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Abestract. In this paper we give a necessary and sufficient condition for a
Ll.bounded asymptotic martingale (amart) taking values in a Banach space to
converge almost surely in norm: such an asymptotic martingale (Xn, Fp,nz1)
converges a.s. iff it is strongly tight, i.e. for every ¢>0 there exists a com-

pact set K, such that P(f\ [Xne KE]) >1—¢. Moreover, we show that for
n=1
realvalued martingales the well known theorem of Doob is, in some sense,
the best possible-there exists a martingale (X,,n=1) such that sup E|X,|*<oco
n

for every ac (0,1) and it diverges a.s. (in fact, it does not even converge in
law, although it is strongly tight).

1. Introduction.

A classic problem in the theory of martingales is to give conditions which
assure their almost sure (a.s.) convergence. The well known Doob’s theorem
states that every real-valued L'-bounded submartingale converges a.s. [8]. It
is, in general, false in case of L!-bounded martingales taking values in a sepa-
rable Banach space. Namely, the following is well known: for every separable
Banach space E the fact that every L!-bounded E-valued martingale converges
a.s. in norm to an integrable X-valued random variable (r.v.) is equivalent to
the Radon-Nikodym theorem for E-valued measures with a finite variation and
absolutely continuous with respect to the probability measure [3], [8]. This
theorem gives an exhaustive answer to the question in which spaces every L'-
bounded martingale converges a.s. But it may happen that a L'-bounded mar-
tingale taking values in a space which does not fulfil the Radon-Nikodym con-
dition converges a.s. (e.g. take the space E=c, of all real sequences converging
to zero with a sup norm, e=c, such that |ef=1 and an arbitrary real-valued
martingale (X,, F,, n=1); the sequence (X,e, F,, n =1) obviously converges
a.s., although an example in shows that not every L'-bounded martingale
taking values in this space converges a.s.). Thus a question origins: can we
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give a necessary and sufficient condition for a L'-bounded martingale taking
values in a Banach space to converge a.s.? Theorem V.3.9. in [4], which is
due to Chatterji [3], answers this question completely in terms of decomposition
of vector measures and Radon-Nikodym derivatives. A case of asymptotic
martingales is more complicated: if £ has the Radon-Nikodym property and a
separable dual space, we need an assumption sup.cr E||X.|| <o, where T is the
set of bounded stopping times, to assure weak convergence of the sequence
(Xa(w), n=1) for almost all weQ. It is known that the condition sup.erE||X,|
<oo cannot be replaced by L'-boundedness of the sequence (X,) and none of
the conditions concerning E cannot be omitted. Moreover, convergence in norm
need not hold [6]. In this paper we solve the problem of a.s. convergence of
amarts by giving a topological characterization: a L' bounded asymptotic mar-
tingale X, taking values in a Banach space E converges a.s. in norm iff it is
strongly tight, i.e. for every £>0 there exists a compact set K, such that
P(N3<1[XaeK.])>1—e. It can seem a little surprising because in an infinitely
dimensional Banach space a ball is not compact. The Baire category theorem
(see e.g. [5], theorem 1.6.9) states that it is not even g-compact (i.e. is not a
sum of a countable family of compact sets) and thus compact sets in an infini-
tely dimensional Banach spaces can be regarded as “small”.

2. Notation and Definitions.

Let N denote a set of natural numbers, i.e. N={1, 2, 3, ---}. Let (2, A4, P)
be a probability space and let (F,, n=1) be an increasing sequence of sub-o-
fields of A (i.e. F,CF;..CA for every neN). A mapping 7: Q—N\U {o} will
be called a stopping time with respect to (F,) iff for every neN the event
{r=n] belongs to F,. A stopping time 7 will be called bounded iff there exists
MeN such that P{r<M}=1. A set of all bounded stopping times will be
denoted by T. Let E be a Banach space with a norm | ||. Let E’ be its dual
and let || |« be a norm in E’. We shall say that a function X : 2—F is weakly
measurable iff for every x'E’ a function x’(X) is measurable. A weakly
measurable mapping X is said to be Pettis integrable iff for every B A there

exists xz=FE such that for every x’'€E’ we have SBx'(X)dP=x’(xB). The
element xp is called a Pettis integral of X on the set B and denoted by SBXdP.

Moreover, if X is measurable and E|X| <o a.s., then X is also Bochner in-
tegrable and the Bochner integral EX obviously coincides with the Pettis in-
tegral of X on @ [4]. The set of all Bochner integrable r.v.s. with values in
E (more precisely, the set of all their equivalence classes) will be denoted by

& or simply by L!, where it does not lead to confusion. Let F be a sub-o-
field of A. Definitions and basic properties of the Bochner integral EX and
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the conditional expectation EFX of a r.v. Xe L} can be found e.g. in [8].

Definition 1. A sequence (X,, F,, n=1) will be called a martingale if, for
every neN, the following conditions are satisfied.

(1) X, is F,-measurable and X, L},

(2) EFrX,.,=X, a.s.

Definition 2. [6] A sequence (X,, F,, n=1) of Pettis integrable r.v.s. is
called an asymptotic martingale (amart) iff X, is F,-measuracle for every neN
and if for every £>0 there exists 7T such that for every r,veT, 7, 027,
we have '

3) HSX,dP—SX.,dP”<s.

Obviously, every martingale is an asymptotic martingale.

It is well known that every (strongly) measurable r.v. with values in F is
essentially separably valued (see [4], theorem 2.1.2). Thus, considering a
sequence (indexed by elements of N) of such r.v.s, we can always assume that
they take values in a separable subspace of E. For simplicity, we assume that
E is itself separable.

Definition 3. We shall say that a sequence (X,, n=1) of E-valued r.v.s.
is L} (or simply L%')-bounded iff sup, E||X,|| <o and that it is strongly tight
iff for every ¢>0 there exists a compact subset K, of E such that

@) P(él[x,,em)x—e.

Let us recall that an indexed family {u., t=T} of probability measures
defined on the o-field B(E) of the Borel subsets of E is called tight iff for
every ¢>0 there exists compact set KCE such that for every t€7T we have
p(K)>1—e. A classic theorem of Prohorov ([2], p. 37) states that in a Polish
(i.e. a complete and separable metric) space a family of probability measures
is weakly relatively compact iff it is tight. Obviously if a sequence (X,, nEN)
is strongly tight, the family of their distributions {gx,: neN} is tight, but
the reverse implication does not hold, e.g. take a sequence of i.i.d. real r.v.s.
having a standard normal distribution.

3. Main results.

The following theorem seems to be, in some sense, a counterpart of the
mentioned theorem of Prohorov (for almost sure convergence instead of weak
convergence) and is crucial to everything what follows.
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Theorem 1 [7]. Let S be a Polish space and let (X,, n=1) be a sequence
of r.w.s taking values in S.

: .8, :
If Xn—a——>X, n—oo, for some r.v. X, then the sequence X, is strongly tight.

Proof. It is easy to see that if Xni:;X, n—oo, for some r.v. X, and
F,=a(X,, .-, X,), then X, is randomly convergent in law to X, i.e. for every
70T such that for every r=7, a.s. d(X,, X)<e, where d denotes the Prok-
horov metric. Now we shall show that the family of distributions {Py,, v€T}
is tight. | '

Fix 6>0 and a countable dense subset of S. Let

Ba@®)= K(x,, 9),

where
K(xi, O)={x&S: p(x;, x)<0}.

Now we shall show that for every >0 there exists m such that for every
reT _
P[XzEBm(a)]_>l—s.

Assume that the last statement is false, i.e. there exists ¢>0 such that for
every meN we can choose 7,&T such that P[X, €Bn(d)]<1—e. For every
n there exists a number m(n) such that ‘

P\ [Xe# Ban(®]) < 5.

Moreover, we can assume that m(n)>m(n—1) and that m(n)>n. If we put
Thny=MaX(Tmy, n+1), then it is easy to see that

&

P[X 7

m (n)

$ Bm(n)(a)] g

Thus, by theorem 2.1 [2], for every n we have
PX(Bm(n)(a)).ngP: ianX,lm(k)(Bm(n)(a))

.. €

<lim lanx,r,n(k,(Bmck>(5))§l—7,

but, on the basis of the axiom of continuity,
}lime(Bmm(t?)):l, .

contradiction. ~ -
Thus for an arbitrary ¢>0 and 2=1 we can choose a number 7, such
that
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PlX.€Bnap (3)]> 1 -
Now let
K= 513,,,(,.,,,(-;—).

It is easy to see that K is compact and P[X.eK]>1—¢ for every reT. Thus
the family {Py, reT} is tight.

We are now ready to finish the proof. Assume that theorem 1 is false,
i.e. there exists ¢>0 such that for any compact set K

P( A\ [X.cK])<1—2.
n=1
By the other hand, there exists a compact set K, such that

P[X.eK,]>1—¢ for every reT.

Let r(w)=inf{s: X,&K.}. If z,=min(zr, n), then z,&T and
P(\J [XaK.]) SImPLX, &K, ]<e.

The proof is complete.

Thus every a.s. convergent sequence of r.v.s. taking values in a Banach
space is tight. Now we shall show that strong tightness assures a.s. conver-
gence of a L'-bounded asymptotic martingale.

Lemma 1. Let E be a Banach space and let KCE be compact. There exists
a countable family xi;E’, k=1, such that for an arbitrary sequence {x,} of
elements of K xn—x. for some x. iff for every k<N the sequence {xi(xs), n=1}
is convergent.

Remark. Let us mention that in general if x, is a sequence of elements
of a Banach space F, convergence of all the sequences x’(x,), =1, n’E’, does
not even imply weak convergence of x, to some x.<E, for example a sequence

x2={,1,--1,0,0, ---) in the space ¢, of real sequences converging to zero
n
does not converge weakly.

Lemma 2. Let E be a Banach space and let (X,, n=1) be a strongly tight
sequence of E-valued r.v.s. There exists a countable subset {x;, kReN}cE’ such
that X,.ic—;X for some r.w. X iff for every k&N the sequence {xi(X,), n=1}

converges a.s.

Proof. It is obvious that if Xni:;X, then for every x’eE’x’(X,.)fi;x’(X).
Conversely, let us, for p= N, take a compact set K,,, fulfilling (4) for e=
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1/p. By lemma 1 there exist functionals {x:?, /[=1} such that for every
sequence {x,} of elements of K;,,x, — x for some x iff all the sequences
{x1?(x4), n=1}, 1=1, converge. Take {xi;}={xi?; p,/eN}. Let us suppose
that all the sequences {x4(X,), n=1} converge a.s. Let 2,={ws2: the sequence
(x4 X.(@)), n=1) converges for every kN}. We have P(£,)=1. Let A,=
Usa[XaeKyp]. By (3), P(4,)>1—1/p, so if we put £2,=U3-14,, we have
P(2,)=1. Let wc2,NQ,. There exists pN such that weA,, so X,(w)eK,/,
for all neN and, because wes$f, the sequence x;?(X,(w)) converges for all
leN. Thus X,(w)—X(w) for some X(w)sE, so the sequence X, converges a.s.
and obviously its limit X is measurable. The proof is complete.

Corollary. A sequence (X,, n=1) of r.v.s taking values in a Banach space

converges a.s. iff it is strongly tight and for every x’€E’ the sequence x'(X,)
converges a.s.

Now we are ready to prove our main result.

Theorem 2. Let (X,, F,, n=1) be a L'-bounded asymptotic martingale taking
values in a Banach space E. X,—>X for some integrable r.v. X if and only
if the sequence X, is strongly tight.

Proof. Necessity of strong tightness of (X,) for its a.s. convergence follows
from theorem 1 (see also a remark after definition 1). Conversely, assume that
(Xn,) is strongly tight. For every x’eFE’ the sequence (x'(X.), Fr, n=1) is a
L'-bounded real asymptotic martingale and thus converges a.s. [1]. Indeed, let
e>0 be arbitrary and let 7,7 be such that for every 7, o<=T, 7, 6=7, a.s.,
(3) holds. Thus

|Ex'(X)—Ex"(Xo) | =1x(EX)—x"(EX)| S|z |« | EX—EX,| <||x’||x¢,
what proves the amart property. L!-boundedness follows from
supE| (X = le’ll*snglan <oo.

By the last corollary X, converges a.s. Integrability of its limit follows
easily from L--boundedness of X, and the Fatou lemma.

We shall also give another proof, which makes use of theorem 5 in [1].

Fix n and let S=K,,, (see definition 3). Let C=N3..[X,=S], by hypo-
thesis P(C(>1—1/n. says, in the terminology of [5], that there
exists a determining set X for S which consists of linear functionals from E’
truncated to S. Let x’=X. Consider a probability space (C, C\UA, P,) and
a sequence of real r.v.s (Y, CNF,, n=1), where CNA = {CND: DA},
similarly CNF,={CND: DeF,}, Y, is the r.v. x/(X,) truncated to C, and P,




A CRITERION OF ALMOST SURE CONVERGENCE 67

is simply the measure P truncated to CN\A and divided (normalized) by divid-
ing by P(C). x’(S) is compact, hence bounded, on the real axis, so, by defini-
tion, Y, is bounded by some real constant. As in the previous proof, we check
that x’(X,) converges a.s., hence Y, converges a.s. By corollary 1 from
(Y., CNFy,) is an amart, of course L!-bounded. Thus, by theorem 5 from [1],
X, converges a.s. on C, so, by an obvious argument, it converges a.s. on Q.

4. Examples.

1. If a L“-bounded martingale (X,, Fp, n=1) takes values in a finite-
dimensional subspace E, of E, it converges a.s. Indeed, as it is mentioned in
[8], p. 108, the sequence (| X,||, Fn, n=1) is a real-valued L'-bounded submar-
tingale and thus Z=sup,|X,]|<o a.s. This fact, in connection with compact-
ness of a ball in E,, yields (4).

2. In [8], p. 111, we can find an interesting example of a L'-bounded
martingale taking values in ¢, which diverges a.s. We shall see how our cri-
terion works in that case.

Let Y, denote a sequence of i.i.d real r.v.s such that P[Y,=+1]=1/2 and
let X,=(,, --Y,, 0,0, ---).

Let us remark that if we put

A={y=1, Y2, )ECo: n¥)Vn>no(¥)ya=0VVn=n,y)y.==*1},

then for a, be A, a+#b, we have |la—b||=1 and thus every compact subset of
A is finite. Now it is obvious that in this case (4) cannot hold. '

3. Let, for every k& N, (X%, Ff, n=1) be a real martingale such that
P(|X2|>1)=0 for all neN and o¢-fields FE=a(\J5-,F%), k=n, are independent
on one another. Let a,, a,, - be a sequence of real numbers which converges
to zero as n—oo, Put

Xa=(a:X3, a,X3, a,X3, ) and Fa=o(\J F}).

(Xn, Fa, n=1) is a L'-bounded martingale taking values in c¢,. Indeed, X, is
F,-measurable and || X,||<supn|an| <o for every n. It remains to verify the
martingale property. Obviously Ef»X,,,; exists. The only question is whether
or not it equals to X, a.s.

Let xjecs, xi((x1, xo, +-+))=x,;, be the coordinate mappings in ¢,. We have

17) XYEF2 X, )=EF2x{(Xn.)=a,E"2Xh,,.
But
(18) EFn XY, =EFnX%,,.

Indeed, EF 51X$,+1 is F,-measurable. It remains to check that
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(19) VAEF, SAX;“dP:SAEF%Xﬁ.HdP.

It sufficies to verify for sets A=BNC, where BeF}, Ceo(UnuFD),
because they form a z-system generating a A-system F, (see the Dynkin theorem

e.g. in [2]). But
(20) SBACEF%X;“dP=P(C)SBEF5;X$mdP=P(C)SBX£.+,dP=SBAOX£,+1dP,

(the first and the last equality follow from an easy to prove fact that if Be
Fi, X is a Fl-measurable, integrable r.v. and Ceo(UnF™), then C is inde-
pendent of F! and thus

1) SBACXdP=P(C)SBXdP.

We have proved [(18).
Thus, by and we have

(22) xY(EF2 X, )=a,EF2 X}, =a, X},

so EfnX,,.,=(a, X3, a.X%, ---)=X,. We have proved the martingale property
(in fact only integrability of X,, the martingale property of their coordinates
and independence of FX have been used).

It is easy to see thata set K={x = (x,, x3, *")E¢Co: Ve E N |x:|=Z|a,]|} is
compact in ¢,, because lim,.. Sup.ex||R,x||=0, where R,((x1, *** Xn, Xns1, Xns2,
< N=(0, =+ 0, Xp41, Xn42 ---). Thus the martingale X, converges a.s., becaue
P(X,eK)=1 for every neN and thus this sequence is strongly tight.

It is natural to pose a question: is strong tightness sufficient for a.s. con-
vergence of an arbitrary asymptotic martingale (not necessarily L'-bounded)?
Unfortunately, the answer is negative even in the case of real martingales
which are L*-bounded for every a<(0, 1); a counter-example is given below.

Let (2, A, P)=([0, 1], B([0, 1]), ), where p is the Lebesgue measure on
the unit interval and let Fo={0, 2}. We construct the o-field F,,, from F, by
dividing each atom of F, into two parts, one of which has 1/2"*! of the mass
of the previous one and the second one has 1—1/2**! of it.

Let X,=0 a.s. and let P(X,==1)=1/2. We construct X,,,; from X, in the
following way. If n is even (odd), we take each atom of F,, we divide it into
parts as above, we put X,,;=1 (0) on the bigger one and such (constant)
number on the second one, that the martingale property is retained. In what
follows we shall call this procedure balancing to 1 (0). E.g. P(X,=0)=3/4 and
P(X,=+4)=1/8. (X,, Fn, n=0) is a real martingale. It is easy to see that in
the real case strong tightness of the sequence X, is equivalent to

(23) sgplX,.I <co a.s.
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and that the martingale defined above fulfils this condition (it sufficies to use
the Borel-Cantelli lemma to verify that P(X,¢ {0, 1} for infinitely many n)=0).

But Xz,.—a—'—a—;o and Xz,mis—;l as n—oco, so the martingale X, does not even
converge in law.

We shall show that X, exhibits one more interesting property: for every
ac(0, 1) it is L*-bounded, i.e.

(24) SUpE | X, |9<o0.

Let a=(0, 1). Consider the way in which we construct X,,, from X,.
We have two types of atoms:

i) Atoms, for which X,=0 (if n is even) or X,=1 (if n is odd) by the
basic construction principle. Probability of the sum of these atoms is equal to
1-1/27.

ii) Atoms for which |X,|=a=const, |a|>1 (in fact, X, takes only integer
values and thus |a|=2).

iii) Atoms for which X,=1 if n is even) or X,=0 (if n is odd). It is
easy to see that on these atoms X,,,=X, a.s., thus if we compare E|X,,,|*
to E1X,|% we can take into account only atoms of type i) and ii).

You can ask whether X,=—1 on some atom of F, (none of the cases i)-
iii) covers this situation). It really happens if n=1, but for n=2 it is impossible,
because it is impossible to balance an integer on 1—1/2"** of an atom to another
integer putting X,,,——1 on the remaining 1/2"*! of it.

We shall estimate the change of E|X,|* on the atoms of types i) and ii).

i)a) n is even, so we balance 0 to 1.

Let B be an atom of F, such that X,=0 on B. We divide B into B, and
B,, P(B,)=(1-1/2"*")P(B), P(B;)=1/2"*'P(B).

We put X,,;=1 on B, and thus we must put X,,,=1—2"*' on B, to retain
the martingale property. Thus

25) Bl Xn | *s=PB)19(1— g )+ @~y |

—_—P(B)[l— 2,},,1 + (2";:1)“].

Summing over all atoms B of type i) we obtain
1 (2n+1—1)a]

- 2n+1 2n+l

<(1—21—,,)[1—%+(—2—,,1+—1)1°“]<2.

Observe that on these atoms S?=FE|X,|*I3=0, so the total increase of S?%
is in this case less than 2. : '

(26) STM=SE| Xyl *Lp=(1— %)[1
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b) We balance 1 to 0, n is odd.

We take an atom BeF, such that X,=1 on B. We divide it into B, and
B, like in the point a) and we put X,,,=0 on B; and X,,,=2"*! on B..
Similarly like in a)

i . 1 1
27) STH=3E| Xuui|*Is=(1— %) grra=ar
and
(28) S1=S\E|X,|°] =(1;_1_-).1=1——1—

2 = n B on on?

thus here S7? decreases.
Let us suppose that n is even and figure the increase from E|X,|® to

E|X.,.:|® only on the atoms of type i).
From X, to X,,, the increase of E|.|* is less than

(29) (1—21—,,)(1— an+1 +< 23.+1 )1'“)

and from X,,; to X,,, we have a decrease

2 () () )

Thus the increase of E|-|% from X, to X,.. is less than

N e a M GO O

1 n+2 1 n+1 1
<(gmo) (=) o

The series 3}(1/2'-*)* and 331/2" both converge and thus the increase of
E|-1* only on all atoms of type i) after an arbitrary even number of steps is
bounded above by some integer "M and so, by a), the increase after an odd
(and thus an arbitrary) number of steps is bounded above by M+2.

ii) a) We balance from a to 0, n is odd, |a|=2.

We take an atom BeF, such that X,=a on B, divide it into B, and B,
like in i) a) and put X,,;=0 on B, and X,,,=2"*'a on B,.

32) B|Xn|*I5=|a|*P(B)

and

@) E1Xaui|*I5=P(B) gz 2707 a] %,
50 E|Xau|®lp _ 1 <1,

E|Xn|aIB - 2(n+1)(1-a)

thus on these atoms E|-|“ decreases.
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b) We balance from a to 1, |a|=2, n is even.
We take an atom BeF, such that X,=a on it, divide it into B, and B,
as above and put X,,,=1 on B,, X,,;=2""(a—1)+1 on B,.

(34) E|Xa|*Ip=P(B)|a|*

and

@) EIXi5al=PB)] 12*(a—D+11 g +17(1— 5er )|

1 1
§P(B)|:l—_2_n.+_l_+(2n+z| al)aw)]<})(3)[l+ |a|e2m+bia-bra]

the inequality follows from 2**(a—1)+1<2**'a<2"*%a and |a—1|=—a+1<
2(—a)=2|a| (and thus, because all the numbers used are integers, 2"*'|a—1|+
1<2**2|q|) for a £ —2, so for every integer a such that |a|=2 we have
|27+ (g—1)+1]| <22 a].

But (n+1)a—1)+a——o as n—oo, thus there exists n, such that for all
n=n, we have

E|Xonl®ly _ 1+|al*1—1/2%) 1 1

1—-<1.
(36) E1XaI*I5 jale “Tape t1Tze s

Thus for n=n, (not dependent on a) E!-|* decreases.

Finally, taking into account i), ii) and iii) we can state that the sequence
E|X.|* is bounded.

The above example shows that the well known Doob’s theorem stating that
every L'-bounded real martingale converges a.s. is, in some sense, the best
possible: it cannot be extended to any L%, a=(0, 1).

Using the martingale (X,, F,, n=1) described above we can easily construct
an example of a martingale which converges in law and does not converge in
probability.

Let (2, A, P)=([0, 2], B([0, 2], p/2), i.e. u/2(A)=p(A)/2 for every Ac
B([0, 2]), where g is the Lebesgue measure, and let Y ,(w)=X\(w) for o[0, 1]
and Y,(w)=1—X,(w—1) for we(l, 2], B,=0(F,, F,+1), where F,+1={A41:
AeF,} and A+1={w+1: wsA}.

It is obvious that (Y ,, B,, n=0) is an integrable martingale. Let us remark
that Y;p,1;—>Y e and V,,—>1—Y., where Y.=1on [0, 1] and Y.=0on (1, 2].
Thus Y, clearly does not converge in probability, although it converges in law,
because the laws of Y. and 1-Y ., are equal.
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