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Abstract. In this note, certain structure theorems will be given for finite rings whose
prime radicals are in the center.

The famous theorem of Wedderburn tells us that a finite division ring is
necessarily commutative. In addition to the original proof by Wedderbum, purely
algebraic proofs of this theorem have been looking for. Detailed information on
this subject are in Nagahara and Tominaga [5]. As a consequence of this
research, in [2], Herstein proved that a finite ring $R$ is commutative, if all
nilpotent elements are contained in center of $R$ . We shall state related results for
a finite ring whose prime radical is in the center. Also we shall prove that a
subdirectly irreducible local ring with commuting nilpotent elements is left and
right self-injective.

In this note, all rings are finite rings which do not necessarily have identity.
For a ring $R,$ $P(R)$ denotes the (prime) radical of $R$ and $Z(R)$ denotes the center
of $R$ . It is well known that $P(R)$ coincides with the Jacobson radical for any finite
ring $R$ . A finite local ring is a finite ring with identity such that $R/P(R)$ is a finite
field.

We begin with the following theorem:

Theorem 1. Let $R$ be a finite ring. If the radical $P(R)$ of $R$ is in the center
$Z(R)$ of $R$ , then $R$ is the direct sum of a finite commutative ring and finitely many
matrix rings over finite fields.

Proof. It is well known that $R/P(R)$ is a finite direct sum of matrix rings
over finite fields. In particular, $R/P(R)$ has an element $f$. Let

$f=f_{1}+f_{2}+\cdots+f_{n}$
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be the decomposition of $f$ as the sum of orthogonal central primitive idempotents.
By [3, Proposition III.8.5], there exist orthogonal idempotents $e_{1},e_{2},\cdots,e_{n}$ such
that $e_{i}+P(R)=f_{i}$ for $i=1,2,\cdots,n$ . Set

$e=e_{1}+e_{2}+\cdots+e_{n}$ .
Even if $R$ does not have an identity, we shall use the notation $(1-e)a$ (resp. $a(1-$

$e))$ to mean a-ea (resp. a-ae) for $a\in R$. Then $(1-e)R$ and $R(1-e)$ are contained
in $P(R)$ , and hence in $Z(R)$ . Therefore we have

$(1-e)Re=eR(1-e)=0$ .
If $n>1$ , then, for any $a\in R$. $e_{1}ae_{2}\in P(R)\subset Z(R)$ , and so

$e_{1}ae_{2}=e_{1}^{2}ae_{2}=e_{1}ae_{2}e_{1}=0$ .

Similarly we obtain that $e_{i}{\rm Re}_{j}=0$ whenever $i\neq j$ . These mean that $e_{1},e_{2},\cdots,e_{n}$

are central orthogonal idempotents of $R$ . Therefore
$R=e_{1}R\oplus e_{2}R\oplus\cdots\oplus e_{n}R\oplus(1-e)R$

is a ring decomposition of $R$ with each $e_{j}R$ a primary ring, that is
$e_{j}R/P(e_{j}R)=M_{ni}(L_{j})$ for some finite field $L_{j}$ . If $n_{j}=1$ , then $e_{i}R/P(e_{i}R)-\{0\}$

forms a finite cyclic group. In this case, let $u$ be an element of $e_{j}R$ such that
$u+P(e_{j}R)$ generates this cyclic group. Then the ring $e_{j}R$ is generated by $u$ and
$P(e_{j}R)$ . Since $P(e_{j}R)$ is contained in the center of $e_{j}R$ , we conclude that $e_{j}R$ is
commutative. Now suppose that $n_{j}>1$ . By [3, Theorem III.9.1], $e_{i}R=M_{n_{j}}(S_{i})$ for
some finite local ring $S_{j}$ . By hypothesis, $P(M_{n_{l}}(S_{j}))=M_{n_{j}}(P(S_{j}))$ is contained in
the center of $M_{n_{j}}(S_{j})$ , and hence we conclude that $P(S_{j})=0$ , that is, $S_{j}$ is a finite
field. Therefore, if $n_{j}>1$ , then $e_{j}R$ is a matrix ring over a finite field. Since (1-
$e)R$ is a commutative nilpotent ring, this completes the proof.

As a corollary, we obtain the following generalization of [2, Theorem].

Corollary 1. Let $R$ be a finite ring. If the radical $P(R)$ of $R$ is in the center
$Z(R)$ of $R$ and if any two nilpotent elements of $R$ commute each other, then $R$ is
commutative.

A ring $R$ is subdirectly irreducible if the intersection of all its nonzero ideals
is not the zero ideal.

Theorem 2. Let $R$ be a finite local ring $R$ with commutative radical. If $R$ is
subdirectly irreducible, then $R$ is left and right self-injective.

Proof. If we set $I=Soc(_{R}R)$ , then either $I=R$ or $I\subset P(R)$ . In case $I=R$ ,
$R$ is finite field. So, assume that $I\subset P(R)$ . By hypothesis, we have $IP(R)=P(R)I$
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$=0$ . Hence $I$ is a $(R/P(R) , R/P(R))$ -bimodule. Let $R/P(R)=GF(p^{m})$ . Then $I$ is a
$GF(p^{m})\otimes_{GF(\rho)}GF(p^{m})$ -module. By [4, Lemma 3.9], $GF(p^{m})\otimes_{GF(\rho)}GF(p^{m})$ is
isomorphic to the direct sum of m-copies of $GF(p^{m})$ . Since $R$ is subdirectly
irreducible, $I$ is l-dimensional over $GF(p^{m})$ . Hence Soc$(RR)\cong_{R}R/P(R)$.Similarly
we can show that Soc$(R_{R})\cong R/P(R)_{R}$ . Hence $R$ is left and right self-injective by
[1, Theorem 31.3],

First we give an example of a self-injective finite local ring with com-
mutative radical.

Example 1. The abelian group $GF(4)\oplus GF(4)$ together with the multi-
plication

$(a,b)(c,d)=(ac,a^{2}d+bc)$

forms a ring, which we denote by $R$ . This $R$ is a noncommutative local ring $P(R)$

is the unique minimal ideal consisting of elements of the form $(0, b)$ . Clearly $P(R)$

is commutative, and hence $R$ is self-injective.

The following example shows that a subdirectly irreducible finite local ring
need not be self-injective.

Example 2. Let $F$ be a finite field and consider the subring

$R=\{(00aa0bacd]|a,b,c,d\in F\}$

of $M_{3}(F)$ . Then $R$ is a subdirectly irreducible local ring with unique minimal
ideal

$I=\{\left\{\begin{array}{ll}00 & c\\000 & \\000 & \end{array}\right\}|c\in F\}$ .

We can easily see that

Soc $(RR)=\{\left(\begin{array}{lll}0 & b & c\\000 & & \\000 & & \end{array}\right)|b,c\in F\}$

and
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Soc $(R_{R})=\{\left(\begin{array}{ll}00 & c\\00 & d\\000 & \end{array}\right)|c,d\in F\}$ .

Since Soc$(RR)\neq Soc(R_{R}),$ $R$ is not self-injective by [1, Corollary 31.8].
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