A CRITERION OF ALMOST SURE CONVERGENCE OF ASYMPTOTIC MARTINGALES IN A BANACH SPACE

By
Łukasz Kruk and Wieseaw Ziegba
(Recived September 7, 1994, Revised July 3, 1995)

Abstract

Abestract. In this paper we give a necessary and sufficient condition for a L^{1}-bounded asymptotic martingale (amart) taking values in a Banach space to converge almost surely in norm: such an asymptotic martingale ($X_{n}, F_{n}, n \geqq 1$) converges a.s. iff it is strongly tight, i.e. for every $\varepsilon>0$ there exists a compact set K_{ε} such that $P\left(\bigcap_{n=1}^{\infty}\left[X_{n} \in K_{\varepsilon}\right]\right)>1-\varepsilon$. Moreover, we show that for realvalued martingales the well known theorem of Doob is, in some sense, the best possible-there exists a martingale ($X_{n}, n \geqq 1$) such that $\sup _{n} E\left|X_{n}\right|^{\alpha}<\infty$ for every $\alpha \in(0,1)$ and it diverges a.s. (in fact, it does not even converge in law, although it is strongly tight).

1. Introduction.

A classic problem in the theory of martingales is to give conditions which assure their almost sure (a.s.) convergence. The well known Doob's theorem states that every real-valued L^{1}-bounded submartingale converges a.s. [8]. It is, in general, false in case of L^{1}-bounded martingales taking values in a separable Banach space. Namely, the following is well known: for every separable Banach space E the fact that every L^{1}-bounded E-valued martingale converges a.s. in norm to an integrable X-valued random variable (r.v.) is equivalent to the Radon-Nikodym theorem for E-valued measures with a finite variation and absolutely continuous with respect to the probability measure [3], [8]. This theorem gives an exhaustive answer to the question in which spaces every L^{1} bounded martingale converges a.s. But it may happen that a L^{1}-bounded martingale taking values in a space which does not fulfil the Radon-Nikodym condition converges a.s. (e.g. take the space $E=c_{0}$ of all real sequences converging to zero with a sup norm, $e \in c_{0}$ such that $\|e\|=1$ and an arbitrary real-valued martingale ($X_{n}, F_{n}, n \geqq 1$); the sequence ($X_{n} e, F_{n}, n \geqq 1$) obviously converges a.s., although an example in [8] shows that not every L^{1}-bounded martingale taking values in this space converges a.s.). Thus a question origins: can we
give a necessary and sufficient condition for a L^{1}-bounded martingale taking values in a Banach space to converge a.s.? Theorem V.3.9. in [4], which is due to Chatterji [3], answers this question completely in terms of decomposition of vector measures and Radon-Nikodym derivatives. A case of asymptotic martingales is more complicated: if E has the Radon-Nikodym property and a separable dual space, we need an assumption $\sup _{\tau \in T} E\left\|X_{\tau}\right\|<\infty$, where T is the set of bounded stopping times, to assure weak convergence of the sequence $\left(X_{n}(\omega), n \geqq 1\right)$ for almost all $\omega \in \Omega$. It is known that the condition $\sup _{\tau \in T} E\left\|X_{\tau}\right\|$ $<\infty$ cannot be replaced by L^{1}-boundedness of the sequence (X_{n}) and none of the conditions concerning E cannot be omitted. Moreover, convergence in norm need not hold [6]. In this paper we solve the problem of a.s. convergence of amarts by giving a topological characterization: a L^{1} bounded asymptotic martingale X_{n} taking values in a Banach space E converges a.s. in norm iff it is strongly tight, i.e. for every $\varepsilon>0$ there exists a compact set K_{ε} such that $P\left(\cap_{n=1}^{\infty}\left[X_{n} \in K_{\varepsilon}\right]\right)>1-\varepsilon$. It can seem a little surprising because in an infinitely dimensional Banach space a ball is not compact. The Baire category theorem (see e.g. [5], theorem I.6.9) states that it is not even σ-compact (i.e. is not a sum of a countable family of compact sets) and thus compact sets in an infinitely dimensional Banach spaces can be regarded as "small".

2. Notation and Definitions.

Let N denote a set of natural numbers, i.e. $N=\{1,2,3, \cdots\}$. Let (Ω, A, P) be a probability space and let $\left(F_{n}, n \geqq 1\right)$ be an increasing sequence of sub- σ fields of A (i.e. $F_{n} \subset F_{n+1} \subset A$ for every $n \in N$). A mapping $\tau: \Omega \rightarrow N \cup\{\infty\}$ will be called a stopping time with respect to (F_{n}) iff for every $n \in N$ the event $\{\tau=n]$ belongs to F_{n}. A stopping time τ will be called bounded iff there exists $M \in N$ such that $P\{\tau \leqq M\}=1$. A set of all bounded stopping times will be denoted by T. Let E be a Banach space with a norm \| \|. Let E^{\prime} be its dual and let $\left\|\|_{*}\right.$ be a norm in E^{\prime}. We shall say that a function $X: \Omega \rightarrow E$ is weakly measurable iff for every $x^{\prime} \in E^{\prime}$ a function $x^{\prime}(X)$ is measurable. A weakly measurable mapping X is said to be Pettis integrable iff for every $B \in A$ there exists $x_{B} \in E$ such that for every $x^{\prime} \in E^{\prime}$ we have $\int_{B} x^{\prime}(X) d P=x^{\prime}\left(x_{B}\right)$. The element x_{B} is called a Pettis integral of X on the set B and denoted by $\int_{B} X d P$. Moreover, if X is measurable and $E\|X\|<\infty$ a.s., then X is also Bochner integrable and the Bochner integral $E X$ obviously coincides with the Pettis integral of X on Ω [4]. The set of all Bochner integrable r.v.s. with values in E (more precisely, the set of all their equivalence classes) will be denoted by L_{E}^{1} or simply by L^{1}, where it does not lead to confusion. Let F be a sub- σ field of A. Definitions and basic properties of the Bochner integral $E X$ and
the conditional expectation $E^{F} X$ of a r.v. $X \in L_{E}^{\frac{1}{E}}$ can be found e.g. in [8].
Definition 1. A sequence ($X_{n}, F_{n}, n \geqq 1$) will be called a martingale if, for every $n \in N$, the following conditions are satisfied.
(1) X_{n} is F_{n}-measurable and $X_{n} \in L_{E}$,
(2) $E^{F_{n}} X_{n+1}=X_{n}$ a.s.

Definition 2. [6] A sequence ($X_{n}, F_{n}, n \geqq 1$) of Pettis integrable r.v.s. is called an asymptotic martingale (amart) iff X_{n} is F_{n}-measuracle for every $n \in N$ and if for every $\varepsilon>0$ there exists $\tau_{0} \in T$ such that for every $\tau, v \in T, \tau, v \geqq \tau_{0}$ we have
(3) $\left\|\int X_{\tau} d P-\int X_{v} d P\right\|<\varepsilon$.

Obviously, every martingale is an asymptotic martingale.
It is well known that every (strongly) measurable r.v. with values in E is essentially separably valued (see [4], theorem 2.1.2). Thus, considering a sequence (indexed by elements of N) of such r.v.s, we can always assume that they take values in a separable subspace of E. For simplicity, we assume that E is itself separable.

Definition 3. We shall say that a sequence ($X_{n}, n \geqq 1$) of E-valued r.v.s. is L_{E}^{1} (or simply L^{1})-bounded iff $\sup _{n} E\left\|X_{n}\right\|<\infty$ and that it is strongly tight iff for every $\varepsilon>0$ there exists a compact subset K_{ε} of E such that
(4) $P\left(\bigcap_{n=1}^{\infty}\left[X_{n} \in K_{\varepsilon}\right]\right)>1-\varepsilon$.

Let us recall that an indexed family $\left\{\mu_{t}, t \in T\right\}$ of probability measures defined on the σ-field $B(E)$ of the Borel subsets of E is called tight iff for every $\varepsilon>0$ there exists compact set $K \subset E$ such that for every $t \in T$ we have $\mu_{t}(K)>1-\varepsilon$. A classic theorem of Prohorov ([2], p. 37) states that in a Polish (i.e. a complete and separable metric) space a family of probability measures is weakly relatively compact iff it is tight. Obviously if a sequence ($X_{n}, n \in N$) is strongly tight, the family of their distributions $\left\{\mu_{X_{n}}: n \in N\right\}$ is tight, but the reverse implication does not hold, e.g. take a sequence of i.i.d. real r.v.s. having a standard normal distribution.

3. Main results.

The following theorem seems to be, in some sense, a counterpart of the mentioned theorem of Prohorov (for almost sure convergence instead of weak convergence) and is crucial to everything what follows.

Theorem 1 [7]. Let S be a Polish space and let $\left(X_{n}, n \geqq 1\right)$ be a sequence of r.v.s taking values in S.

If $X_{n} \xrightarrow{a . s} X, n \rightarrow \infty$, for some r.v. X, then the sequence X_{n} is strongly tight.
Proof. It is easy to see that if $X_{n} \xrightarrow{a .8} X, n \rightarrow \infty$, for some r.v. X, and $F_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$, then X_{n} is randomly convergent in law to X, i.e. for every $\tau_{0} \in T$ such that for every $\tau \geqq \tau_{0}$ a.s. $d\left(X_{\tau}, X\right)<\varepsilon$, where d denotes the Prokhorov metric. Now we shall show that the family of distributions $\left\{P_{X_{\tau}}, \tau \in T\right\}$ is tight.

Fix $\delta>0$ and a countable dense subset of S. Let

$$
B_{m}(\boldsymbol{\delta})=\bigcup_{i=1}^{m} K\left(x_{i}, \boldsymbol{\delta}\right)
$$

where

$$
K\left(x_{i}, \delta\right)=\left\{x \in S: \rho\left(x_{i}, x\right)<\delta\right\}
$$

Now we shall show that for every $\varepsilon>0$ there exists m such that for every $\tau \in T$

$$
P\left[X_{\tau} \in B_{m}(\delta)\right]>1-\varepsilon
$$

Assume that the last statement is false, i.e. there exists $\varepsilon>0$ such that for every $m \in N$ we can choose $\tau_{m} \in T$ such that $P\left[X_{\tau_{m}} \in B_{m}(\delta)\right] \leqq 1-\varepsilon$. For every n there exists a number $m(n)$ such that

$$
P\left(\bigcup_{i=1}^{n}\left[X_{i} \notin B_{m(n)}(\delta)\right]\right) \leqq \frac{\varepsilon}{2}
$$

Moreover, we can assume that $m(n)>m(n-1)$ and that $m(n)>n$. If we put $\tau_{m(n)}^{\prime}=\max \left(\tau_{m(n)}, n+1\right)$, then it is easy to see that

$$
P\left[X_{\tau^{\prime} m(n)} \notin B_{m(n)}(\delta)\right] \geqq \frac{\varepsilon}{2}
$$

Thus, by theorem 2.1 [2], for every n we have

$$
\begin{aligned}
P_{X}\left(B_{m(n)}(\delta)\right) & \leqq \lim _{k \rightarrow \infty} \inf P_{X_{\tau_{m}^{\prime}(k)}^{\prime}}\left(B_{m(n)}(\delta)\right) \\
& \leqq \lim _{k \rightarrow \infty} \inf P_{X_{\tau_{m}^{\prime}(k)}}\left(B_{m(k)}(\delta)\right) \leqq 1-\frac{\varepsilon}{2}
\end{aligned}
$$

but, on the basis of the axiom of continuity,

$$
\lim _{n \rightarrow \infty} P_{X}\left(B_{m(n)}(\delta)\right)=1
$$

contradiction.
Thus for an arbitrary $\varepsilon>0$ and $k \geqq 1$ we can choose a number n_{k} such that

$$
P\left[X_{\tau} \in B_{m\left(n_{k}\right)}\left(\frac{1}{k}\right)\right]>1-\frac{\varepsilon}{2^{k}} .
$$

Now let

$$
K=\overline{\bigcap_{k=1}^{\infty} B_{m\left(n_{k}\right)}\left(\frac{1}{k}\right)}
$$

It is easy to see that K is compact and $P\left[X_{\tau} \in K\right]>1-\varepsilon$ for every $\tau \in T$. Thus the family $\left\{P_{X_{\tau}}, \tau \in T\right\}$ is tight.

We are now ready to finish the proof. Assume that theorem 1 is false, i.e. there exists $\varepsilon>0$ such that for any compact set K

$$
P\left(\bigcap_{n=1}^{\infty}\left[X_{n} \in K\right]\right) \leqq 1-2 \varepsilon .
$$

By the other hand, there exists a compact set K_{ε} such that

$$
P\left[X_{\tau} \in K_{\varepsilon}\right]>1-\varepsilon \quad \text { for every } \quad \tau \in T .
$$

Let $\tau(\omega)=\inf \left\{s: X_{s} \notin K_{s}\right\}$. If $\tau_{n}=\min (\tau, n)$, then $\tau_{n} \in T$ and

$$
P\left(\bigcup_{n=1}^{\infty}\left[X_{n} \notin K_{t}\right]\right) \leqq \lim _{n \rightarrow \infty} P\left[X_{i_{n}} \notin K_{t}\right] \leqq \varepsilon .
$$

The proof is complete.
Thus every a.s. convergent sequence of r.v.s. taking values in a Banach space is tight. Now we shall show that strong tightness assures a.s. convergence of a L^{1}-bounded asymptotic martingale.

Lemma 1. Let E be a Banach space and let $K \subset E$ be compact. There exists a countable family $x_{k}^{\prime} \in E^{\prime}, k \geqq 1$, such that for an arbitrary sequence $\left\{x_{n}\right\}$ of elements of $K x_{n} \rightarrow x_{\infty}$ for some x_{∞} iff for every $k \in N$ the sequence $\left\{x_{k}^{\prime}\left(x_{n}\right), n \geqq 1\right\}$ is convergent.

Remark. Let us mention that in general if x_{n} is a sequence of elements of a Banach space E, convergence of all the sequences $x^{\prime}\left(x_{n}\right), \geqq 1, n^{\prime} \in E^{\prime}$, does not even imply weak convergence of x_{n} to some $x_{\infty} \in E$, for example a sequence $x_{n}=(\underbrace{1,1, \cdots 1}_{n}, 0,0, \cdots)$ in the space c_{0} of real sequences converging to zero does not converge weakly.

Lemma 2. Let E be a Banach space and let $\left(X_{n}, n \geqq 1\right)$ be a strongly tight sequence of E-valued r.v.s. There exists a countable subset $\left\{x_{k}^{\prime}, k \in N\right\} \in E^{\prime}$ such that $X_{n} \xrightarrow{\text { a.s. }} X$ for some r.v. X iff for every $k \in N$ the sequence $\left\{x_{k}^{\prime}\left(X_{n}\right), n \geqq 1\right\}$ converges a.s.

Proof. It is obvious that if $X_{n} \xrightarrow{\text { a.s. }} X$, then for every $x^{\prime} \in E^{\prime} x^{\prime}\left(X_{n}\right) \xrightarrow{\text { a.s. }} x^{\prime}(X)$. Conversely, let us, for $p \in N$, take a compact set $K_{1 / p}$ fulfiling (4) for $\varepsilon=$
$1 / p$. By lemma 1 there exist functionals $\left\{x_{l}^{\prime p}, l \geqq 1\right\}$ such that for every sequence $\left\{x_{n}\right\}$ of elements of $K_{1 / p} x_{n} \rightarrow x$ for some x iff all the sequences $\left\{x_{l}^{\prime p}\left(x_{n}\right), n \geqq 1\right\}, l \geqq 1$, converge. Take $\left\{x_{k}^{\prime}\right\}=\left\{x_{l}^{\prime p} ; p, l \in N\right\}$. Let us suppose that all the sequences $\left\{x_{k}^{\prime}\left(X_{n}\right), n \geqq 1\right\}$ converge a.s. Let $\Omega_{0}=\{\omega \in \Omega$: the sequence ($x_{k}^{\prime}\left(X_{n}(\omega)\right.$), $n \geqq 1$) converges for every $\left.k \in N\right\}$. We have $P\left(\Omega_{0}\right)=1$. Let $A_{p}=$ $\cup_{n=1}^{\infty}\left[X_{n} \in K_{1 / p}\right]$. By (3), $P\left(A_{p}\right)>1-1 / p$, so if we put $\Omega_{1}=\cup_{p=1}^{\infty} A_{p}$, we have $P\left(\Omega_{1}\right)=1$. Let $\omega \in \Omega_{0} \cap \Omega_{1}$. There exists $p \in N$ such that $\omega \in A_{p}$, so $X_{n}(\omega) \in K_{1 / p}$ for all $n \in N$ and, because $\omega \in \Omega_{0}$, the sequence $x_{l}^{p}\left(X_{n}(\omega)\right)$ converges for all $l \in N$. Thus $X_{n}(\omega) \rightarrow X(\omega)$ for some $X(\omega) \in E$, so the sequence X_{n} converges a.s. and obviously its limit X is measurable. The proof is complete.

Corollary. A sequence ($X_{n}, n \geqq 1$) of r.v.s taking values in a Banach space converges a.s. iff it is strongly tight and for every $x^{\prime} \in E^{\prime}$ the sequence $x^{\prime}\left(X_{n}\right)$ converges a.s.

Now we are ready to prove our main result.
Theorem 2. Let $\left(X_{n}, F_{n}, n \geqq 1\right)$ be a L^{1}-bounded asymptotic martingale taking values in a Banach space $E . X_{n} \longrightarrow X$ for some integrable r.v. X if and only if the sequence X_{n} is strongly tight.

Proof. Necessity of strong tightness of (X_{n}) for its a.s. convergence follows from theorem 1 (see also a remark after definition 1). Conversely, assume that $\left(X_{n}\right)$ is strongly tight. For every $x^{\prime} \in E^{\prime}$ the sequence ($x^{\prime}\left(X_{n}\right), F_{n}, n \geqq 1$) is a L^{1}-bounded real asymptotic martingale and thus converges a.s. [1]. Indeed, let $\varepsilon>0$ be arbitrary and let $\tau_{0} \in T$ be such that for every $\tau, \sigma \in T, \tau, \sigma \geqq \tau_{0}$ a.s., (3) holds. Thus

$$
\left|E x^{\prime}\left(X_{\tau}\right)-E x^{\prime}\left(X_{\sigma}\right)\right|=\left|x^{\prime}\left(E X_{\tau}\right)-x^{\prime}\left(E X_{\sigma}\right)\right| \leqq\left\|x^{\prime}\right\|_{*}\left|E X-E X_{\imath}\right| \leqq\left\|x^{\prime}\right\|_{*} \varepsilon,
$$

what proves the amart property. L^{1}-boundedness follows from

$$
\sup _{n} E\left|x^{\prime}\left(X_{n}\right)\right| \leqq\left\|x^{\prime}\right\| * \sup _{n} E\left\|X_{n}\right\|<\infty
$$

By the last corollary X_{n} converges a.s. Integrability of its limit follows easily from L--boundedness of X_{n} and the Fatou lemma.

We shall also give another proof, which makes use of theorem 5 in [1].
Fix n and let $S=K_{1 / n}$ (see definition 3). Let $C=\bigcap_{n=1}^{\infty}\left[X_{n} \in S\right]$, by hypothesis $P(C(>1-1 / n$. Lemma 1] says, in the terminology of [5], that there exists a determining set \mathcal{K} for S which consists of linear functionals from E^{\prime} truncated to S. Let $x^{\prime} \in \mathcal{K}$. Consider a probability space ($C, C \cup A, P_{1}$) and a sequence of real r.v.s ($Y_{n}, C \cap F_{n}, n \geqq 1$), where $C \cap A=\{C \cap D: D \in A\}$, similarly $C \cap F_{n}=\left\{C \cap D: D \in F_{n}\right\}, Y_{n}$ is the r.v. $x^{\prime}\left(X_{n}\right)$ truncated to C, and P_{1}
is simply the measure P truncated to $C \cap A$ and divided (normalized) by dividing by $P(C) . x^{\prime}(S)$ is compact, hence bounded, on the real axis, so, by definition, Y_{n} is bounded by some real constant. As in the previous proof, we check that $x^{\prime}\left(X_{n}\right)$ converges a.s., hence Y_{n} converges a.s. By corollary 1 from [1] $\left(Y_{n}, C \cap F_{n}\right)$ is an amart, of course L^{1}-bounded. Thus, by theorem 5 from [1], X_{n} converges a.s. on C, so, by an obvious argument, it converges a.s. on Ω.

4. Examples.

1. If a L^{1}-bounded martingale ($X_{n}, F_{n}, n \geqq 1$) takes values in a finitedimensional subspace E_{1} of E, it converges a.s. Indeed, as it is mentioned in [8], p. 108, the sequence ($\left\|X_{n}\right\|, F_{n}, n \geqq 1$) is a real-valued L^{1}-bounded submartingale and thus $Z=\sup _{n}\left\|X_{n}\right\|<\infty$ a.s. This fact, in connection with compactness of a ball in E_{1}, yields (4).
2. In [8], p. 111, we can find an interesting example of a L^{1}-bounded martingale taking values in c_{0} which diverges a.s. We shall see how our criterion works in that case.

Let Y_{n} denote a sequence of i.i.d real r.v.s such that $P\left[Y_{n}= \pm 1\right]=1 / 2$ and let $X_{n}=\left(Y_{1}, \cdots Y_{n}, 0,0, \cdots\right)$.

Let us remark that if we put

$$
A=\left\{y=\left(y_{1}, y_{2}, \cdots\right) \in c_{0}: \exists n_{0}(y)\left(\forall n>n_{0}(y) y_{n}=0 \vee \forall n \leqq n_{0}(y) y_{n}= \pm 1\right\},\right.
$$

then for $a, b \in A, a \neq b$, we have $\|a-b\| \geqq 1$ and thus every compact subset of A is finite. Now it is obvious that in this case (4) cannot hold.
3. Let, for every $k \in N,\left(X_{n}^{k}, F_{n}^{k}, n \geqq 1\right)$ be a real martingale such that $P\left(\left|X_{k}^{n}\right|>1\right)=0$ for all $n \in N$ and σ-fields $F_{\infty}^{k}=\sigma\left(\cup_{n=1}^{\infty} F_{n}^{k}\right), k \in n$, are independent on one another. Let a_{1}, a_{2}, \cdots be a sequence of real numbers which converges to zero as $n \rightarrow \infty$. Put

$$
X_{n}=\left(a_{1} X_{n}^{1}, a_{2} X_{n}^{2}, a_{3} X_{n}^{3}, \cdots\right) \text { and } F_{n}=\sigma\left(\bigcup_{k=1}^{\infty} F_{n}^{k}\right)
$$

($X_{n}, F_{n}, n \geqq 1$) is a L^{1}-bounded martingale taking values in c_{0}. Indeed, X_{n} is F_{n}-measurable and $\left\|X_{n}\right\| \leqq \sup _{m}\left|a_{m}\right|<\infty$ for every n. It remains to verify the martingale property. Obviously $E^{F_{n}} X_{n+1}$ exists. The only question is whether or not it equals to X_{n} a.s.

Let $x_{i}^{\prime} \in c_{0}^{\prime}, x_{l}^{\prime}\left(\left(x_{1}, x_{2}, \cdots\right)\right)=x_{l}$, be the coordinate mappings in c_{0}. We have

$$
\begin{equation*}
x_{l}^{\prime}\left(E^{F_{n}} X_{n+1}\right)=E^{F_{n}} x_{l}^{\prime}\left(X_{n+1}\right)=a_{l} E^{F_{n}} X_{n+1}^{l} \tag{17}
\end{equation*}
$$

But

$$
\begin{equation*}
E^{F_{n}} X_{n+1}^{l}=E^{F_{n}^{l}} X_{n+1}^{l} . \tag{18}
\end{equation*}
$$

Indeed, $E^{F_{n}^{l} X_{n+1}^{k}}$ is F_{n}-measurable. It remains to check that

$$
\begin{equation*}
\forall A \in F_{n} \int_{A} X_{n+1}^{l} d P=\int_{A} E^{F_{n}^{l}} X_{n+1}^{l} d P . \tag{19}
\end{equation*}
$$

It sufficies to verify (19) for sets $A=B \cap C$, where $B \in F_{n}^{l}, C \in \sigma\left(\cup_{m \neq l} F_{n}^{m}\right)$, because they form a π-system generating a λ-system F_{n} (see the Dynkin theorem e.g. in [2]). But

$$
\begin{equation*}
\int_{B_{\cap} C} E^{F_{n}^{l}} X_{n+1}^{l} d P=P(C) \int_{B} E^{F_{n}^{l}} X_{n+1}^{l} d P=P(C) \int_{B} X_{n+1}^{l} d P=\int_{B_{\cap} C} X_{n+1}^{l} d P, \tag{20}
\end{equation*}
$$

(the first and the last equality follow from an easy to prove fact that if $B \in$ F_{∞}^{l}, X is a F_{∞}^{l}-measurable, integrable r.v. and $C \in \sigma\left(\cup_{m \neq l} F_{n}^{m}\right)$, then C is independent of F_{∞}^{l} and thus

$$
\begin{equation*}
\int_{B_{\cap} \subset} X d P=P(C) \int_{B} X d P \tag{21}
\end{equation*}
$$

We have proved (18).
Thus, by (17) and (18), we have

$$
\begin{equation*}
x_{l}^{\prime}\left(E^{F_{n}} X_{n+1}\right)=a_{l} E^{F_{n}^{l} X_{n+1}^{l}=a_{l} X_{n}^{l}, ~} \tag{22}
\end{equation*}
$$

so $E^{F}{ }_{n} X_{n+1}=\left(a_{1} X_{n}^{1}, a_{2} X_{n}^{2}, \cdots\right)=X_{n}$. We have proved the martingale property (in fact only integrability of X_{n}, the martingale property of their coordinates and independence of F_{∞}^{k} have been used).

It is easy to see that a set $K=\left\{x=\left(x_{1}, x_{2}, \cdots\right) \in c_{0}: \forall k \in N\left|x_{k}\right| \leqq\left|a_{k}\right|\right\}$ is compact in c_{0}, because $\lim _{n \rightarrow \infty} \sup _{x \in K}\left\|R_{n} x\right\|=0$, where $R_{n}\left(\left(x_{1}, \cdots x_{n}, x_{n+1}, x_{n+2}\right.\right.$, $\cdots))=\left(0, \cdots 0, x_{n+1}, x_{n+2}, \cdots\right)$. Thus the martingale X_{n} converges a.s., becaue $P\left(X_{n} \in K\right)=1$ for every $n \in N$ and thus this sequence is strongly tight.

It is natural to pose a question: is strong tightness sufficient for a.s. convergence of an arbitrary asymptotic martingale (not necessarily L^{1}-bounded)? Unfortunately, the answer is negative even in the case of real martingales which are L^{α}-bounded for every $\alpha \in(0,1)$; a counter-example is given below.

Let $(\Omega, A, P)=([0,1], B([0,1]), \mu)$, where μ is the Lebesgue measure on the unit interval and let $F_{0}=\{\emptyset, \Omega\}$. We construct the σ-field F_{n+1} from F_{n} by dividing each atom of F_{n} into two parts, one of which has $1 / 2^{n+1}$ of the mass of the previous one and the second one has $1-1 / 2^{n+1}$ of it.

Let $X_{0}=0$ a.s. and let $P\left(X_{1}= \pm 1\right)=1 / 2$. We construct $X_{n_{+1}}$ from X_{n} in the following way. If n is even (odd), we take each atom of F_{n}, we divide it into parts as above, we put $X_{n+1}=1(0)$ on the bigger one and such (constant) number on the second one, that the martingale property is retained. In what follows we shall call this procedure balancing to $1(0)$. E.g. $P\left(X_{2}=0\right)=3 / 4$ and $P\left(X_{2}= \pm 4\right)=1 / 8 .\left(X_{n}, F_{n}, n \geqq 0\right)$ is a real martingale. It is easy to see that in the real case strong tightness of the sequence X_{n} is equivalent to

$$
\begin{equation*}
\sup _{n}\left|X_{n}\right|<\infty \quad \text { a.s. } \tag{23}
\end{equation*}
$$

and that the martingale defined above fulfils this condition (it sufficies to use the Borel-Cantelli lemma to verify that $P\left(X_{n} \notin\{0,1\}\right.$ for infinitely many $\left.\left.n\right)=0\right)$. But $X_{2 n} \xrightarrow{a .8 .} 0$ and $X_{2 n+1} \xrightarrow{\text { a.s. }} 1$ as $n \rightarrow \infty$, so the martingale X_{n} does not even converge in law.

We shall show that X_{n} exhibits one more interesting property: for every $\alpha \in(0,1)$ it is L^{α}-bounded, i.e.

$$
\begin{equation*}
\sup _{n} E\left|X_{n}\right|^{\alpha}<\infty . \tag{24}
\end{equation*}
$$

Let $\alpha \in(0,1)$. Consider the way in which we construct X_{n+1} from X_{n}. We have two types of atoms:
i) Atoms, for which $X_{n}=0$ (if n is even) or $X_{n}=1$ (if n is odd) by the basic construction principle. Probability of the sum of these atoms is equal to $1-1 / 2^{n}$.
ii) Atoms for which $\left|X_{n}\right|=a=$ const, $|a|>1$ (in fact, X_{n} takes only integer values and thus $|a| \geqq 2$).
iii) Atoms for which $X_{n}=1$ if n is even) or $X_{n}=0$ (if n is odd). It is easy to see that on these atoms $X_{n+1}=X_{n}$ a.s., thus if we compare $E\left|X_{n+1}\right|^{\alpha}$ to $E\left|X_{n}\right|^{\alpha}$, we can take into account only atoms of type i) and ii).

You can ask whether $X_{n}=-1$ on some atom of F_{n} (none of the cases i)iii) covers this situation). It really happens if $n=1$, but for $n \geqq 2$ it is impossible, because it is impossible to balance an integer on $1-1 / 2^{n+1}$ of an atom to another integer putting $X_{n+1}=-1$ on the remaining $1 / 2^{n+1}$ of it.

We shall estimate the change of $E\left|X_{n}\right|^{\alpha}$ on the atoms of types i) and ii).
i) a) n is even, so we balance 0 to 1 .

Let B be an atom of F_{n} such that $X_{n}=0$ on B. We divide B into B_{1} and $B_{2}, P\left(B_{1}\right)=\left(1-1 / 2^{n+1}\right) P(B), P\left(B_{2}\right)=1 / 2^{n+1} P(B)$.

We put $X_{n+1}=1$ on B_{1} and thus we must put $X_{n+1}=1-2^{n+1}$ on B_{2} to retain the martingale property. Thus

$$
\begin{align*}
E\left|X_{n+1}\right|^{\alpha} I_{B} & =P(B)\left[1^{\alpha}\left(1-\frac{1}{2^{n+1}}\right)+\left(2^{n+1}-1\right)^{\alpha} \frac{1}{2^{n+1}}\right] \tag{25}\\
& =P(B)\left[1-\frac{1}{2^{n+1}}+\frac{\left(2^{n+1}-1\right)^{\alpha}}{2^{n+1}}\right] .
\end{align*}
$$

Summing over all atoms B of type i) we obtain

$$
\begin{align*}
S_{1}^{n+1} & =\sum_{B} E\left|X_{n+1}\right|^{\alpha} I_{B}=\left(1-\frac{1}{2^{n}}\right)\left[1-\frac{1}{2^{n+1}}+\frac{\left(2^{n+1}-1\right)^{\alpha}}{2^{n+1}}\right] \tag{26}\\
& <\left(1-\frac{1}{2^{n}}\right)\left[1-\frac{1}{2^{n+1}}+\left(\frac{1}{2^{n+1}}\right)^{1-\alpha}\right]<2 .
\end{align*}
$$

Observe that on these atoms $S_{1}^{n}=E\left|X_{n}\right|^{\alpha} I_{B}=0$, so the total increase of S_{1}^{n} is in this case less than 2.
b) We balance 1 to $0, n$ is odd.

We take an atom $B \in F_{n}$ such that $X_{n}=1$ on B. We divide it into B_{1} and B_{2} like in the point a) and we put $X_{n+1}=0$ on B_{1} and $X_{n+1}=2^{n+1}$ on B_{2}. Similarly like in a)

$$
\begin{equation*}
S_{2}^{n+1}=\sum_{B} E\left|X_{n+1}\right|^{\alpha} I_{B}=\left(1-\frac{1}{2^{n}}\right) \frac{1}{2^{(n+1)(1-\alpha)}} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}^{n}=\sum_{B} E\left|X_{n}\right|^{\alpha} I_{B}=\left(1-\frac{1}{2^{n}}\right) \cdot 1=1-\frac{1}{2^{n}}, \tag{28}
\end{equation*}
$$

thus here S_{2}^{n} decreases.
Let us suppose that n is even and figure the increase from $E\left|X_{n}\right|^{\alpha}$ to $E\left|X_{n+2}\right|^{\alpha}$ only on the atoms of type i).

From X_{n} to X_{n+1} the increase of $E|\cdot|^{\alpha}$ is less than

$$
\begin{equation*}
\left(1-\frac{1}{2^{n}}\right)\left(1-\frac{1}{2^{n+1}}+\left(\frac{1}{2^{n+1}}\right)^{1-\alpha}\right) \tag{29}
\end{equation*}
$$

and from X_{n+1} to X_{n+2} we have a decrease

$$
\begin{equation*}
\left(1-\frac{1}{2^{n+1}}\right)\left(1-\left(\frac{1}{2^{n+2}}\right)^{1-\alpha}\right) \tag{30}
\end{equation*}
$$

Thus the increase of $E|\cdot|^{\alpha}$ from X_{n} to X_{n+2} is less than

$$
\begin{align*}
(1- & \left.\frac{1}{2^{n+1}}\right)\left[\left(\frac{1}{2^{n+2}}\right)^{1-\alpha}-\frac{1}{2^{n}}\right]+\left(1-\frac{1}{2^{n}}\right)\left(\frac{1}{2^{n+1}}\right)^{1-\alpha} \tag{31}\\
& <\left(\frac{1}{2^{1-\alpha}}\right)^{n+2}+\left(\frac{1}{2^{1-\alpha}}\right)^{n+1}-\frac{1}{2^{n}} .
\end{align*}
$$

The series $\Sigma\left(1 / 2^{1-\alpha}\right)^{n}$ and $\Sigma 1 / 2^{n}$ both converge and thus the increase of $E|\cdot|^{\alpha}$ only on all atoms of type i) after an arbitrary even number of steps is bounded above by some integer M and so, by a), the increase after an odd (and thus an arbitrary) number of steps is bounded above by $M+2$.
ii) a) We balance from a to $0, n$ is odd, $|a| \geqq 2$.

We take an atom $B \in F_{n}$ such that $X_{n}=a$ on B, divide it into B_{1} and B_{2} like in i) a) and put $X_{n+1}=0$ on B_{1} and $X_{n+1}=2^{n+1} a$ on B_{2}.

$$
\begin{equation*}
B\left|X_{n}\right|^{\alpha} I_{B}=|a|^{\alpha} P(B) \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
& E\left|X_{n+1}\right|^{\alpha} I_{B}=P(B) \frac{1}{2^{n+1}} 2^{(n+1) \alpha}|a|^{\alpha}, \tag{33}\\
& \text { so } \quad \frac{E\left|X_{n+1}\right|^{\alpha} I_{B}}{E\left|X_{n}\right|^{\alpha} I_{B}}=\frac{1}{2^{(n+1)(1-\alpha)}}<1,
\end{align*}
$$

thus on these atoms $E|\cdot|^{\alpha}$ decreases.
b) We balance from a to $1,|a| \geqq 2, n$ is even.

We take an atom $B \in F_{n}$ such that $X_{n}=a$ on it, divide it into B_{1} and B_{2} as above and put $X_{n+1}=1$ on $B_{1}, X_{n+1}=2^{n+1}(a-1)+1$ on B_{2}.

$$
\begin{equation*}
E\left|X_{n}\right|^{\alpha} I_{B}=P(B)|a|^{\alpha} \tag{34}
\end{equation*}
$$

and

$$
\begin{align*}
& E|X|_{n+1}^{\alpha} I_{B}=P(B)\left[\left|2^{n+1}(a-1)+1\right|^{\alpha} \frac{1}{2^{n+1}}+1^{\alpha}\left(1-\frac{1}{2^{n+1}}\right)\right] \tag{35}\\
& \left.\leqq P(B)\left[1-\frac{1}{2^{n+1}}+\left(2^{n+2}|a|\right)^{\alpha} \frac{1}{2^{n+1}}\right)\right]<P(B)\left[1+|a|^{\alpha} 2^{(n+1)(\alpha-1)+\alpha}\right],
\end{align*}
$$

the inequality follows from $2^{n+1}(a-1)+1<2^{n+1} a<2^{n+2} a$ and $|a-1|=-a+1<$ $2(-a)=2|a|$ (and thus, because all the numbers used are integers, $2^{n+1}|a-1|+$ $1<2^{n+2}|a|$) for $a \leqq-2$, so for every integer a such that $|a| \geqq 2$ we have $\left|2^{n+1}(a-1)+1\right|<2^{n+2}|a|$.

But $(n+1)(\alpha-1)+\alpha \rightarrow-\infty$ as $n \rightarrow \infty$, thus there exists n_{0} such that for all $n \geqq n_{0}$ we have

$$
\begin{equation*}
\frac{E\left|X_{n+1}\right|^{\alpha} I_{B}}{E\left|X_{n}\right|^{\alpha} I_{B}}<\frac{1+|a|^{\alpha}\left(1-1 / 2^{\alpha}\right)}{|a|^{\alpha}}<\frac{1}{|a|^{\alpha}}+1-\frac{1}{2^{\alpha}} \leqq 1 . \tag{36}
\end{equation*}
$$

Thus for $n \geqq n_{0}$ (not dependent on a) $E|\cdot|^{\alpha}$ decreases.
Finally, taking into account i), ii) and iii) we can state that the sequence $E\left|X_{n}\right|^{\alpha}$ is bounded.

The above example shows that the well known Doob's theorem stating that every L^{1}-bounded real martingale converges a.s. is, in some sense, the best possible: it cannot be extended to any $L^{\alpha}, \alpha \in(0,1)$.

Using the martingale ($X_{n}, F_{n}, n \geqq 1$) described above we can easily construct an example of a martingale which converges in law and does not converge in probability.

Let $(\Omega, A, P)=([0,2], B([0,2], \mu / 2)$, i.e. $\mu / 2(A)=\mu(A) / 2$ for every $A \in$ $B([0,2])$, where μ is the Lebesgue measure, and let $Y_{n}(\omega)=X_{n}(\omega)$ for $\omega \in[0,1]$ and $Y_{n}(\omega)=1-X_{n}(\omega-1)$ for $\omega \in(1,2], B_{n}=\sigma\left(F_{n}, F_{n}+1\right)$, where $F_{n}+1=\{A+1$: $\left.A \in F_{n}\right\}$ and $A+1=\{\omega+1: \omega \in A\}$.

It is obvious that ($Y_{n}, B_{n}, n \geqq 0$) is an integrable martingale. Let us remark that $Y_{2 n+1} \longrightarrow Y_{\infty}$ and $Y_{2 n} \longrightarrow 1-Y_{\infty}$, where $Y_{\infty}=1$ on [0, 1] and $Y_{\infty}=0$ on (1, 2]. Thus Y_{n} clearly does not converge in probability, although it converges in law, because the laws of Y_{∞} and $1-Y_{\infty}$ are equal.

Acknowledgements. The authors thank the referee for all his comments. especially for the idea of the second proof of Theorem 2.

References

[1] Austin, D. G., Edgar, G. A. and Ionescu Tulcea, A. (1974), Pointwise convergence in terms of expectations. Z. Wahrscheinlichkeitsteorie Gebiete 30, 17-26.
[2] Billingsley, P. (1979), Probrbility and Measure, Wiley, New York.
[3] Chatterji, S.D. (1968), Martingale convergence and the Radon-Nikodym theorem in Banach spaces. Math. Scand. 22, 21-41.
[4] Diestel, J. and Uhl, J. J. (1977). Vector Measures. Amer. Math. Soc., Providence, Rhode Island.
[5] Dunford, N. and Schwartz, J. T. (1957). Linear Operators Part I. Interscience, New York.
[6] Edgar, G. A. and Sucheston, L. (1976), Amarts: a class of asymptotic martingales. A. Discrete parameter. Journ. of Multivar. Anal. 6, No. 2, 193-221.
[7] Kruk, Ł. and Ziȩba, W. (1994), On tightness of randomly indexed sequences of random elements. Bull. Pol. Ac.: Math. 42, 237-241.
[8] Neveu, J. (1975), Discrete-Parameter Martingales. North Holland/American Elsevier.

```
Institute of Mathematics, Maria Curie-Sklodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland e-mail: lkruk@golem. umcs. lublin. pl.
Institute of Mathematics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
e-mail: zieba@golem. umcs. lublin. pl
```

