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Abstract. In this paper we study nonlinear evolution inclusions defined on a Gelfand triple
of spaces. First we prove an existence and compactness result for the set of solutions of the
“convex” problems. Then we look at extremal solutions and show that under reasonable
hypotheses such solutions exist. Moreover if the orientor field (multivalued perturbation
term) is h-Lipschitz in the state-variable, we show that the set of extremal solutions is dense
in the solution set of the convexified problem (“strong relaxation theorem”). We also show
that the solution set is compact in $C(T, H)$ if and only if the orientor field is convex-valued.
Finally we present two examples of parabolic distributed parameter systems which illustrate
the applicability of our abstract results.

1. Introduction

One of the central results in the theory of evolution inclusions (i.e.

evolution equations with multivalued terms) is the “relaxation theorem”. It says
that if the orientor field (i.e. multivalued perturbation term) is h-Lipschitz in
the state variable, then the solution set of the original problem is dense in that
of the convexified $pro_{\backslash }blem$ (i.e. the system obtained by replacing the orientor
field by its closed convex hull). Such a result is important in control theory in
connection with the ”bang-bang principle”. Roughly speaking it tells us that we
can produce a control system with essentially the same reachable sets, by
economizing in the set of admissible controls. In this paper we prove a strong
version of the relaxation theorem, in which the approximating trajectories are
”extremal solutions” (i.e. solutions moving through the extreme points of the
orientor field). First we prove a general existence result for the convexified
problem under very general conditions on the orientor field. Then we establish
the existence of extremal trajectories, under the stronger hypothesis that the
orientor field is h-continuous in $x$ . Subsequently by strengthening the
hypothesis further to h-Lipschitzness, we show that the extremal trajectories are
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dense in those of the convexified problem. A two-dimensional counterexample
due to Plis [11], shows that simple h-continuity in the x-variable is not enough
to guarantee the validity of the relaxation theorem. Finally we show that the
solution set is compact in $C(T, H)$ if and only if the orientor field is convex-
valued. In the last section we present examples of parabolic distributed
parameter systems.

2. Preliminaries
Let $(\Omega,\Sigma)$ be a measurable space and $X$ a separable Banach space.

Throughout this paper we will be using the following notations:

$P_{f(c)}(X)=$ {$A\subseteq X:nonempty$ , closed, (convex)}

and $P_{(\omega)k(c)}=$ { $A\subseteq X$ : nonempty, (weakly-) compact, (convex)}.

A multifunction (set-valued function) $F:\Omega\rightarrow P_{f}(X)$ is said to be mea-
surable if for every $x\in X,$ $\omega\rightarrow d(x, F(\omega))=\inf\{\Vert x-y\Vert:y\in F(\omega)\}$ is mea-
surable. Now let $\mu(\cdot)$ be a $\sigma- finite$ measure on $(\Omega,\Sigma)$ . By $S_{F}^{p},$ $ 1\leq p\leq\infty$ , we
denote the set of selectors of $F(\cdot)$ which belong in the Lebesgue-Bochner space
$L^{p}(\Omega,X)$ , i.e. $S_{F}^{p}=\{f\in L^{p}(\Omega, X):f(\omega)\in F(\omega)\mu-a.e.\}$ . In general this set may
be empty. However, if $F:\Omega\rightarrow 2^{X}\backslash \{\phi\}$ satisfies $GrF=\{(\omega,x)\in\Omega\times X$ :
$x\in F(\omega)\}\in\Sigma\times B(X)$ with $B(X)$ being the Borel $\sigma- field$ of $X$ (i.e. $F(\cdot)$ is graph
measurable), then $ S_{F}^{p}\neq\phi$ if and only if $\omega\rightarrow\inf\{\Vert x\Vert:x\in F(\omega)\}\in U(\Omega)$ . Note
that $forP_{f}(X)$ -valued multifunctions measurability implies graph measurability,
while the converse is true if $\Sigma$ is $\mu$ -complete. Also remark that $S_{F}^{p}$ is
decomposable, i.e. for every $(A,f_{1},f_{2})\in\Sigma\times S_{F}^{p}\times S_{F}^{\rho}$ we have $x_{4}f_{1}+x_{A^{c}}f_{2}\in S_{F}^{P}$ ,

with $x_{A}$ being the characteristic function of a set $ A\in\Sigma$ .
On $P_{f}(X)$ we can define a generalized metric, known in the literature as the

”Hausdorff metric” by setting, for $A,$ $C\in P_{f}(X),$ $h(A,C)=\max\{\sup_{a\in A}d(a,C),$ $\sup_{c\in C}$

$d(c,A)\}$ . It is well-known that $(P_{f}(X),h)$ is complete. A multifunction
$F:X\rightarrow P_{f}(X)$ is said to be h-continuous (resp. h-Lipschitz), if it is continuous
(resp. Lipschitz) from $X$ into $(P_{f}(X),h)$ .

Let $Y,$ $Z$ be Hausdorff topological spaces and $G:Y\rightarrow 2^{z}\backslash \{\phi\}$ . We say that
$G(\cdot)$ is upper-semicontinuous (usc) (resp. closed), if for every $C\subseteq Z$ closed
$G^{-}(C)=\{y\in Y:G(y)\cap C\neq\phi\}$ is closed (resp. $GrG=\{(y,z)\in Y\times Z:z\in G(y)$ ) is
closed). For a $P_{f}(Z)$ -valued multifunction upper-semicontinuity implies
closedness, while the converse is true if $\overline{G(Y)}$ is compact in Z. We say that $G(\cdot)$

is lower-semicontinuous (lsc), if for every $C\subseteq Z$ closed $G^{+}(C)=\{y\in Y$ :
$G(y)\subseteq C\}$ is closed. For details we refer to DeBlasi-Myjak [2] and Klein-
Thompson [8].



NONLINEAR EVOLUTION INCLUSIONS 75

Now let $H$ be a separable Hilbert space with norm denoted by . . Let $X$ be a
separable reflexive Banach space which embeds continuously and densely into
$H$ . Identifying $H$ with its dual (pivot space), we have $X\rightarrow H\rightarrow X^{*}$ with all
embeddings being continuous and dense. Such a triple of spaces is known in the
literature as “evolution triple” or ”Gelfand triple”. We will also assume that the
embeddings are compact. This is often the case in applications where evolution
triples are generated by Sobolev spaces. By $\Vert\cdot\Vert$ (resp. $\Vert\cdot\Vert_{*}$ ) we will denote the

norm of $X$ (resp. of $X^{*}$ ). Also by $\langle\cdot,\cdot\rangle$ we will denote the duality brackets for
the pair (X, $X^{*}$ ) and by (., $\cdot$ ) the inner-product of $H$ . The two are compatible in
the sense that $(\cdot,\cdot)=\langle\cdot,\cdot\rangle|_{XxH}$ . Let $T=[0, b]$ and $1<p,q<\infty,\frac{1}{p}+\frac{1}{q}=1$ and define
$W_{pq}(T)=\{x\in U(T,X):\dot{x}\in L^{q}(T,X^{*})\}$ The derivative involved in this definition

is understood in the sense of vector-valued distributions. Equipped with the
norm

$\Vert x\Vert W_{\rho q}(T)=(\Vert x\Vert^{2}+\Vert\dot{x}\Vert.)^{i}\iota^{p}(r.x)_{L^{q}(T.X)}$

$W_{\rho q}(T)$ becomes a separable reflexive Banach space. Moreover $W_{\rho q}(T)$ embeds
continuously into $C(T, H)$ and since we have assumed that $X\rightarrow H$ compactly,
we have that $W_{\rho q}(T)$ embeds compactly in $L^{p}(T,H)$ . For details we refer to
Zeidler [17].

A map $A:X\rightarrow X^{*}$ is said to be hemicontinuous, if for every $x,y,z\in X$ the
function $ t\rightarrow\langle A(x+ty),z\rangle$ is continuous from $[0,1]$ into $R$ . We say that $A(\cdot)$ is
monotone if for every $x,y\in X\langle A(x)-A(y),x-y\rangle\geq 0$ .

3. Convex existence theorem

Let $T=[0, b]$ and let (X, $H,X^{*}$ ) be an evolution triple of spaces with all
embeddings assumed to be compact. We consider the following multivalued
Cauchy problem:

$\left\{\begin{array}{ll}x(t)+A(t,x(t))\in F(t,x(t)) & a.e.\\x(0)=x_{0} & \end{array}\right\}$

By a solution of (1) we understand a function $x\in W_{pq}(T)$ such that
$x(t)+A(t,x(t))=f(t)a.e$ with $f\in S_{F}^{q}(\cdot,x(\cdot))$ and $x(O)=x_{0}$ . Since $W_{\rho q}(T)$ embeds
into $C(T, H),$ $x(O)$ makes sense. We will denote the solution set of (1) by $P_{c}(x_{0})$ .
In the next theorem we establish the nonemptiness and compactness of $P_{c}(x_{0})$ in
$C(T, H)$ . For this we need the following hypotheses.

$\underline{H(A)}:A:T\times X\rightarrow X^{*}$ is an operator such that
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(i) $t\rightarrow A(t,x)$ is measurable, $(ii)x\rightarrow A(t,x)$ is hemicontinuous monotone for
every $t$ , (iii) $|\mu(t,x)\Vert_{*}\leq a_{1}(t)+c_{1}\Vert x\Vert^{p-1}a.e$ for every $x$ with $a_{1}\in L^{q}(T),$ $c_{1}>0,p\geq 2$

$\frac{1}{p}+\frac{1}{q}=1$ , (iv) $\langle A(t,x),x\rangle\geq c[x]^{p}a.e$ with $c>0$ and $[\cdot]$ a quasinorm on $X$ such
that $[x]+\lambda|x|\geq\gamma\Vert x\Vert$ for some $\lambda,\gamma>0$ .

$\underline{H(F)}:F:T\times H\rightarrow P_{fc}(H)$ is a multifunction such that
(i) $t\rightarrow F(t,x)$ is measurable, (ii) $GrF(t,.)$ is sequentially closed in $H\times H_{\omega}$ (here
$H_{\omega}$ denotes the Hilbert space $H$ furnished with the weak topology), (iii)
$|F(t,x)|=\sup\{|v|:v\in F(t,x)\}\leq a_{2}(t)+c_{2}|x|a.e$ . with $a_{2}\in L^{2}(T),c_{2}>0$}.

Theorem 1. If hypotheses $H(A),$ $H(F)$ hold and $x_{0}\in H$ then $P_{c}(x_{0})$

$\subseteq C(T,H)$ is nonempty and compact.

Proof. We start by deriving some a priori bounds for the elements in
$P_{c}(x_{0})$ . So let $x\in P_{c}(x_{0})$ . By definition we have $x(t)+A(t,x(t))=f(t)$ $a.e.$ ,
$x(O)=x_{0}$ with $f\in S_{F(\cdot,x())}^{2}$ . Multiply this equation with $x$ and recall that there
exists $\beta_{1}>0$ such that $\Vert x\Vert_{*}\leq\beta_{1}|x|$ , to get:

$\langle x(t),x(t)\rangle+\langle A(t,x(t)),x(t)\rangle=\langle f(t),x(t)\rangle$ $a.e$ .
$\Rightarrow$

$\frac{1}{2}\frac{1}{dt}|x(t)|^{2}+c[x(t)]^{p}\leq\Vert f(t)\Vert_{*}\Vert x(t)\Vert\leq\hat{\beta}_{1}|f(t)|\cdot[x(t)]+\lambda\hat{\beta}_{1}|f(t)|\cdot|x(t)|$ $a.e$ .

with $\hat{\beta}_{1}=\frac{\beta_{1}}{\gamma}$ . From Cauchy’s inequality with $\epsilon>0$ we get

$\hat{\beta}_{1}|f(t)|[x(t)]\leq\hat{\beta}_{1}\frac{\epsilon^{p}}{p}[x(t)]^{\rho}+\hat{\beta}_{1}\frac{1}{\epsilon^{q}q}|f(t)|$

In addition from classical Cauchy’s inequality we have

$\lambda\hat{\beta}_{1}|f(t)||x(t)|\leq\frac{1}{2}\lambda\hat{\beta}_{1}|f(t)|^{2}+\frac{1}{2}\lambda\hat{\beta}_{I}|x(t)|^{2}$ .

So after integration over $[0, t]$ , we get

$\frac{1}{2}|x(t)|^{2}+c\int_{0}^{t}[x(s)]^{\rho}ds\leq\frac{1}{2}|x_{0}|^{2}+\hat{\beta}_{1}\frac{\epsilon^{p}}{p}\int_{0}^{t}[x(s)]^{p}ds+\hat{\beta}_{1}\frac{1}{\epsilon^{q}q}\int_{0}^{t}|f(s)|^{q}ds$

$+\frac{1}{2}\lambda\hat{\beta}_{1}\int_{0}^{t}|f(s)|^{2}ds+\frac{1}{2}\lambda\hat{\beta}_{1}\int_{0}^{t}|x(s)|^{2}ds$ .

Let $\epsilon>0$ be such that $\hat{\beta}_{1}\frac{\epsilon^{p}}{p}=\frac{c}{2}$ . Also note that since $2\leq p$ (hence $1<q\leq 2$ ),

we have
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$|f(s)|^{q}\leq[\max(1, |f(t)|)]^{2}\leq(1+|f(t)|)^{2}\leq 2+2|f(t)|^{2}$ .

So $\int_{0}^{t}|f(s)|^{q}ds\leq 2b+2\int_{0}^{t}|f(s)|^{2}ds$ . Hence we deduce that there exists $\gamma_{1}>0$ for

which we have

$\frac{1}{2}|x(t)|^{2}+\frac{c}{2}\int_{0}^{t}[x(s)]^{\rho}ds\leq\frac{1}{2}|x_{0}|^{2}+\gamma_{1}\int_{0}^{t}|f(s)|^{2}ds+\gamma_{1}\int_{0}^{t}|x(s)|^{2}ds$ .

Because of hypothesis $H(F)$ (iii) we have $|f(s)|^{2}\leq 2a_{2}(s)^{2}+2c_{2}|x(s)|^{2}a.e.$ . So
we can find some $\gamma_{2}>0$ such that

$\frac{1}{2}|x(t)|^{2}+\frac{c}{2}\int_{0}^{t}[x(s)]^{p}ds\leq\gamma_{2}+\gamma_{2}\int_{0}^{t}|x(s)|^{2}ds$ . (2)

Through Gronwall’s lemma, we see that there exists $M_{1}>0$ such that

$|x(t)|\leq M_{I}$ for every $t\in T$ and every $x\in P_{c}(x_{0})$ . (3)

From (2) and (3) above we get the existence of $M_{2}>0$ such that

$\int_{0}^{b}[x(s)]^{p}ds\leq M_{2}$ for every $x\in P_{c}(x_{0})$ . (4)

From (3) and (4) above and since $\gamma\Vert x\Vert\leq[x]+\lambda|x|$ and from $H(A)$ (iii) we get an
$M_{3}>0$ such that

$\Vert x\Vert L^{\rho}(T.X)\leq M_{3}$ and $\Vert x\Vert L^{q}(T,X)\leq M_{3}$ for every $x\in P_{c}(x_{0})$ . (5)

Thus without any loss of generality we may assume that $|F(t,x)|\leq\alpha_{2}(t)+$

$c_{2}M_{1}=\psi(t)a.e$ . with $\psi\in L^{2}(T)$ . Otherwise replace $F(t,x)$ by $F(t,r_{M_{1}}(x))$ where
$r_{M_{1}}(\cdot)$ is the $M_{1}$ -radial retraction on $H$ . Let $K=\{g\in L^{2}(T,H):|g(t)|\leq\psi(t)a.e.\}$ .
Furnished with the relative weak-L2 $(T,H)$ topology $K$ becomes a compact
metrizable space. In what follows this is the topology considered on $K$ . Let
$R:K\rightarrow P_{fc}(K)$ be the multifunction defined by $R(g)=S_{F\langle\cdot,p1g)\langle\cdot))}^{2}$ , where
$p:L^{2}(T,H)\rightarrow C(T,H)$ is the map which to each $g\in L^{2}(T,H)$ assigns the unique
solution of $\dot{x}(t)+A(t,x(t))=g(t)a.e.,$ $x(O)=x_{0}.We$ claim that GrR is sequentially
closed in $K\times K$ . To this end let $[g_{n},f_{n}]\in GrRn\geq 1$ and assume that $[g_{n},f_{n}]$

$\rightarrow[g,f]$ in $K\times K$ . From the same a priori estimation as in the beginning of this
proof, we get that $\{p(g_{n})\}_{n\geq 1}$ is bounded in $W_{pq}(T)$ , thus relative compact in
$L^{p}(T,H)$ . So by passing to a subsequence if necessary we may assume that
$p(g_{n})(t)\rightarrow p(g)(t)a.e$ . in $H$ . Using theorem 3.1 of [9] and hypothesis $H(F)(ii)$

we get $f(t)\in F(t,p(g)(t))a.e.$ . So $[g,f]\in GrR$ and hence GrR is sequentially
closed in $K\times K$ . Since $K$ (with the relative weak-L2 $(T,H)$ topology) is compact
metrizable, we can apply the Kakutani-Ky Fan fixed point theorem (see for
example Klein-Thompson [8]) and get $f\in R(f)$ . Evidently $ p(f)\in P_{c}(x_{0})\neq\emptyset$ .

Now we will show that $P_{c}(x_{0})$ is compact in $C(T,H)$ . To this end let
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$\{x_{l}\}_{n\geq 1}\subseteq S_{c}(x_{0})$ . We know that $\{x_{\iota\iota}\}_{n\geq 1}$ is bounded in $W_{pq}(T)$ , hence relatively

compact in $L^{2}(T,H)$ . So we may assume that $x_{n}\rightarrow x$ in $L^{2}(T,H)$ and $x_{l}\rightarrow^{\omega}x$ in
$W_{\rho q}(T)$ , Note that $x_{\iota}\in W_{0}=\{y\in W_{pq}(T):y(O)=x_{0}\}$ and $W_{0}$ is convex closed
(hence weakly closed). So $x\in W_{0}$ and thus $x(O)=x_{0}$ . Also let $f_{n}\in S_{F\langle\cdot.x_{1}\langle\cdot))}^{2}$ such
that $x_{n}=p(f_{n}),$ $n\geq 1$ . We may assume that $f_{n}\rightarrow^{\omega}f$ in $L^{2}(T,H)$ . Let
$\hat{A}:L^{\rho}(T,X)\rightarrow L^{q}(T,X^{*})$ be the Nemitsky operator corresponding to $A(t,x)$ ,

i.e. $\hat{A}(x)(\cdot)=A(\cdot,x(\cdot))$ . Moreover let $((\cdot,\cdot))$ be the duality brackets for the pair
$(L^{\rho}(T,X),L^{q}(T,X^{*}))$ . We have

$((x_{n},x_{n}-x))+((\hat{A}(x_{n}),x_{n}-x))=((f_{n},x_{n}-x))$ . (6)

From the integration by parts formula for functions in $W_{\rho q}(T)$ (see Zeidler [17],
p. 422) we have

$((x_{n},x_{n}-x))=\frac{1}{2}|x_{n}(b)-x(b)|^{2}+((x,x_{n}-x))$ (7)

Replacing (7) in (6) we get that

$((\hat{A}(x_{n}),x_{n}-x))\leq((f_{n},x_{n}-x))-((x,x_{n}-x))$ .

Also $((f_{n},x_{n}-x))=(f_{n},x_{n}-x)_{L^{2}\langle T,H)}$ (here by $(\cdot,\cdot)_{L^{2}(T.H)}$ we denote the inner
product in the Hilbert space $L^{2}(T,H))$ . So we get $\varlimsup((\hat{A}(x_{n}),x_{n}-x))\leq 0$ . Now
let $\xi_{n}(t)=\langle A(t,x_{n}(t))-A(t,x(t)),x_{n}(t)-x(t)\rangle\geq 0$ . From Fatou’s lemma we have

$0\leq\int_{0}^{b}\varliminf\xi_{n}(t)dt\leq\varlimsup\int_{0}^{b}\xi_{n}(t)dt=\varlimsup[((\hat{A}(x_{n}),x_{n}-x))-((\hat{A}(x),x_{n}-x))]\leq 0$

hence $\xi_{n}\rightarrow 0$ in $L^{1}(T)$ and so we may assume that $\xi_{n}(t)\rightarrow 0$ a.e. . We have

$ c_{3}[\Vert x_{n}(t)\Vert^{\rho}+||x(t)\Vert^{\rho}]-c_{4}-\Vert x_{n}(t)\Vert[a_{1}(t)+c_{1}\Vert x(t)\Vert^{\rho- 1}]-\Vert x(t)\Vert[a_{1}(t)+c_{1}\Vert x_{n}(t)\Vert^{\rho- 1}]a.e\xi_{n}(t)\geq c[[x_{n}(t)]^{\rho}+[x(t)]^{\rho}-||x(t)\Vert[a_{1}(t)+c_{1}||x(t)I|^{\rho- 1}]-||x(t)\Vert[a_{1}(t)+c_{1}\Vert x_{n}(t)\Vert^{\rho- 1}]\geq$

.

for some $c_{3},c_{4}>0$ . From the above inequality we deduce that $\{x_{n}\}_{n\geq 1}$ is bounded
in $L^{\infty}(T, H)$ . So we can apply corollary 4, p. 85 of Simon [14] and conclude that
$\{x_{l}\}_{n\geq 1}$ is relatively compact in $C(T,H)$ . Thus $x_{l}\rightarrow x$ in $C(T,H)$ . and
$x=p(f),$ $f\in S_{F\langle\cdot,x(\cdot))}^{2}$ , i.e. $x\in P_{\iota}(x_{0})$ . So $P_{c}(x_{0})$ is compact in $C(T,H)$ . Q.E.D.

A careful reading of the above proof reveals that the following result holds:

Corollary 2. If hypothesis $H(A)$ holds and $x_{0}\in H$ , then the solution map
$p:L^{2}(T,H)\rightarrow C(T,H)$ which to each $g\in L^{2}(T,H)$ assigns the unique solution of
$x(t)+A(t,x(t))=g(t)a.e.,$ $x(O)=x_{0}$ , is compact.
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4. Extremal solutions

In conjunction with (1) we also consider the following problem:

$x(t)+A(t,x(t)\in extF(t,x(t)a.e$
(8)

$x(0)=x_{0}$

Here by $extF(t, x)$ we denote the extreme points of the orientor field $F(t, x)$ .
By $P_{e}(x_{0})$ we will denote the solution set of (8). In this section we establish the
nonemptiness of $P_{e}(x_{0})$ .

In what follows let $L_{\omega}^{1}(T,H)$ denote the Lebesgue-Bochner space $L^{1}(T,H)$

equipped with norm $|\triangleright\Vert_{\omega}=\sup[\Vert\int_{s}^{t}x(\tau)d\tau\Vert:0\leq s\leq t\leq b]$ (the weak norm”). We

will need the following simple auxiliary result.
Lemma 3. $\{f_{n},f\}_{n\geq 1}\subseteq L^{2}(T,H),$ $f_{n}^{II}4f$ and $\sup_{n\geq 1}\Vert f_{n}\Vert L^{2}\langle T.H$ )

$<\infty$ then $f_{n}4f$ in

$L^{2}(T,H)$ .

Proof. Let $s(t)=\sum_{k=1}^{N}x_{\{t_{k-1},t_{k})}(t)_{V_{k}}\in L^{2}(T,H)$ be a step function. Then we have

$|(f_{n}-f,s)L^{2}\langle T,H$
)
$|\leq\sum_{k=1}^{N}\Vert\int_{t_{k- 1}}^{t_{k}}(f_{n}(s)-f(s))ds\Vert\cdot\Vert v_{k}\Vert\leq||f_{n}-j\Uparrow_{\omega}\cdot\sum_{k=1}^{N}\Vert v_{k}\Vert\rightarrow 0$ as $ n\rightarrow\infty$ .

Since step functions are dense in $L^{2}(T,H)$ , we conclude that $f_{n}4f$ in
$L^{2}(T,H)$ . Q.E.D.

To establish the existence of solutions for (8) we will need the following
stronger hypothesis on the orientor field $F(t, x)$ .
$H(F)_{1}$ : $F:T\times H\rightarrow P_{a]}\mathfrak{t}c(H)$ is a multifunction such that

(i) $t\rightarrow F(t,x)$ is measurable, (ii) $x\rightarrow F(t,x)$ is h-continuous, (iii) $|F(t,x)|\leq$

$a_{2}(t)+c_{2}|x|a.e$ . with $a_{2}\in L^{2}(T),c_{2}>0$ .

Theorem 4. If hypotheses $H(A),$ $H(F)_{1}$ hold and $x_{0}\in H$ , then $P_{e}(x_{0})$ is
nonempty.

Proof. As in the proof of Theorem 1, we may assume without any loss
of generality that $|F(t,x)|\leq\psi(t)$ $a.e$ . with $\psi\in L^{2}(T)$ . Again set $K=$

$\{g\in L^{2}(T,H):|g(t)|\leq\psi(t) a.e.\}$ and let $V_{0}=\overline{p(K)}^{C(T,H)}$ From corollary 2 we
know that $V_{0}$ is compact in $C$ $(T, H)$ . Hence so is $V=\overline{conv}V_{0}$ . Let
$R:V\rightarrow P_{akc}(L^{1}(T,H))$ be defined by $R(y)=S_{F\langle\cdot,y\langle\cdot))}^{1}$ . Invoking theorem 1.1 of
Tolstonogov [15] we get $r:V\rightarrow L_{\omega}^{1}(T,H)$ a continuous map such that
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$r(y)\in extR(y)=extS_{F(.v(\cdot))}^{1}$ for every $y\in V$ . From Benamara [1] we know that

ext $S_{F(\cdot,v())}^{1}=S_{extF\langle.y())}^{1}$ . Let $u=p\circ r:V\rightarrow V$ . Using Lemma 3 and Corollary 2 we
see that $u(\cdot)$ is compact. Thus via Schauder’s fixed point theorem we get $x=u(x)$ .
Evidently $ x\in P_{e}(x_{0})\neq\emptyset$ . Q.E.D.

5. Strong relaxation theorem

In this section we $\overline{e}$ stablish the density $ofP_{e}(x_{0})$ in $P_{c}(x_{0})$ for the $C(T, H)-$

norm and in addition that $P_{e}(x_{0})$ is a $G_{\delta}$ -subset of $P_{e}(x_{0})$ . To prove this last
property we will have to use the Choquet function associated with the orientor
field $F(t, x)$ . More specifically let $\{z_{k}\}_{k\geq 1}$ be a sequence which is dense in the
unit sphere of $H$ . Following DeBlasi-Pianigiani [3], [4] we define $\gamma_{F}$ :
$T\times H\times H\rightarrow R\cup\{+\infty\}$ by

$\gamma_{F}(t,x,v)=\left\{\begin{array}{ll}\sum_{k\geq 1}2^{-k}(z_{k},v)^{2} & ifv\in F(t,x)\\+\infty & otherwise\end{array}\right.$

Let $Aff(H)=$ {set of all continuous affine functions $a:H\rightarrow R$}. Let $\hat{\gamma}_{F}(t,x,v)$

$=\inf${$a(v):a\in aff(H)$ and $a(z)\geq\gamma_{F}(t,x,v)$ for every $z\in F(t,x)$ } (as usual we
adopt the convention that $\inf\emptyset=-\infty$ ). Then the Choquet function
$\delta_{F}$ : $T\times H\times H\rightarrow R\cup\{-\infty\}$ is defined by $\delta_{F}(t,x,v)=\hat{\gamma}_{F}(t,x,v)-\gamma_{F}(t,x,v)$ . The
next proposition summarizes the properties of $\delta_{F}(\cdot,\cdot,\cdot)$ (see DeBlasi-Pianigiani
[3], [4] and Papageorgiou [10]).

Proposition 5. If hypothesis $H(F)_{1}$ holds, then $(a)(t,x,v)\rightarrow\delta_{F}(t,x,v)$ is
measurable, $(b)(x,v)\rightarrow\delta_{F}(t,x,v)$ is $usc,$ $(c)v\rightarrow\delta_{F}(t,x,v)$ is concave and
strictly concave on $F(t,x,),$ $(d)0\leq\delta_{F}(t,x,v)\leq 4a_{2}(t)^{2}+4c_{2}^{2}|x|^{2}$ for every $ v\in$

$F(t,x),$ $(e)\delta_{F}(t,x,v)=0$ if and only if $v\in extF(t,x)$ .

As we already mentioned in the introduction, simple h-continuity of $F(\cdot,\cdot)$

does not suffice to have the desired relaxation theorem. So we impose the
following stronger conditions on $F(t,x)$ :
$H(F)_{2}$ : $F:T\times H\rightarrow P_{\omega \mathfrak{t}c}(H)$ is a multifunction such that

(i) $t\rightarrow F(t,x)$ is measurable, (ii) $h(F(t,x),F(t,y))\leq k(t)|x-y|a.e$ for every $x$

with $k\in L^{1}(T)$ , (iii) $|F(t,x)|\leq a_{2}(t)+c_{2}|x|a.e$ with $a_{2}\in L^{2}(T),c_{2}>0$ .
Then our stronger relaxation theorem reads as follows:

Theorem 6. If hypotheses $H(A),H(F)_{2}$ hold and $x_{0}\in H$, then $P_{e}(x_{0})$ is a
dense $G_{\delta}$ -subset of $P_{c}(x_{0})\subseteq C(T, H)$ .
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Proof. Let $\lambda>0$ and define

$ D_{\lambda}=\{x\in S_{c}(x_{0}):\int_{0}^{b}\delta_{F}(t,x(t),f(t))dt<\lambda$ , with $f\in S_{F(\cdot,x())}^{2}$ such that $x=p(f)\}$ .

Our claim is that $D_{\lambda}$ is open in $P_{c}(x_{0})$ . For this we will show that $P_{c}(x_{0})\backslash D_{\lambda}$ is
closed in $C(T,H)$ . So let $\{x_{n}\}_{n\geq 1}\subseteq P_{c}(x_{0})\backslash D_{\lambda}$ and suppose that $x_{n}\rightarrow x$ in
$C(\tilde{T},H)$ . We ’have $x_{n}=p(f_{n}),$ $n\geq 1$ with $f_{n}\in S_{F\langle\cdot.x(\cdot))}^{2}$ . We may assume that

$f_{n}\rightarrow\omega f$ in $L^{2}(T,H)$ and $f\in S_{F\langle,x(\cdot))}^{2}$ . Moreover from corollary 2 we have
$x_{n}\rightarrow x=p(f)$ in $C^{-}(\dot{T},H)$ . Also using proposition 5 and the upper semicontinuity
of the concave integral functional $(x,f)\rightarrow\int_{0}^{b}\delta_{F}(t,x(t),f(t))dt$ on
$L^{1}(T,H)\times L^{1}(T,H)_{\omega}$ , we get

$\lambda\leq\varlimsup\int_{0}^{b}\delta_{F}(t,x_{n}(t),f_{n}(t))dt\leq\int_{0}^{b}\delta_{F}(t,x(t),f(t))dt\Rightarrow x=p(f)\in P_{c}(x_{0})\backslash D_{\lambda}$ ,

which shows that $D_{\lambda}$ is open in $S_{c}(x_{0})$ .
Now let $\lambda_{n}\downarrow 0$ and set $D_{n}=D_{\lambda_{n}},$

$n\geq 1$ . We claim that $P_{e}(x_{0})=\bigcap_{n\geq 1}D_{n}$ . Evidently

from proposition 5 we have that $P_{e}(x_{0})\subseteq\bigcap_{n\geq 1}D_{n}$ . Then $\int_{0}^{b}\delta_{F}(t,x(t),f(t))dt=0$ ,

$x=p(f)$ , $f\in S_{F(\cdot.x())}^{2}$ . So $f(t)\in extF(t,x(t))a.e$ . and thus $x\in P_{e}(x_{0})$ . Therefore
finally $P_{e}(x_{0})=\bigcap_{n\geq 1}D_{n}$ which proves that $P_{e}(x_{0})$ is a $G_{\delta}$ -set in $P_{c}(x_{0})$ .

Next we will show that $P_{e}(x_{0})$ is dense in $P_{c}(x_{0})$ . To this end let $x\in P_{e}(x_{0})$ .
By definition $x=p(f)$ for some $f\in S_{F\langle\cdot,x(\cdot))}^{2}$ . Let $V\in P_{kc}(C(T,H))$ be as in the

proof of Theorem 4. Let $\theta=|V|=\sup\{\Vert v\Vert\}_{C(T,H)}$ : $y\in V$ } and define $R:V\rightarrow 2^{L^{1}(T.H)}$

by

$R(y)=\{g\in S_{F(.,y\langle))}^{1} : |f(t)-g(t)|<\frac{\epsilon}{4b\theta}+k(t)|x(t)-y(t)|a.e\}$ .

A straightforward application of Aumann’s selection theorem (see for example
Wagner [16], Theorem 5.10) reveals that $R(\cdot)$ has nonempty values which are
decomposable. Moreover proposition 2.3 of Fryszkowski [5] tells us that
$y\rightarrow R(y)$ is lsc.. Hence $y\rightarrow\overline{R(y)}$ is lsc with closed and decomposable values.
Apply the selection theorem of Fryszkowski [5] to get $r_{\epsilon}$ : $V\rightarrow L^{1}(T,H)$ a
continuous map such that $r_{\epsilon}(y)\in\overline{R(y)}$ for every $y\in V$ . In addition theorem 1.1
of Tolstonogov [15] gives us $v_{\epsilon}$ : $V\rightarrow L_{\omega}^{1}(T,H)$ continuous such that $v_{\epsilon}(y)$

$\in extR(y)=S_{extF(\cdot,y\langle\cdot))}^{1}$ and $\Vert r_{\epsilon}(y)-v_{\epsilon}(y)\Vert_{\omega}<\frac{\epsilon}{2}$ for every $y\in V$ .
Now let $\epsilon_{n}=\frac{1}{n}$ and set $r_{n}=r_{\epsilon_{n}}$ , $v_{n}=v_{\epsilon_{n}}n\geq 1$ as above. Let $y_{n}\in V$ such that

$(p\circ v_{n})(y_{n})=y_{n}$ (such an element exists by Schauder’s fixed point theorem). By
passing to a subsequence if necessary we may assume that $y_{n}\rightarrow y$ in $C(T, H)$ .
We have
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$\langle y_{n}(t)-x(t),y_{n}(t)-x(t)\rangle+\langle A(t,y_{n}(t))-A(t,x(t)),y_{n}(t)-x(t)\rangle$

$=\langle v_{n}(y_{n})(t)-f(t),y_{n}(t)-x(t)\rangle a.e$ .

$\Rightarrow\frac{1}{2}\frac{d}{dt}|y_{n}(t)-x(t)|^{2}\leq\langle v_{n}(y_{n})(t)-f(t),y_{n}(t)-x(t)\rangle a.e$ .

$\Rightarrow\frac{1}{2}|y_{n}(t)-x(t)|^{2}\leq\int_{0}^{t}(v_{n}(y_{n})(s)-f(s),y_{n}(s)-x(s))ds$

$=\int_{0}^{t}(v_{n}(y_{n})(s)-r_{n}(y_{n})(s),y_{n}(s)-x(s))ds\int_{0}^{t}(r_{n}(y_{n})(s)-f(s),y_{n}(s),-x(s))ds$

$\leq\int_{0}^{t}(v_{n}(y_{n})(s)-r_{n}(y_{n})(s),y_{n}(s)-x(s)ds+\int_{0}^{t}k(s)|y_{n}(s)-x(s)|^{2}ds+\frac{1}{2n}$ .

Note that $\Vert v_{n}(y_{n})-r_{n}(y_{n})\Vert_{\omega}\rightarrow 0$ and so by lemma 3 we have $v_{n}(y_{n})-r_{n}(y_{n})$

$\rightarrow^{\omega}0$ in $L^{2}(T,H)$ . Therefore we have
$\int_{0}^{t}(v_{n}(y_{n})(s)-r_{n}(y_{n})(s),y_{n}(s)-x(s))ds\rightarrow 0$ , as $ n\rightarrow\infty$ .

Thus in the limit as $ n\rightarrow\infty$ we get

$|y(t)-x(t)|^{2}\leq 2\int_{0}^{t}k(s)|y(s)-x(s)|^{2}ds$

$\Rightarrow x=y$ (Gronwall’s lemma).

So $y_{n}\rightarrow x$ in $C(T, H)$ and since $y_{n}\in P_{e}(x_{0})$ and $P_{c}(x_{0})$ is compact (cf. Theorem
1) we conclude that $P_{c}(x_{0})=\overline{P_{e}(x_{0})}^{C(T,H)}$ Q.E.D.

6. Convexity vs compactness.

In this section we show that the solution set of (1) is compact in $C(T, H)$ if
and only if the multivalued perturbation term $F(t, x)$ is convex-valued. This
explains why in optimal control theory relaxable systems are the right systems
to study.

We will need the following hypotheses:
$\underline{H(F)}_{3}$ : $F:T\times H\rightarrow P_{f}(H)$ is a multifunction such that
(i) $t\rightarrow F(t,x)$ is measurable, (ii) $h(F(t,x),$ $F(t,y))\leq k(t)|x-y|a.e$ . for every $x,y$

with $k\in L^{1}(T)$ , (iii) $|F(t,x)|\leq a_{2}(t)+c_{2}|x|a.e$ with $a_{2}\in L^{2}(T),$ $c_{2}>0$ .
$\underline{H_{0}}:For$ every $t_{0}\in[0,b$) and for every $x_{0}\in H$ there exists $\delta>0$ such that $T_{\delta}=$

$[t_{0},t_{0}+\delta]\subseteq T$ for which the solution set of $x(t)+A(t,x(t))\in F(t,x(t))a.e$ . on
$T_{\delta},$ $x(t_{0})=x_{0}$ denoted by $P(x_{0}; T_{\delta})$ is nonempty compact in $C(T_{\delta},H)$ (the

solution set of the evolution inclusion ith $F(t, x)$ replaced by $\overline{conv}F(t,x)$ will be
denoted as before by $P_{c}(x_{0} ; T_{\delta})$ .

We will need the following auxiliary result which can be found in
Papageorgiou [6], proposition 3.1.
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Lemma 7. If $V$ is a compact metric space, $Y$ is a metric space, $Z$ a Polish
space and $F:V\times Y\rightarrow P_{f}(Z)$ is a multifunction such that

$(a)(v,y)\rightarrow F(v,y)$ is measurable,
$(b)y\rightarrow F(v,y)$ is l.s.c.,

then for every $\epsilon>0$ there exists $V_{\epsilon}\subseteq V$ compact with $\lambda(V_{\epsilon}^{\mathfrak{c}})<e$ such that $F|_{V_{\epsilon}xY}$

is l.s.c..
This lemma provides a multivalued version of the well-known Scorza-

Dragoni theorem for single-valued maps. Using this lemma we can now prove
the following theorem.

Theorem 8. If hypotheses $H(A),$ $H(F)_{3}$ and $H_{0}$ hold, then for every
$[t,x]\in(T\backslash N)\times H,$ $\lambda(N)=0,$ $F(t,x)\in P_{ak}(H)$ .

Proof. Suppose not. We will establish the existence of a $(t_{0},x_{0})\in[0,b)\times H$

such that $P(x_{0} ; T_{\delta})$ is closed in $C(T, H)$ and $P(x_{0} ; T_{\delta})\neq P_{c}(x_{0}; T_{\delta})$ , which of
course contradicts Theorem 6.

So let $T_{1}\subseteq T$ be Lebesgue measurable with $\lambda(T_{1})>0$ ( $\lambda(\cdot)$ being the
Lebesgue measure) such that for every $t\in T_{1}$ we have there exists $x_{t}\in H$ for
which $F(t,x_{t})$ is not convex. From hypotheses $H(F)_{3}(i)$ and (ii) we have that
$(t,x)\rightarrow F(t,x)$ is measurable. Via Rzezuchowski’s result [13] we can find a
multifunction $F_{0}$ : $T\times H\rightarrow P_{f}(H)$ such that (a) $F_{0}(t,x)\subseteq F(t,x)$ for every
$(t,x)\in(T\backslash N)\times H$, $\lambda(N)=0$ ; (b) If $\Delta\subseteq T$ is Lebesgue measurable and
$x,y:\Delta\rightarrow H$ are measurable functions, then $y(t)\in F(t,x(t))a.e$ . on $\Delta$ implies
$y(t)\in F_{0}(t,x(t))a.e$ . on $\Delta$ ; (c) for every $\epsilon>0$ there exists $C_{\epsilon}\subseteq T$ closed subset
with $\lambda(T\backslash C_{\epsilon})\leq\epsilon$ such that $F_{0}|C_{\epsilon}\times H$ has a closed graph. Note that the
nonemptiness of the values of $F_{0}$ follows from theorem 3.1 of Jarnik-Kurzweil
[7]. Invoking Lemma 7 above with $e=\lambda(T_{1})>0$ and $V=C_{\epsilon/2}$ (with $C_{\epsilon/2}$ as
above) we can produce $T_{2}\subseteq C_{\epsilon/2}\subseteq T$ closed with $\lambda(C_{\epsilon/2}\backslash T_{2})$ $<?\epsilon$ hence
$\lambda(T_{1}\backslash T_{2})<\epsilon$ and $F|_{T_{2}xH}$ l.s.c.. Evidently $\lambda(T_{2})>b-\lambda(T_{1})$ and $\lambda(T_{1}\cap T_{2})>0$ . Let
$t_{0}\in T_{1}\cap T_{2}t_{0}<b$ be a Lebesgue point (i.e. a point of density) for $T_{1}\cap T_{2}$ . Then
there exists $x_{0}\in H$ such that $F(t_{0},x_{0})$ is not convex. This means that we can
find $y_{0}\in\overline{conv}F(t_{0},x_{0})\backslash F(t_{0},x_{0})$ . Use Michael’s selection theorem (see Klein-
Thompson [8]) to find $g:T_{2}\times H\rightarrow H$ a continuous map such that $g(t,x)$

$\in\overline{conv}F(t,x)$ for every $(t,x)\in T_{2}\times H$ and $g(t_{0},x_{0})=y_{0}$ . Define $\hat{F}$ : $T\times H\rightarrow P_{f}(H)$

by setting $\hat{F}(t,x)=\overline{conv}F(t,x)$ if $(t,x)\in T_{2}\times H$ and $\hat{F}(t,x)=\{g(t,x)\}$ if $(t,x)$

$\in T_{2}\times H$ . Clearly $\hat{F}(\cdot,\cdot)$ is measurable in $(t, x)$ and l.s. $c$ . in $x$ . Then consider the
following multivalued Cauchy problem
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$\dot{x}(t)+A(t,x(t))\in\hat{F}(t,x(t))a.e$ . on $T_{0}=[t_{0},b]$

(9)
$x(t_{0})=x_{0}$

Problem (9) above has a solution $x\not\in P(x_{0} ;T_{0})$ , but $x\not\in P(x_{0};T_{0})$ as we will now
show. Suppose the contrary. Then $\dot{x}(t)+A(t,x(t))\in F(t,x(t))a.e$ . on $T_{0},$ $x(t_{0})$

$=x_{0}$ .Then $\dot{x}(t)+A(t,x(t))\in F_{0}(t,x(t))a.e$ . on $T_{0}$ and so $g(t,x(t))\in F_{0}(t,x(t))a.e$ .
on $T_{2}\backslash N,$ $\lambda(N)=0$ , For any $\delta>0,$ $[t_{0},t_{0}+\delta]\cap T_{2}\backslash N$ has positive Lebesgue
measure. We claim that there exists $\delta_{1}>0$ such that for $t\in[t_{0},t_{0}+\delta_{1}]\cap T_{2}\backslash N$

we have $d(g(t,x(t)),F_{0}(t,x(t))>0$ . If not there exists a sequence $t_{n}\rightarrow t_{0}$ such that
$g(t_{n},x(t_{n}))\in F_{0}(t_{n},x(t_{n}))n\geq 1$ . But recall that $F_{0}|T_{2}\times H$ has a closed graph. So
$g(t_{0},x_{0})\in F_{0}(t_{0},x_{0})$ and $d(g(t_{0},x_{0}),F_{0}(t_{0},x_{0}))=0$ a contradiction. Thus
$x\not\in P(x_{0};T_{0})$ . Now if $\delta_{2}>0$ is as postulated by hypotheses $H_{0}$ and
$\delta=\min[\delta_{1},\delta_{2}]$ , we have $\overline{P(x_{0};T_{\delta})}^{C\langle T,H)}\neq P_{c}(x_{0}; T_{\delta})$ a contradiction to theorem 6.

Q.E.D.
7. Examples

Let $T=[0, b]$ and $Z$ a bounded domain in $R^{N}$ with smooth boundary $\Gamma$ . Let
$D_{k}=\frac{\partial}{\&_{k}}k\in\{1,2,\cdots,N\}$ and for any multi-index $\alpha=(\alpha_{1},\cdots,\alpha_{N})$ of positive

integers let $D^{\alpha}=D_{1}^{\alpha_{1}}\cdots D_{N}^{\alpha_{N}}$ . Also let $|\alpha|$ be the length of the multi-index. Let

$N_{m}=\frac{(N+m)!}{N!m!}$ Given $x\in W_{0}^{m,p}(Z)$ by $\eta(x)$ we denote the $N_{m}$ -tuple of partial

derivatives of $x(\cdot)$ up to order $m$ , i.e. $\eta(x)=\{D^{a}x:|\alpha|\leq m\}\subseteq L^{2}(Z)\times\cdots\times L^{2}(Z)$

( $N_{m}$ -times). We consider the following problem:

$\{_{D|0a.efor|\sqrt{}\leq m-1,x}\frac{\&}{a,\rho_{|x}}+\Sigma(- 1)^{1(r}A_{\alpha}(t,z,\eta(x(t,z)))=u(t,z)a.eonT\times Zr\times r^{=}|q\leq m\Vert u(t,\cdot)\Vert_{2}\leq r(t,x(t,))\int.z\xi(z,x(b,z))dz.\rightarrow\inf=\xi a.e.onT(0,z)=x_{0}(z)a.eonZ\}$ (10)

Here $A_{\alpha}(t,z,\eta)$ $|\alpha|\leq m$ are R-valued functions defined on $T\times Z\times R^{N_{m}}$ and
$r:T\times L^{2}(Z)\rightarrow R_{+}$ . Problem (10) corresponds to a terminal optimal control of a
parabolic distributed parameter systems with a priori feedback (i.e. state-
dependent control constraints).

Our hypotheses on the data of (10) are the following:
$H(A)_{1}$ : $A_{\alpha}$ : $\tau\times z\rightarrow R^{N_{m}}\rightarrow R$ is a function such that

(i) $(t,z)\rightarrow A_{\alpha}(t,z,\eta)$ is measurable,

(ii) $\eta\rightarrow A_{\alpha}(t,z,\eta)$ is continuous,
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(iii)
$\sum_{|q\leq m}(A_{\alpha}(t,z,\eta)-A_{a}(t,z,\eta^{t}))(\eta_{\alpha}-\eta_{\alpha}^{t})\geq 0a.e$ . on $Z$ ,

(iv)
$|A_{\alpha}(t,z,\eta)|\leq a_{1}(t,z)+c_{I}\Vert\eta\Vert^{\rho-I}2\leq p<\infty,\frac{1}{\rho}+\frac{1}{q}=1,a.e$

. on $T\times Z$ with $a_{1}\in L^{q}(T\times Z),$ $c_{1}>0$ ,

(v)
$\sum_{|q\leq m}A_{\alpha}(t,z,\eta)\eta_{\alpha}\geq c\Vert\eta\Vert^{\rho}a.e$ . on $Z$ with $c>0$ .

$\underline{H(r)};r;T\times L^{2}(Z)\rightarrow R_{+}$ is a function such that
(i) $t\rightarrow r(t,x)$ is measurable,

(ii) $|r(t,x)-r(t,y)|\leq k(t)|\triangleright-y\Vert_{2}a.e$ . with $k\in L^{I}(T)$ ,
(iii) $r(t,x)\leq a_{2}(t)+c_{2}|\triangleright\Vert_{2}a.e$ . with $a_{2}\in L^{2}(T),$ $c_{2}>0$ .
$\underline{H(\xi)}:\xi:Z\times R\rightarrow R$ is a function such that
(i) $z\rightarrow\xi(z,r)$ is measurable,
(ii) $r\rightarrow\xi(z,r)$ is continuous,
(iii) $|\xi(z,r)|\leq a_{3}(z)+c_{3}|r|a.e$ . with $a_{2}\in L^{2}(Z),$ $c_{3}>0$ .

In this case the evolution triple is $X=W_{0}^{m.p}(Z),H=L^{2}(Z)$ and $X^{*}=W^{-m.q}$

(Z). From the Sobolev embedding theorem we know that all the embeddings are
compact. Let $a:T\times W_{0}^{m,p}(Z)\times W_{0}^{m.p}(Z)\rightarrow R$ be the time-varying Dirichlet form
defined by $a(t,x,y)=\sum_{|\iota\eta\leq m}\int_{z}A_{a}(t,z,\eta(x(z)))D^{\alpha}y(z)dz$ . Via H\"older’s inequality we

can show that

$|a(t,x,y)|\leq\gamma_{1}(\Vert a_{I}(t,\cdot)\Vert_{q}+\Vert x\Vert_{m.p}^{p- 1})\Vert y\Vert_{m,p}$

for some $\gamma_{1}>0$ (here $\Vert\cdot\Vert_{m.p}$ denotes the norm of $W_{0}^{m.p}(Z)$ ) So we can find
$A:T\times W_{0}^{m,p}(Z)\rightarrow W^{-m.q}(Z)$ such that $ a(t,x,y)=\langle A(t,x),y\rangle$ . Using hypothesis
$H(A)_{1}$ we can easily check that $H(A)$ holds. Also let $F:T\times L^{2}(Z)\rightarrow P_{akc}(L^{2}(Z))$

be defined by $F(t,x)=\{u\in L^{2}(Z);\Vert u\Vert_{2}\leq r(t,x)\}$ . By virtue of $H(r)$ we
immediately see that $H(F)_{2}$ holds. Finally let $\hat{\xi}:L^{2}(Z)\rightarrow R$ be defined by
$\hat{\xi}(x)=\int_{z}\xi(z,x(z))dz$ . Because of $H(\xi),\hat{\xi}(\cdot)$ is continuous. Rewrite (10) in the

following equivalent abstract form:

$\left\{\begin{array}{l}\hat{\xi}(x)\rightarrow\inf=m\\s.t.\dot{x}(t)+A(t,x(t))\in F(t,x(t))a.e.\\x(0)=x_{0}(\cdot)\end{array}\right\}$ (10)

Using Theorems 1 and 6 we get:

Theorem 9. If hypotheses $H(A_{1}),H(r),H(\xi)$ hold and $x(0,\cdot)\in L^{2}(Z)$ then
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problem (10) has a solution $x\in C(T, L^{2}(Z))\cap L^{2}(T, W_{0}^{m,\rho}(Z))$ with $\frac{\&}{h}\in L^{2}$

$(T, W^{-m,q}(Z))$ and also given any $\epsilon>0$ there exists a state $y_{\epsilon}\in C(T,L^{2}(Z))$

$\cap L^{2}(T,W_{0}^{m,\rho}(Z))$ with $\frac{\phi_{\epsilon}}{\delta}\in L^{2}(T,W_{0}^{-m,\rho}(Z))$ generated by a control function
$v\in extF(t,y_{\epsilon})$ ( bang-bang control”) such that $\xi_{(y_{\epsilon})-\hat{\xi}(x)}=\hat{\xi}(y_{\epsilon})-\xi\leq\epsilon$ .

Now consider a problem with a discontinuous nonlinearity $u:Z\times R\rightarrow R$ .
Following Rauch [12] we define $\underline{u}(z,x)=\varliminf_{v\rightarrow X}u(x,y)$ and $\overline{u}(z,x)=\varlimsup_{y\rightarrow\chi}u(z,y)$ . We

know (see Rauch [12]) that $\underline{u}(z,\cdot)$ is lsc and $\overline{u}(z,\cdot)$ is usc. So if we set
$F_{0}(t,z,x)=\{v\in R: \xi(t)\underline{u}(z,x)\leq v\leq\xi(t)\overline{u}(z,x)\}$ , $\xi(t)\geq 0$ $t\in T$, we have that
$F_{0}(t,z,\cdot)$ is usc (see Klein-Thompson [8]). Consider the following multivalued
p.d. $e$ .

$\{\sum_{k=1}^{N}|D_{k}x|^{\rho-2}D_{k}x\cos(n,z_{k})_{R^{N}}=v(t.’ z)onT\times\Gamma,p\geq 2k=1x(0z)=x_{0}(z)a.eonZ\}$ (11)

We need the following hypotheses on the data of (11).

$\underline{H(u)}:u:Z\times R\rightarrow R$ is a function such that both $\underline{u}$ and $\overline{u}$ are superpositionally
measurable (i.e. for every $x:Z\rightarrow R$ .measurable, $z\rightarrow\underline{u}(z,x(z))$ and $ z\rightarrow$

$\overline{u}(z,x(z))$ are both measurable) and $|u(z,x)|\leq a_{2}(z)+c_{2}|x|a.e$ . with $a_{2}\in L^{2}(z)$ ,

$c_{2}>0$ .
$H(\xi)_{1}$ : $\xi\in L^{2}(T),\xi(t)\geq 0a.e$ .

$H(v)_{1}$ : $v\in L^{2}(T, W^{q}(\Gamma))\perp,p$ .

In this case the evolution triple is $X=W^{1.p}(Z),H=L^{2}(Z)$ and
$X^{*}=[W^{1.\rho}(Z)]^{*}$ . As before by Sobolev’s embedding theorem, all embeddings are
compact. Let $A:X\rightarrow X^{*}$ be defined by

$\langle A(x),y\rangle=\sum_{k=1}^{N}\int_{z}|D_{k}x|^{p-2}D_{k}xD_{k}ydz$ .

Using the seminorm $[x]=$ $(\sum_{k=1}^{N} \int_{z}|D_{k}x|^{\rho^{1}}dz)^{\rho}$ on $W^{1.p}(Z)$ , we see that $A(\cdot)satisfies$

hypothesis $H(A)$ . Let $F(t,x)=S_{F_{0}(t..x\langle\cdot))}^{2}$ . Hypothesis $H(u)guarantees$ that $H(F)$

holds. So we can apply Theorem 1 and get:



NONLINEAR EVOLUTION INCLUSIONS 87

Theorem 10. If hypotheses $H(u),$ $H(\xi)_{1}$ hold and $x_{0}(\cdot)\in L^{2}(Z)$ , then problem

(11) has a solution $x\in C(T, L^{2}(Z))\cap L^{2}(T, W^{1p}(Z)$ with $\frac{\&}{h}\in$ $L^{2}(T,[W^{1.\rho}(Z)]^{*})$

and the solution set is compact in $C(T, L^{2}(Z))$ .
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