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Abestract. In this paper we give a necessary and sufficient condition for a
$L^{1}$-bounded asymptotic martingale (amart) taking values in a Banach space to
converge almost surely in norm: such an asymptotic martingale $(X_{n}, F_{n}, n\geqq 1)$

converges a.s. iff it is strongly tight, i.e. for every $\epsilon>0$ there exists a com-

pact set $K_{\epsilon}$ such that $ P(\bigcap_{n=1}^{\infty}[X_{n}\in K_{\epsilon}])>1-\epsilon$ . Moreover, we show that for

realvalued martingales the well known theorem of Doob is, in some sense,
the best possible-there exists a martingale $(X_{n}, n\geqq 1)$ such that $\sup_{n}E|X_{n}|^{a}<\infty$

for every $a\in(O, 1)$ and it diverges a.s. (in fact, it does not even converge in
law, although it is strongly tight).

1. Introduction.

A classic problem in the theory of martingales is to give conditions which
assure their almost sure (a.s.) convergence. The well known Doob’s theorem
states that every real-valued $L^{1}$-bounded submartingale converges $a.s$ . $[8]$ . It
is, in general, false in case of L’-bounded martingales taking values in a sepa-
rable Banach space. Namely, the following is well known: for every separable
Banach space $E$ the fact that every $L^{1}$-bounded E-valued martingale converges
a.s. in norm to an integrable X-valued random variable (r.v.) is equivalent to
the Radon-Nikodym theorem for E-valued measures with a finite variation and
absolutely continuous with respect to the probability measure [3], [8]. This
theorem gives an exhaustive answer to the question in which spaces every $L$ ‘-

bounded martingale converges $a.s$ . But it may haPpen that a $L^{1}$-bounded mar-
tingale taking values in a space which does not fulfil the Radon-Nikodym $\omega n-$

dition converges a.s. (e.g. take the space $E=c_{0}$ of all real sequences converging
to zero with a $\sup$ norm, $e\in c_{0}$ such that $\Vert e\Vert=1$ and an arbitrary real-valued
martingale $(X_{n}, F_{n}, n\geqq 1)$ ; the sequence $(X_{n}e, F_{n}, n\geqq 1)$ obviously converges
a.s., although an example in [8] shows that not every L’-bounded martingale
taking values in this space converges a.s.). Thus a question origins: can we
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give a necessary and sufficient condition for a $L^{1}$-bounded martingale taking
values in a Banach space to converge a.s.? Theorem V.3.9. in [4], which is
due to Chatterji [3], answers this question completely in terms of decomposition
of vector measures and Radon-Nikodym derivatives. A case of asymptotic
martingales is more complicated: if $E$ has the Radon-Nikodym Property and a
separable dual space, we need an assumption $\sup_{\tau\in T}E\Vert X_{\tau}\Vert<\infty$ , where $T$ is the
set of bounded stoPping times, to assure weak convergence of the sequence
$(X_{n}(\omega), n\geqq 1)$ for almost all $\omega\in\Omega$ . It is known that the condition $\sup_{\tau\in T}E\Vert X_{\tau}\Vert$

$<\infty$ cannot be replaced by $L^{1}$-boundedness of the sequence $(X_{n})$ and none of
the conditions concerning $E$ cannot be omitted. Moreover, convergence in norm
need not hold [6]. In this paper we solve the problem of a.s. convergence of
amarts by giving a topological characterization: a $L^{1}$ bounded asymptotic mar-
tingale $X_{n}$ taking values in a Banach space $E$ converges a.s. in norm iff it is
strongly tight, i.e. for every $\epsilon>0$ there exists a compact set $K_{\epsilon}$ such that
$ P(\bigcap_{n=1}^{\infty}[X_{n}\in K_{e}])>1-\epsilon$ . It can seem a little surprising because in an infinitely
dimensional Banach space a ball is not compact. The Baire category theorem
(see e.g. [5], theorem I.6.9) states that it is not even $\sigma$-compact (i.e. is not a
sum of a countable family of compact sets) and thus compact sets in an infini-
tely dimensional Banach spaces can be regarded as “small”.

2. Notation and Deflnitions.

Let $N$ denote a set of natural numbers, i.e. $N=\{1,2, 3, \}$ . Let $(\Omega, A, P)$

be a probability space and let $(F_{n}, n\geqq 1)$ be an increasing sequence of sub-a-
fields of $A$ (i.e. $F_{n}\subset F_{n+1}\subset A$ for every $n\in N$ ). A mapping $\tau:\Omega\rightarrow N\cup\{\infty\}$ will
be called a stopping time with respect to $(F_{n})$ iff for every $n\in N$ the event
{ $\tau=n$ ] belongs to $F_{n}$ . A stopping time $\tau$ will be called bounded iff there exists
$M\in N$ such that $P\{\tau\leqq M\}=1$ . A set of all bounded stoPping times will be
denoted by $T$ . Let $E$ be a Banach space with a norm $\Vert||$ . Let $E^{\prime}$ be its dual
and let $\Vert\Vert_{*}$ be a norm in $E^{\prime}$ . We shall say that a function $X:\Omega\rightarrow E$ is weakly
measurable iff for every $x^{\prime}\in E^{\prime}$ a function $x^{\prime}(X)$ is measurable. A weakly
measurable maPping $X$ is said to be Pettis integrable iff for every $B\in A$ there

exists $x_{B}\in E$ such that for every $x^{\prime}\in E^{\prime}$ we have $\int_{B}x^{\prime}(X)dP=x^{\prime}(x_{B})$ . The

element $x_{B}$ is called a Pettis integral of $X$ on the set $B$ and denoted by $\int_{B}XdP$.
Moreover, if $X$ is measurable and $ E\Vert X\Vert<\infty$ a.s., then $X$ is also Bochner in-
tegrable and the Bochner integral $EX$ obviously coincides with the Pettis in-
tegral of $X$ on $\Omega[4]$ . The set of all Bochner integrable r.v. $s$ . with values in
$E$ (more precisely, the set of all their equivalence classes) will be denoted by
$L_{E}^{1}$ or simply by $L^{1}$ , where it does not lead to confusion. Let $F$ be a $sub-\sigma-$

field of $A$ . Definitions and basic properties of the Bochner integral $EX$ and
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the conditional expectation $E^{F}X$ of a r.v. $X\in L_{E}^{1}$ can be found e.g. in [8].

Definition 1. A sequence $(X_{n}, F_{n}, n\geqq 1)$ will be called a martingale if, for
every $n\in N$, the following conditions are satisfied.

(1) $X_{n}$ is $F_{n}$ -measurable and $X_{n}\in L_{E}^{1}$ ,
(2) $E^{F_{n}}X_{n+1}=X_{n}$ a.s.

Definition 2. [6] A sequence $(X_{n}, F_{n}, n\geqq 1)$ of Pettis integrable r.v. $s$ . is
called an asymptotic martingale (amart) iff $X_{n}$ is $F_{n}$ -measuracle for every $n\in N$

and if for every $\epsilon>0$ there exists $\tau_{0}\in T$ such that for every $\tau,$ $0\in T,$ $\tau,$
$u\geqq\tau_{0}$

we have

(3) $\Vert\int X_{f}dP-\int X_{v}dP\Vert<\epsilon$ .
Obviously, every martingale is an asymptotic martingale.
It is well known that every (strongly) measurable r.v. with values in $E$ is

essentially separably valued (see [4], theorem 2.1.2). Thus, considering a
sequence (indexed by elements of $N$ ) of such r.v. $s$ , we can always assume that
they take values in a separable subspace of $E$ . For simplicity, we assume that
$E$ is itself separable.

Deflnition 3. We shall say that a sequence $(X_{n}, n\geqq 1)$ of E-valued r.v. $s$ .
is $L_{B}^{1}$ (or simply $L^{1}$)-bounded iff $\sup_{n}E\Vert X_{n}||<\infty$ and that it is strongly tight
iff for every $\epsilon>0$ there exists a compact subset $K_{\epsilon}$ of $E$ such that

(4) $ P(\bigcap_{n=1}^{\infty}[X_{n}\in K_{\epsilon}])>1-\epsilon$ .

Let us recall that an indexed family $\{\mu_{t}, t\in T\}$ of probability measures
defined on the a-field $B(E)$ of the Borel subsets of $E$ is called tight iff for
every $\epsilon>0$ there exists compact set $K\subset E$ such that for every $t\in T$ we have
$\mu_{t}(K)>1-\text{\’{e}}$ . A classic theorem of Prohorov ([2], p. 37) states that in a Polish
(i.e. a complete and separable metric) space a family of probability measures
is weakly relatively compact iff it is tight. Obviously if a sequence $(X_{n}, n\in N)$

is strongly tight, the family of their distributions $t\mu_{X_{n}}$ : $n\in N$ } is tight, but
the reverse implication does not hold, e.g. take a sequence of i.i. $d$ . real r.v. $s$ .
having a standard normal distribution.

3. Main results.

The following theorem seems to be, in some sense, a counterpart of the
mentioned theorem of Prohorov (for almost sure convergence instead of weak
convergence) and is crucial to everything what follows.
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Theorem 1 [7]. Let $S$ be a Polish space and let $(X_{n}, n\geqq 1)$ be a sequence
of r.v.s tahng values in $S$ .

If $ X_{n}\rightarrow Xa\iota n\rightarrow\infty$ , for some $r.v$ . $X$, then the sequence $X_{n}$ is strongly tight.

Proof. It is easy to see that if $ X_{n}\rightarrow Xaln\rightarrow\infty$ , for some r.v. $X$, and
$F_{n}=\sigma(X_{1}, \cdots , X_{n})$ , then $X_{n}$ is randomly convergent in law to $X$, i.e. for every
$\tau_{0}\in T$ such that for every $\tau\geqq\tau_{0}a.s$ . $ d(X_{\tau}, X)<\epsilon$ , where $d$ denotes the Prok-
horov metric. Now we shall show that the family of distributions $\{P_{x_{\tau}}, \tau\in T\}$

is tight.
Fix $\delta>0$ and a countable dense subset of $S$ . Let

$B_{m}(\delta)=\bigcup_{\ell=1}^{m}K(x_{i}, \delta)$ ,

where
$K(x_{i}, \delta)=\{x\in S:\rho(x_{\ell}, x)<\delta\}$ .

Now we shall show that for every $\epsilon>0$ tbere exists $m$ such that for every
$\tau\in T$

$ P[X_{f}\in B_{m}(\delta)]>1-\epsilon$ .
Assume that the last statement is false, i.e. there exists $\epsilon>0$ such that for

every $m\in N$ we can choose $\tau_{m}\in T$ such that $ P[X_{z_{m}}\in B_{m}(\delta)]\leqq 1-\epsilon$ . For every
$n$ there exists a number $m(n)$ such that

$P(\bigcup_{i=1}^{n}[X_{\ell}\not\in B_{mtn)}(\delta)])\leqq\frac{\epsilon}{2}$ .

Moreover, we can assume that $m(n)>m(n-1)$ and that $m(n)>n$ . If we put
$\tau_{m(n)}^{\prime}=\max(\tau_{m(n)}, n+1)$, then it is easy to see that

$P[X_{f^{\prime}m(n)}\not\in B_{m\langle n)}(\delta)]\geqq\frac{\epsilon}{2}$ .

Thus, by theorem 2.1 [2], for every $n$ we have

$P_{X}(B_{m(n)}(\delta))\leqq\lim_{\vec{k}\infty}infP_{x_{\tau_{m(k)}^{\prime}}}(B_{m\langle n)}(\delta))$

$\leqq\lim_{k\rightarrow\infty}infP_{x_{\tau_{m(k)}}},(B_{m(k)}(\delta))\leqq 1-\frac{\epsilon}{2}$ ,

but, on the basis of the axiom of continuity,

$\lim_{n\rightarrow\infty}P_{X}(B_{m(n)}(\delta))=1$ ,

contradiction.
Thus for an arbitrary $\epsilon>0$ and $k\geqq 1$ we can choose a number $n_{k}$ such

that
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$P[X_{\tau}\in B_{m(n_{k})}(\frac{1}{k})]>1-\frac{\epsilon}{2^{k}}$ .

Now let

$K=\bigcap_{k=1}^{\infty}B_{m(n_{k})}(\frac{1}{k})$ .
It is easy to see that $K$ is compact and $ P[X_{\tau}\in K]>1-\epsilon$ for every $\tau\in T$ . Thus
the family $\{P_{x_{\tau}}, \tau\in T\}$ is tight.

We are now ready to finish the proof. Assume that theorem 1 is false,
i.e. there exists $\epsilon>0$ such that for any compact set $K$

$ P(\bigcap_{n=1}^{\infty}[X_{n}\in K])\leqq 1-2\epsilon$ .
By the other hand, there exists a compact set K. such that

$ P[X_{\tau}\in K_{l}]>1-\epsilon$ for every $\tau\in T$ .
Let $\tau(\omega)=\inf\{s:X_{s}\not\in K_{\epsilon}\}$ . If $\tau_{n}=\min(\tau, n)$ , then $\tau_{n}\in T$ and

$ P(\bigcup_{n=1}^{\infty}[X_{n}\not\in K_{*}])\leqq JimP[X_{c_{n}}\not\in K_{\epsilon}]n\rightarrow\infty\leqq\epsilon$ .
The proof is complete.

Thus every a.s. convergent sequence of r.v. $s$ . taking values in a Banach
space is tight. Now we shall show that strong tightness assures a.s. conver-
gence of a $L^{1}$-bounded asymptotic martingale.

Lemma 1. Let $E$ be a Banach sPace and let $K\subset E$ be comPact. There exists
a countable family $x_{k}^{\prime}\in E^{\prime},$ $k\geqq 1$ , such that for an arbitrary sequence $\{x_{n}\}$ of
elements of $Kx_{n}\rightarrow x_{\infty}$ for some $x_{\infty}$ iff for every $k\in N$ the sequence $\{x_{k}^{\prime}(x_{n}), n\geqq 1\}$

is convergent.

Remark. Let us mention that in general if $x_{n}$ is a sequence of elements
of a Banach space $E$ , convergence of all the sequences $x^{\prime}(x_{n}),$ $\geqq 1,$ $n^{\prime}\in E^{\prime}$ , does
not even imply weak convergence of $x_{n}$ to some $x_{\infty}\in E$ , for example a sequence
$x_{n}=(0\frac{1,1,\cdots 1}{n},,0, )$

in the space $c_{0}$ of real sequences converging to zero
does not converge weakly.

Lemma 2. Let $E$ be a Banach space and let $(X_{n}, n\geqq 1)$ be a strongly tight
sequence of E-valued r.v.s. There exists a countable subset $\{x_{k}^{\prime}, k\in N\}\in E^{\prime}$ such

that $ X_{n}\rightarrow Xa\iota$ for some $r.v$ . $X$ iff for every $k\in N$ the sequence $\{x_{k}^{\prime}(X_{n}), n\geqq 1\}$

converges $a.s$ .
Proof. It is obvious that if $X_{n}\rightarrow Xa*$ then for every $x^{\prime}\in E^{\prime}x^{\prime}(X_{n})\rightarrow x^{\prime}(X)al$

Conversely, let us, for $p\in N$, take a compact set $K_{1/p}$ fulfilling (4) for $\epsilon=$
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$1/p$ . By lemma 1 there exist functionals $\{x_{\ell^{p}}^{\prime}, l\geqq 1\}$ such that for every
sequence $\{x_{n}\}$ of elements of $K_{1/p}x_{n}\rightarrow x$ for some $x$ iff all the sequences
$\{x_{\ell^{p}}^{\prime}(x_{n}), n\geqq 1\},$ $l\geqq 1$ , converge. Take $\{x_{k}^{\prime}\}=\{x_{\iota^{p}}^{\prime} ; p, l\in N\}$ . Let us suPpose

that all the sequences $\{x_{k}^{\prime}(X_{n}), n\geqq 1\}$ converge a.s. Let $\Omega_{0}=\{\omega\in\Omega$ : the sequence
$(x_{k}^{\prime}(X_{n}(\omega)), n\geqq 1)$ converges for every $k\in N$ }. We have $P(\Omega_{0})=1$ . Let $A_{p}=$

$U_{n\approx 1}^{\infty}[X_{n}\in K_{1’ P}]$ . By (3), $P(A_{p})>1-1/p$ , so if we put $\Omega_{1}=U_{p\Leftarrow 1}^{\infty}A_{p}$ , we have
$P(\Omega_{1})=1$ . Let $\omega\in\Omega_{0}\cap\Omega_{1}$ . There exists $p\in N$ such that $\omega\in A_{p}$ , so $X_{n}(\omega)\in K_{1/p}$

for all $n\in N$ and, because $\omega\in\Omega_{0}$ , the sequence $x_{\iota^{p}}^{\prime}(X_{n}(\omega))$ converges for all
$l\in N$. Thus $X_{n}(\omega)\rightarrow X(\omega)$ for some $X(\omega)\in E$ , so the sequence $X_{n}$ converges a.s.
and obviously its limit $X$ is measurable. The proof is complete.

Corollary. A sequence $(X_{n}, n\geqq 1)$ of r.v.s taking values in a Banach sPace
converges $a.s$ . iff it is sfrongly tight and for every $x^{\prime}\in E^{\prime}$ the sequence $x^{\prime}(X_{n})$

converges $a.s$ .

Now we are ready to prove our main result.

Theorem 2. Let $(X_{n}, F_{n}, n\geqq 1)$ be a L’-bounded asymptOtic martingale taking
values in a Banach space E. $X_{n}\rightarrow X$ for some integrable $r.v$ . $X$ if and only

if the sequence $X_{n}$ is strongly tight.

Proof. Necessity of strong tightness of $(X_{n})$ for its a.s. convergence follows
from theorem 1 (see also a remark after definition 1). Conversely, assume that
$(X_{n})$ is strongly tight. For every $x^{\prime}\in E^{\prime}$ the sequence $(x^{\prime}(X_{n}), F_{n}, n\geqq 1)$ is a
$L^{1}$-bounded real asymptotic martingale and thus converges $a.s$ . $[1]$ . Indeed, let
$\epsilon>0$ be arbitrary and let $\tau_{0}\in T$ be such that for every $\tau,$ $\sigma\in T,$ $\tau,$ $\sigma\geqq\tau_{0}$ a.s.,
(3) holds. Thus

$|Ex^{\prime}(X_{f})-Ex^{\prime}(X_{\sigma})|=|x^{\prime}(EX_{\tau})-x^{\prime}(EX_{\sigma})|\leqq||x^{\prime}\Vert_{*}|EX-EX,,|\leqq\Vert x^{\prime}\Vert_{*}\epsilon$ ,

what proves the amart property. $L^{1}$-boundedness follows from

$\sup_{n}E|x^{\prime}(X_{n})|\leqq\Vert x^{\prime}\Vert_{*}\sup_{n}E\Vert X_{n}\Vert<\infty$ .

By the last corollary $X_{n}$ converges a.s. Integrability of its limit follows
easily from L–boundedness of $X_{n}$ and the Fatou lemma.

We shall also give another proof, which makes use of theorem 5 in [1].

Fix $n$ and let $S=K_{1/n}$ (see definition 3). Let $C=\bigcap_{n=1}^{\infty}[X_{n}\in S]$ , by hypo-
thesis $P(C(>1-1/n$ . Lemma 1 says, in the terminology of [5], that there
exists a determining set $j${ for $S$ which consists of linear functionals from $E^{\prime}$

truncated to $S$ . Let $ x^{\prime}\in J\zeta$ . Consider a probability space $(C, C\cup A, P_{1})$ and
a sequence of real r.v. $s(Y_{n}, C\cap F_{n}, n\geqq 1)$ , where $C\cap A=\{C\cap D:D\in A\}$ ,
similarly $C\cap F_{n}=\{C\cap D:D\in F_{n}\},$ $Y_{n}$ is the r.v. $x^{\prime}(X_{n})$ truncated to $C$ , and $P_{1}$
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is simply the measure $P$ truncated to $C\cap A$ and divided (normalized) by divid-
ing by $P(C)$ . $x^{\prime}(S)$ is compact, hence bounded, on the real axis, so, by defini-
tion, $Y_{n}$ is bounded by some real constant. As in the previous proof, we check
that $x^{\prime}(X_{n})$ converges a.s., hence $Y_{n}$ converges a.s. By corollary 1 from [1]

$(Y_{n}, C\cap F_{n})$ is an amart, of course $L^{1}$-bounded. Thus, by theorem 5 from [1],
$X_{n}$ converges a.s. on $C$ , so, by an obvious argument, it converges a.s. on $\Omega$ .

4. Examples.

1. If a L’-bounded martingale $(X_{n}, F_{n}, n\geqq 1)$ takes values in a finite-
dimensional subspace $E_{1}$ of $E$ , it converges a.s. Indeed, as it is mentioned in
[8], p. 108, the sequence $(\Vert X_{n}\Vert, F_{n}, n\geqq 1)$ is a real-valued L’-bounded submar-
tingale and thus $ Z=\sup_{n}||X_{n}\Vert<\infty$ a.s. This fact, in connection with compact-

ness of a ball in $E_{1}$ , yields (4).

2. In [8], p. 111, we can find an interesting example of a L’-bounded
martingale taking values in $c_{0}$ which diverges a.s. We shall see how our cri-
terion works in that case.

Let $Y_{n}$ denote a sequence of i.i. $d$ real r.v. $s$ such that $P[Y_{n}=\pm 1]=1/2$ and
let $X_{n}=(Y_{1}, Y_{n}, 0,0, )$ .

Let us remark that if we put

$A=\{y=(y_{1}, y_{2}, )\in c_{0} : \exists n_{0}(y)(\forall n>n_{0}(y)y_{n}=0\vee\forall n\leqq n_{0}(y)y_{n}=\pm 1\}$ ,

then for $a,$ $b\in A,$ $a\neq b$, we have 1 $a-b\Vert\geqq 1$ and thus every compact subset of
$A$ is finite. Now it is obvious that in this case (4) cannot hold.

3. Let, for every $k\in N,$ $(X_{n}^{i}, F_{n}^{k}, n\geqq 1)$ be a real martingale such that
$P(|X_{k}^{n}|>1)=0$ for all $n\in N$ and a-fields $F_{\infty}^{k}=\sigma(U_{n=1}^{\infty}F_{n}^{k}),$ $k\in n$ , are independent
on one another. Let $a_{1},$ $a_{2},$ $\cdots$ be a sequence of real numbers which converges
to zero as $ n\rightarrow\infty$ . Put

$X_{n}=(a_{1}X_{n}^{1}, a_{2}X_{n}^{2}, a_{s}X_{n}^{3}, )$ and $F_{n}=\sigma(\bigcup_{k\Rightarrow 1}^{\infty}F_{n}^{k})$ .

$(X_{n}, F_{n}, n\geqq 1)$ is a L’-bounded martingale taking values in $c_{0}$ . Indeed, $X_{n}$ is
$F_{n}$ -measurable and $\Vert X_{n}||\leqq\sup_{m}|a_{m}|<\infty$ for every $n$ . It remains to verify the
martingale property. Obviously $E^{F_{n}}X_{n+1}$ exists. The only question is whether
or not it equals to $X_{n}$ a.s.

Let $x_{\ell}^{\prime}\in c_{0}^{\prime},$ $x_{l}^{\prime}((x_{1}, x_{2}, ))=x_{t}$ , be the coordinate mappings in $c_{0}$ . We have

(17) $x_{\ell}^{\prime}(E^{F_{n}}X_{n+1})=E^{F_{n}}x_{\ell}^{\prime}(X_{n+1})=a_{\ell}E^{p_{n}}X_{n+1}^{\ell}$ .
But

(18) $E^{F_{n}}X_{n+1}^{\iota}=E^{F_{n}^{\ell}}X_{n+1}^{\iota}$ .
Indeed, $E^{F_{n}^{l}}X_{n+1}^{k}$ is $F_{n}$ -measurable. It remains to check that
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(19) $\forall A\in F_{n}\int_{A}X_{n+1}^{\ell}dP=\int_{A}E^{p_{n}^{\ell}}X_{n+1}^{\ell}dP$ .

It sufficies to verify (19) for sets $A=B\cap C$ , where $B\in F_{n}^{\ell},$ $C\in\sigma(\bigcup_{m*l}F_{n}^{m})$ ,
because they form a $\pi$-system generating a $\lambda$-system $F_{n}$ (see the Dynkin theorem
e.g. in [2]). But

(20) $\int_{B\cap C}E^{p_{n}^{l}}X_{n+1}^{\ell}dP=P(C)\int_{B}E^{p_{n}^{l}}X_{n+1}^{\ell}dP=P(C)\int_{B}X_{n+1}^{\ell}dP=\int_{B\cap C}X_{t+1}^{\ell}dP$ ,

(the first and the last equality follow from an easy to prove fact that if $ B\in$

$F_{\infty}^{\ell},$ $X$ is a $F_{\infty}^{\ell}$-measurable, integrable r.v. and $C\in\sigma(\bigcup_{m\neq\ell}F_{n}^{m})$, then $C$ is inde-
pendent of Fdi and thus

(21) $\int_{B\cap C}XdP=P(C)\int_{B}XdP$ .

We have proved (18).
Thus, by (17) and (18), we have

(22) $x_{\ell}^{\prime}(E^{F_{n}}X_{n+1})=a_{\ell}E^{F_{n}^{\ell}}X_{n+1}^{\ell}=a_{l}X_{n}^{\ell}$ ,

so $E^{F_{n}}X_{n+1}=(a_{1}X_{n}^{1}, a_{2}X_{n}^{2}, )=X_{n}$ . We have proved the martingale Property
(in fact only integrability of $X_{n}$ , the martingale Property of their coordinates
and independence of $F_{\infty}^{k}$ have been used).

It is easy to see that a set $K=\{x=(x_{1}, x_{2}, )\in c_{0} : \forall k\in N|x_{k}|\leqq|a_{k}|\}$ is
compact in $c_{0}$ , because $\lim_{n\rightarrow\infty}\sup_{x\in K}\Vert R_{n}x\Vert=0$, where $R_{n}((x_{1},$ $x_{n},$ $x_{n+1},$ $x_{n+2}$ ,

$))=(0, 0, x_{n+1}, Xn_{+2}, )$ . Thus the martingale $X_{n}$ converges a.s., becaue
$P(X_{n}\in K)=1$ for every $n\in N$ and thus this sequence is strongly tight.

It is natural to pose a question: is strong tightness sufficient for a.s. con-
vergence of an arbitrary asymptotic martingale (not necessarily L’-bounded)?
Unfortunately, the answer is negative even in the case of real martingales
which are $L^{a}$-bounded for every $\alpha\in(0,1)$ ; a counter-example is given below.

Let $(\Omega, A, P)=([0,1], B([0,1]), \mu)$ , where $\mu$ is the Lebesgue measure on
the unit interval and let $F_{0}=\{\emptyset, \Omega\}$ . We construct the $\sigma- fieldF_{n+1}$ from $F_{n}$ by
dividing each atom of $F_{n}$ into two parts, one of which has $1/2^{n+1}$ of the mass
of the previous one and the second one has $1-1/2^{n+1}$ of it.

Let $X_{0}=0$ a.s. and let $P(X_{I}=\pm 1)=1/2$ . We construct $X_{n+1}$ from $X_{n}$ in the
following way. If $n$ is even (odd), we take each atom of $F_{n}$ , we divide it into
parts as above, we put $X_{n+1}=1(0)$ on the bigger one and such (constant)

number on the second one, that the martingale Property is retained. In what
follows we shall call this procedure balancing to 1 (0). E.g. $P(X_{2}=0)=3/4$ and
$P(X_{2}=\pm 4)=1/8$ . $(X_{n}, F_{n}, n\geqq 0)$ is a real martingale. It is easy to see that in
the real case strong tightness of the sequence $X_{n}$ is equivalent to

(23) $\sup_{n}|X_{n}|<\infty$ a.s.
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and that the martingale defined above fulfils this condition (it sufficies to use
the Borel-Cantelli lemma to verify that $P$ ($X_{n}\not\in\{0,1\}$ for infinitely many $n$ ) $=0$).

But $ X_{2n}\rightarrow 0a\iota$ and $X_{2n+1}\rightarrow 1as$ as $ n\rightarrow\infty$ , so the martingale $X_{n}$ does not even
converge in law.

We shall show that $X_{n}$ exhibits one more interesting Property: for every
$\alpha\in(0,1)$ it is $L^{\alpha}$-bounded, $i.e$ .
(24) $\sup_{n}E|X_{n}|^{\alpha}<\infty$ .

Let $a\in(O, 1)$ . Consider the way in which we construct $X_{n+1}$ from $X_{n}$ .
We have two types of atoms:

i) Atoms, for which $X_{n}=0$ (if $n$ is even) or $X_{n}=1$ (if $n$ is odd) by the
basic construction principle. Probability of the sum of these atoms is equal to
$1-1/2^{n}$ .

ii) Atoms for which $X_{n}|=a=const,$ $|a|>1$ (in fact, $X_{n}$ takes only integer
values and thus $|a|\geqq 2$).

iii) Atoms for which $X_{n}=1$ if $n$ is even) or $X_{n}=0$ (if $n$ is odd). It is
easy to see that on these atoms $X_{n+1}=X_{n}a.s.$ , thus if we compare $E|X_{n+1}|^{\alpha}$

to $E|X_{n}|^{a}$ , we can take into account only atoms of type i) and ii).

You can ask whether $X_{n}=-1$ on some atom of $F_{n}$ (none of the cases $i$) $-$

iii) covers this situation). It really haPpens if $n=1$ , but for $n\geqq 2$ it is impossible,
because it is impossible to balance an integer on $1-1/2^{n+1}$ of an atom to another
integer putting $X_{n+1}=-1$ on the remaining $1/2^{n+1}$ of it.

We shall estimate the change of $E|X_{n}|^{a}$ on the atoms of types i) and ii).

i) a) $n$ is even, so we balance $0$ to 1.
Let $B$ be an atom of $F_{n}$ such that $X_{n}=0$ on $B$ . We divide $B$ into $B_{1}$ and

$B_{2},$ $P(B_{1})=(1-1/2^{n+1})P(B),$ $P(B_{g})=1/2^{n+1}P(B)$ .
We put $X_{n+1}=1$ on $B_{1}$ and thus we must put $X_{n+1}=1-2^{n+1}$ on $B_{f}$ to retain

the martingale Property. Thus

(25) $E|X_{n+1}|^{\alpha}I_{B}=P(B)[1^{\alpha}(1-\frac{1}{2^{n+1}})+(2^{n+1}-1)^{a}\frac{1}{2^{n+1}}]$

$=P(B)[1-\frac{1}{2^{n+1}}+\frac{(2^{n+1}-1)^{\alpha}}{2^{n+1}}]$ .

Summing over all atoms $B$ of type i) we obtain

(26) $S_{1}^{n+1}=\sum_{B}E|X_{n+1}|^{\alpha}I_{B}=(1-\frac{1}{2^{n}})[1-\frac{1}{2^{n+1}}+\frac{(2^{n+1}-1)^{a}}{2^{n+1}}]$

$<(1-\frac{1}{2^{n}})[1-\frac{1}{2^{n+1}}+(\frac{1}{2^{n+1}})^{1-\alpha}]<2$ .

Observe that on these atoms $S_{1}^{n}=E|X_{n}|^{a}I_{B}=0$, so the total increase of $S_{1}^{n}$

is in this case less than 2.
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b) We balance 1 to $0,$ $n$ is odd.
We take an atom $B\in F_{n}$ sucb that $X_{n}=1$ on $B$ . We divide it into $B_{1}$ and

$B_{2}$ like in the point a) and we put $X_{n+1}=0$ on $B_{1}$ and $X_{n+1}=2^{n+1}$ on $B_{2}$ .
Similarly like in a)

(27) $S_{2}^{n+1}=\sum_{B}E|X_{n+1}|^{a}I_{B}=(1-\frac{1}{2^{n}})\frac{1}{2^{(n+1)(1-a)}}$

and

(28) $S_{2}^{n}=\sum_{B}E|X_{n}|^{\alpha}I_{B}=(1-\frac{1}{2^{n}})\cdot 1=1-\frac{1}{2^{n}}$ ,

thus here $S_{2}^{n}$ decreases.
Let us suPpose that $n$ is even and figure the increase from $E|X_{n}|^{a}$ to

$E|X_{n+2}|^{\alpha}$ only on the atoms of type i).

From $X_{n}$ to $X_{n+1}$ the increase of $E|\cdot|^{a}$ is less than

(29) $(1-\frac{1}{2^{n}})(1-\frac{1}{2^{n+1}}+(\frac{1}{2^{n+1}})^{1-\alpha})$

and from $X_{n+1}$ to $X_{n+g}$ we have a decrease

(30) $(1-\frac{1}{2^{n+1}})(1-(\frac{1}{2^{n+2}})^{1-a})$ .
Thus the increase of $E|\cdot|^{\alpha}$ from $X_{n}$ to $X_{n+2}$ is less than

(31) $(1-\frac{1}{2^{n+1}})[(\frac{1}{2^{n+2}})^{1-\alpha}-\frac{1}{2^{n}}]+(1-\frac{1}{2^{n}})(\frac{1}{2^{n+1}})^{1-\alpha}$

$<(\frac{1}{2^{1-a}})^{n+2}+(\frac{1}{2^{1-a}})^{n+1}-\frac{1}{2^{n}}$ .

The series $\sum(1/2^{1-\alpha})^{n}$ and $\sum 1/2^{n}$ both converge and thus the increase of
$E|\cdot|^{\alpha}$ only on all atoms of type i) after an arbitrary even number of steps is
bounded above by some integer $M$ and so, by a), the increase after an odd
(and thus an arbitrary) number of steps is bounded above by $M+2$ .

ii) a) We balance from $a$ to $0,$ $n$ is odd, $|a|\geqq 2$ .
We take an atom $B\in F_{n}$ such that $X_{n}=a$ on $B$ , divide it into $B_{1}$ and $B_{2}$

like in i) a) and put $X_{n+1}=0$ on $B_{1}$ and $X_{n+1}=2^{n+1}a$ on $B_{2}$ .
(32) $B|X_{n}|^{\alpha}I_{B}=|a|^{\alpha}P(B)$

and

(33) $E|X_{n+1}|^{\alpha}l_{B}=P(B)\frac{1}{2^{n+1}}2^{(n+1)\alpha}|a|^{a}$ ,

so $\frac{E|X_{n+1}|^{\alpha}I_{B}}{E|X_{n}|^{a}I_{B}}=\frac{1}{2^{(n+1)(1-\alpha)}}<1$ ,

thus on these atoms $E|\cdot|^{\alpha}$ decreases.
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b) We balance from $a$ to 1, $|a|\geqq 2,$ $n$ is even.
We take an atom $B\in F_{n}$ such that $X_{n}=a$ on it, divide it into $B_{1}$ and $B_{2}$

as above and put $X_{n+1}=1$ on $B_{1},$ $X_{n+1}=2^{n+1}(a-1)+i$ on $B_{2}$ .
(34) $E|X_{n}|^{\alpha}I_{B}=P(B)|a|^{\alpha}$

and

(35) $E|X|_{n+1}^{a}I_{B}=P(B)[|2^{n+1}(a-1)+1|^{\alpha}\frac{1}{2^{n+1}}+1^{a}(1-\frac{1}{2^{n+1}})]$

$\leqq P(B)[1-\frac{1}{2^{n+1}}+(2^{n+2}|a|)^{\alpha}\frac{1}{2^{n+1}})]<P(B)[1+|a|^{a}2^{(n+1)(\alpha-1)+\Phi}]$ ,

the inequality follows from $2^{n+1}(a-1)+1<2^{n+1}a<2^{n+t}a$ and $|a-1|=-a+1<$
$2(-a)=2|a|$ (and thus, because all the numbers used are integers, $2^{n+1}|a-1|+$

$1<2^{n+2}|a|)$ for $a\leqq-2$, so for every integer $a$ such that $|a|\geqq 2$ we have
$|2^{n+1}(a-1)+1|<2^{n+2}|a|$ .

But $(n+1)(\alpha-1)+\alpha\rightarrow-\infty$ as $ n\rightarrow\infty$ , thus there exists $n_{0}$ such that for all
$n\geqq n_{0}$ we have

(36) $\frac{E|X_{n+1}|^{\alpha}I_{B}}{E|X_{n}|^{\alpha}I_{B}}<\frac{1+|a|^{a}(1-1/2^{a})}{|a|^{\alpha}}<\frac{1}{|a|^{\alpha}}+1-\frac{1}{2^{a}}\leqq 1$ .

Thus for $n\geqq n_{0}$ (not dependent on a) $E|\cdot|^{\alpha}$ decreases.
Finally, taking into account i), ii) and iii) we can state that the sequence

$E|X_{n}|^{a}$ is bounded.
The above example shows that the well known Doob’s theorem stating that

every L’-bounded real martingale converges $a.s$ . is, in some sense, the best
possible: it cannot be extended to any $L^{a},$ $a\in(O, 1)$ .

Using the martingale $(X_{n}, F_{n}, n\geqq 1)$ described above we can easily construct
an example of a martingale which converges in law and does not converge in
probability.

Let $(\Omega, A, P)=([0,2],$ $B([0,2], \mu/2),$ $i.e$ . $\mu/2(A)=\mu(A)/2$ for every $ A\in$

$B([0,2])$, where $\mu$ is the Lebesgue measure, and let $Y_{n}(\omega)=X_{n}(\omega)$ for $\omega\in[0,1]$

and $Y_{n}(\omega)=1-X_{n}(\omega-1)$ for $\omega\in(1,2$], $B_{n}=\sigma(F_{n}, F_{n}+1)$, where $F_{n}+1=\{A+1$ :
$A\in F_{n}\}$ and $A+1=\{\omega+1:\omega\in A\}$ .

It is obvious that $(Y_{n}, B_{n}, n\geqq 0)$ is an integrable martingale. Let us remark
that $Y_{2n+1}\rightarrow Y_{\infty}$ and $Y_{2n}\rightarrow 1-Y_{\infty}$, where $Y_{\infty}=1$ on $[0,1]$ and $Y_{\infty}=0$ on $(1, 2$].
Thus $Y_{n}$ clearly does not converge in probability, although it converges in law,
because the laws of $Y_{\infty}$ and $1-Y_{\infty}$ are equal.
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