we obtain:
g={X e R |x. =0fori>j and TrX =0},
gt ={Xen|x, =0, i=12,,1+1},
g ={Xeg|x,, =0, i=12,-,1},

! i
X)) =3 x,.,+20+DY (I+1-i)x, for Xes.
i=

i=1
Remark. Let g'=g® RI],,,, where I, is the identity matrix,- and let
(8) =g*®RI,, (8)" =8 ®RI,,,
FUX+rL,)=r+ f(X)=20+1) T (+1-i)x,.

Then {(g')*,(g )", f’} is the dipolarization of [31.

Case 2. 5 =B, (122)
In this case we use the isomorphism:

gc E{XGC(ZHINZIH) |SX+ X'S=0},

100
where S=[0 0 I, |. Select
0170
i)"={diag(0,xl,xz,---,x,,—xl,—xz,---,—x,)|x,.EC};

then the root system is
A={i/lk,i(&,—}{j),i-(l,.+)_~j)llsksl,1Si<jsl},

where

A, (diag(0, x,, X5, +, X, =X, =Xy, 00— X)) = X; .

We can select
A ={,A -4, A+ A1k I<i< <)

then
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T={A =4, A=Ay A=A, A ).

By direct computation we obtain:

f(X) =I§a,.‘i+, +c, +2(21 - I)EI:(l+l—i)a‘i,
i=l

0 0 ¢
-c A B
0 0-A'
0 0 c
-c' A B
0 0 -A'
0 0 ¢
-c'" A B
0 0-A

0 0 ¢

|A,BeR™,a, =0fori>j,B'=—-B,c=(c)eR'},

eglaﬁ =09i= 1’27'“31 ’

€glc,=0,a,,,, =0,i=12,---,1-1p,

i+l

i
i=]

where X=/-c'" A B |e€g.

0 0-A

Case3.5°=C, (I23)
In this case we use the isomorphism:

§={X eC¥*|SX+X'S=0),

0 1
where S = . Select
-1, 0

then the root system is

where

Select

bc = {diag(xpxz""sxla_x|9_-x29"'9—x[)|xi GC};

A={t(A =), 24 +A),£24, |1<i<j<L1<k<I),

A (diag(x,, Xy, X=X, = Xy 00y — X)) = X,

121
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A ={A = A, A+ A, 20 1Si< j<L1Sk<I);

then
H={A =2y, Ay=Ayyos A — A, 24}

By direct computation we obtain:

A B
g= 0 A lA,BeR”",a,.j=Ofori>j,B'=B ,

B 0 1,2 l
+ = egla. =0, i=12,---,1 3,
8 =1, _y |€5l%

A B
g {( )eglb,, =0,a,,,=0, i=12,---,1-1 },

0 A’

-1 !
F(X) =38, +2b, + 40+ DX (U= i+2)a,,
i=1

i=l

A B

where X = €g.
0-A

Cased. g =D, (I24)
In this case we use the isomorphism:

§<={XeC? |X'S+SX =0},

0 1, [
where S = . Select
1, 0

bc ={diag(-x11 Xyt Xy — X, —xz,---,—x,)lx,. EC},

then
A={t(4, —lj),i(li +/1j)|ISi<j£l};
where
A (diag(x,, x,, -+, %, = X, — X5, 1, — X)) = X,.
Select

A*={/1,—2.j,/1,.+/lj|ISi<jsl};
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then
m={A -4,,4, = Ay A AL A +A}.

By direct computation we obtain:

A B Ix! . . t
8=1ly _u |4 BER.a,=0fori>j B ==B,

A B
b= 0 -A' €gla; =0,i=12,---,I¢,

_ A B .
g~ = 0 —ar €glb_,=0,a;,, =0i=12,-,1=1¢

-1 !
f(X)= Eai,iﬂ + bl—l,l +4(- l)é(l —Day,

A B
where X = €g.
0 -A’
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