Yokohama Mathematical Journal Vol. 43, 1995

A CRITERION OF ALMOST SURE CONVERGENCE OF ASYMPTOTIC MARTINGALES IN A BANACH SPACE

By

ŁUKASZ KRUK and WIESŁAW ZIEBA

(Recived September 7, 1994, Revised July 3, 1995)

Abestract. In this paper we give a necessary and sufficient condition for a L^1 -bounded asymptotic martingale (amart) taking values in a Banach space to converge almost surely in norm: such an asymptotic martingale $(X_n, F_n, n \ge 1)$ converges a.s. iff it is strongly tight, i.e. for every $\varepsilon > 0$ there exists a compact set K_{ε} such that $P\left(\bigcap_{n=1}^{\infty} [X_n \in K_{\varepsilon}]\right) > 1-\varepsilon$. Moreover, we show that for realvalued martingales the well known theorem of Doob is, in some sense, the best possible-there exists a martingale $(X_n, n \ge 1)$ such that $\sup_n E |X_n|^{\alpha} < \infty$ for every $\alpha \in (0, 1)$ and it diverges a.s. (in fact, it does not even converge in law, although it is strongly tight).

1. Introduction.

A classic problem in the theory of martingales is to give conditions which assure their almost sure (a.s.) convergence. The well known Doob's theorem states that every real-valued L^1 -bounded submartingale converges a.s. [8]. It is, in general, false in case of L^1 -bounded martingales taking values in a separable Banach space. Namely, the following is well known: for every separable Banach space E the fact that every L^1 -bounded E-valued martingale converges a.s. in norm to an integrable X-valued random variable (r.v.) is equivalent to the Radon-Nikodym theorem for E-valued measures with a finite variation and absolutely continuous with respect to the probability measure [3], [8]. This theorem gives an exhaustive answer to the question in which spaces every L^{1} bounded martingale converges a.s. But it may happen that a L^1 -bounded martingale taking values in a space which does not fulfil the Radon-Nikodym condition converges a.s. (e.g. take the space $E = c_0$ of all real sequences converging to zero with a sup norm, $e \in c_0$ such that ||e|| = 1 and an arbitrary real-valued martingale $(X_n, F_n, n \ge 1)$; the sequence $(X_n e, F_n, n \ge 1)$ obviously converges a.s., although an example in [8] shows that not every L^1 -bounded martingale taking values in this space converges a.s.). Thus a question origins: can we

give a necessary and sufficient condition for a L^1 -bounded martingale taking values in a Banach space to converge a.s.? Theorem V.3.9. in [4], which is due to Chatterji [3], answers this question completely in terms of decomposition of vector measures and Radon-Nikodym derivatives. A case of asymptotic martingales is more complicated: if E has the Radon-Nikodym property and a separable dual space, we need an assumption $\sup_{\tau \in T} E \|X_{\tau}\| < \infty$, where T is the set of bounded stopping times, to assure weak convergence of the sequence $(X_n(\omega), n \ge 1)$ for almost all $\omega \in \Omega$. It is known that the condition $\sup_{\tau \in T} E \|X_{\tau}\|$ $<\infty$ cannot be replaced by L¹-boundedness of the sequence (X_n) and none of the conditions concerning E cannot be omitted. Moreover, convergence in norm need not hold [6]. In this paper we solve the problem of a.s. convergence of amarts by giving a topological characterization: a L^1 bounded asymptotic martingale X_n taking values in a Banach space E converges a.s. in norm iff it is strongly tight, i.e. for every $\varepsilon > 0$ there exists a compact set K_{ε} such that $P(\bigcap_{n=1}^{\infty} [X_n \in K_{\varepsilon}]) > 1 - \varepsilon$. It can seem a little surprising because in an infinitely dimensional Banach space a ball is not compact. The Baire category theorem (see e.g. [5], theorem I.6.9) states that it is not even σ -compact (i.e. is not a sum of a countable family of compact sets) and thus compact sets in an infinitely dimensional Banach spaces can be regarded as "small".

2. Notation and Definitions.

Let N denote a set of natural numbers, i.e. $N = \{1, 2, 3, \dots\}$. Let (Ω, A, P) be a probability space and let $(F_n, n \ge 1)$ be an increasing sequence of sub- σ fields of A (i.e. $F_n \subset F_{n+1} \subset A$ for every $n \in N$). A mapping $\tau: \Omega \to N \cup \{\infty\}$ will be called a stopping time with respect to (F_n) iff for every $n \in N$ the event $\{\tau=n\}$ belongs to F_n . A stopping time τ will be called bounded iff there exists $M \in N$ such that $P\{\tau \leq M\} = 1$. A set of all bounded stopping times will be denoted by T. Let E be a Banach space with a norm $\|$ $\|$. Let E' be its dual and let $\| \|_*$ be a norm in E'. We shall say that a function $X: \Omega \rightarrow E$ is weakly measurable iff for every $x' \in E'$ a function x'(X) is measurable. A weakly measurable mapping X is said to be Pettis integrable iff for every $B \in A$ there exists $x_B \in E$ such that for every $x' \in E'$ we have $\int_B x'(X) dP = x'(x_B)$. The element x_B is called a Pettis integral of X on the set B and denoted by $\int_B X dP$. Moreover, if X is measurable and $E||X|| < \infty$ a.s., then X is also Bochner integrable and the Bochner integral EX obviously coincides with the Pettis integral of X on \mathcal{Q} [4]. The set of all Bochner integrable r.v.s. with values in E (more precisely, the set of all their equivalence classes) will be denoted by L_E^1 or simply by L^1 , where it does not lead to confusion. Let F be a sub- σ field of A. Definitions and basic properties of the Bochner integral EX and

the conditional expectation $E^F X$ of a r.v. $X \in L_E^1$ can be found e.g. in [8].

Definition 1. A sequence $(X_n, F_n, n \ge 1)$ will be called a martingale if, for every $n \in N$, the following conditions are satisfied.

- (1) X_n is F_n -measurable and $X_n \in L_E^1$,
- (2) $E^{F_n}X_{n+1} = X_n$ a.s.

Definition 2. [6] A sequence $(X_n, F_n, n \ge 1)$ of Pettis integrable r.v.s. is called an asymptotic martingale (amart) iff X_n is F_n -measuracle for every $n \in N$ and if for every $\varepsilon > 0$ there exists $\tau_0 \in T$ such that for every $\tau, v \in T, \tau, v \ge \tau_0$ we have

(3)
$$\left\|\int X_{\tau}dP - \int X_{\nu}dP\right\| < \varepsilon$$
.

Obviously, every martingale is an asymptotic martingale.

It is well known that every (strongly) measurable r.v. with values in E is essentially separably valued (see [4], theorem 2.1.2). Thus, considering a sequence (indexed by elements of N) of such r.v.s, we can always assume that they take values in a separable subspace of E. For simplicity, we assume that E is itself separable.

Definition 3. We shall say that a sequence $(X_n, n \ge 1)$ of *E*-valued r.v.s. is L_E^1 (or simply L^1)-bounded iff $\sup_n E ||X_n|| < \infty$ and that it is strongly tight iff for every $\varepsilon > 0$ there exists a compact subset K_{ε} of *E* such that

(4)
$$P\left(\bigcap_{n=1}^{\infty} [X_n \in K_{\varepsilon}]\right) > 1 - \varepsilon$$
.

Let us recall that an indexed family $\{\mu_t, t \in T\}$ of probability measures defined on the σ -field B(E) of the Borel subsets of E is called tight iff for every $\varepsilon > 0$ there exists compact set $K \subset E$ such that for every $t \in T$ we have $\mu_t(K) > 1-\varepsilon$. A classic theorem of Prohorov ([2], p. 37) states that in a Polish (i.e. a complete and separable metric) space a family of probability measures is weakly relatively compact iff it is tight. Obviously if a sequence $(X_n, n \in N)$ is strongly tight, the family of their distributions $\{\mu_{X_n}: n \in N\}$ is tight, but the reverse implication does not hold, e.g. take a sequence of i.i.d. real r.v.s. having a standard normal distribution.

3. Main results.

The following theorem seems to be, in some sense, a counterpart of the mentioned theorem of Prohorov (for almost sure convergence instead of weak convergence) and is crucial to everything what follows.

Theorem 1 [7]. Let S be a Polish space and let $(X_n, n \ge 1)$ be a sequence of r.v.s taking values in S.

If $X_n \xrightarrow{a.s.} X$, $n \to \infty$, for some r.v. X, then the sequence X_n is strongly tight.

Proof. It is easy to see that if $X_n \xrightarrow{a.s.} X$, $n \to \infty$, for some r.v. X, and $F_n = \sigma(X_1, \dots, X_n)$, then X_n is randomly convergent in law to X, i.e. for every $\tau_0 \in T$ such that for every $\tau \ge \tau_0$ a.s. $d(X_\tau, X) < \varepsilon$, where d denotes the Prokhorov metric. Now we shall show that the family of distributions $\{P_{X_\tau}, \tau \in T\}$ is tight.

Fix $\delta > 0$ and a countable dense subset of S. Let

$$B_m(\boldsymbol{\delta}) = \bigcup_{i=1}^m K(x_i, \boldsymbol{\delta}),$$

where

$$K(x_i, \delta) = \{x \in S: \rho(x_i, x) < \delta\}.$$

Now we shall show that for every $\varepsilon > 0$ there exists *m* such that for every $\tau \in T$

$$P[X_{\tau} \in B_m(\delta)] > 1 - \varepsilon.$$

Assume that the last statement is false, i.e. there exists $\varepsilon > 0$ such that for every $m \in N$ we can choose $\tau_m \in T$ such that $P[X_{\tau_m} \in B_m(\delta)] \leq 1-\varepsilon$. For every n there exists a number m(n) such that

$$P\Big(\bigcup_{i=1}^{n} [X_{i} \notin B_{m(n)}(\delta)]\Big) \leq \frac{\varepsilon}{2}.$$

Moreover, we can assume that m(n) > m(n-1) and that m(n) > n. If we put $\tau'_{m(n)} = \max(\tau_{m(n)}, n+1)$, then it is easy to see that

$$P[X_{\tau'_{m(n)}} \notin B_{m(n)}(\delta)] \geq \frac{\varepsilon}{2}$$

Thus, by theorem 2.1 [2], for every n we have

$$P_X(B_{m(n)}(\delta)) \leq \liminf P_{X_{\tau'_m(k)}}(B_{m(n)}(\delta))$$

$$\leq \lim_{k\to\infty} \inf P_{X_{\tau'_m(k)}}(B_{m(k)}(\delta)) \leq 1 - \frac{\varepsilon}{2},$$

but, on the basis of the axiom of continuity,

$$\lim P_X(B_{m(n)}(\boldsymbol{\delta})) = 1$$

contradiction.

Thus for an arbitrary $\varepsilon > 0$ and $k \ge 1$ we can choose a number n_k such that

64

$$P\left[X_{\tau} \in B_{m(n_k)}\left(\frac{1}{k}\right)\right] > 1 - \frac{\varepsilon}{2^k}.$$

Now let

$$K = \overline{\bigcap_{k=1}^{\infty} B_{m(n_k)} \left(\frac{1}{k}\right)}.$$

It is easy to see that K is compact and $P[X_{\tau} \in K] > 1 - \varepsilon$ for every $\tau \in T$. Thus the family $\{P_{X_{\tau}}, \tau \in T\}$ is tight.

We are now ready to finish the proof. Assume that theorem 1 is false, i.e. there exists $\varepsilon > 0$ such that for any compact set K

$$P\left(\bigcap_{n=1}^{\infty} [X_n \in K]\right) \leq 1 - 2\varepsilon$$

By the other hand, there exists a compact set K_{ϵ} such that

$$P[X_{\tau} \in K_{\varepsilon}] > 1 - \varepsilon$$
 for every $\tau \in T$.

Let $\tau(\omega) = \inf\{s: X_s \notin K_s\}$. If $\tau_n = \min(\tau, n)$, then $\tau_n \in T$ and

$$P\Big(\bigcup_{n=1}^{\infty} [X_n \notin K_{\varepsilon}]\Big) \leq \lim_{n \to \infty} P[X_{\tau_n} \notin K_{\varepsilon}] \leq \varepsilon.$$

The proof is complete.

Thus every a.s. convergent sequence of r.v.s. taking values in a Banach space is tight. Now we shall show that strong tightness assures a.s. convergence of a L^1 -bounded asymptotic martingale.

Lemma 1. Let E be a Banach space and let $K \subseteq E$ be compact. There exists a countable family $x'_k \in E'$, $k \ge 1$, such that for an arbitrary sequence $\{x_n\}$ of elements of $K \ x_n \rightarrow x_\infty$ for some x_∞ iff for every $k \in N$ the sequence $\{x'_k(x_n), n \ge 1\}$ is convergent.

Remark. Let us mention that in general if x_n is a sequence of elements of a Banach space E, convergence of all the sequences $x'(x_n)$, ≥ 1 , $n' \in E'$, does not even imply weak convergence of x_n to some $x_{\infty} \in E$, for example a sequence $x_n = (\underbrace{1, 1, \cdots 1}_n, 0, 0, \cdots)$ in the space c_0 of real sequences converging to zero does not converge weakly.

Lemma 2. Let E be a Banach space and let $(X_n, n \ge 1)$ be a strongly tight sequence of E-valued r.v.s. There exists a countable subset $\{x'_k, k \in N\} \in E'$ such that $X_n \xrightarrow{a.s.} X$ for some r.v. X iff for every $k \in N$ the sequence $\{x'_k(X_n), n \ge 1\}$ converges a.s.

Proof. It is obvious that if $X_n \xrightarrow{a.s.} X$, then for every $x' \in E'x'(X_n) \xrightarrow{a.s.} x'(X)$. Conversely, let us, for $p \in N$, take a compact set $K_{1/p}$ fulfilling (4) for $\varepsilon =$

1/p. By lemma 1 there exist functionals $\{x_i'^p, l \ge 1\}$ such that for every sequence $\{x_n\}$ of elements of $K_{1/p}x_n \to x$ for some x iff all the sequences $\{x_i'^p(x_n), n \ge 1\}, l \ge 1$, converge. Take $\{x_k'\} = \{x_i'^p; p, l \in N\}$. Let us suppose that all the sequences $\{x_k'(X_n), n \ge 1\}$ converge a.s. Let $\Omega_0 = \{\omega \in \Omega:$ the sequence $(x_k'(X_n(\omega)), n \ge 1)$ converges for every $k \in N\}$. We have $P(\Omega_0) = 1$. Let $A_p =$ $\bigcup_{n=1}^{\infty} [X_n \in K_{1/p}]$. By (3), $P(A_p) > 1 - 1/p$, so if we put $\Omega_1 = \bigcup_{p=1}^{\infty} A_p$, we have $P(\Omega_1) = 1$. Let $\omega \in \Omega_0 \cap \Omega_1$. There exists $p \in N$ such that $\omega \in A_p$, so $X_n(\omega) \in K_{1/p}$ for all $n \in N$ and, because $\omega \in \Omega_0$, the sequence $x_i'^p(X_n(\omega))$ converges for all $l \in N$. Thus $X_n(\omega) \to X(\omega)$ for some $X(\omega) \in E$, so the sequence X_n converges a.s. and obviously its limit X is measurable. The proof is complete.

Corollary. A sequence $(X_n, n \ge 1)$ of r.v.s taking values in a Banach space converges a.s. iff it is strongly tight and for every $x' \in E'$ the sequence $x'(X_n)$ converges a.s.

Now we are ready to prove our main result.

Theorem 2. Let $(X_n, F_n, n \ge 1)$ be a L^1 -bounded asymptotic martingale taking values in a Banach space E. $X_n \longrightarrow X$ for some integrable r.v. X if and only if the sequence X_n is strongly tight.

Proof. Necessity of strong tightness of (X_n) for its a.s. convergence follows from theorem 1 (see also a remark after definition 1). Conversely, assume that (X_n) is strongly tight. For every $x' \in E'$ the sequence $(x'(X_n), F_n, n \ge 1)$ is a L^1 -bounded real asymptotic martingale and thus converges a.s. [1]. Indeed, let $\varepsilon > 0$ be arbitrary and let $\tau_0 \in T$ be such that for every $\tau, \sigma \in T, \tau, \sigma \ge \tau_0$ a.s., (3) holds. Thus

$$|Ex'(X_{\tau}) - Ex'(X_{\sigma})| = |x'(EX_{\tau}) - x'(EX_{\sigma})| \leq ||x'||_{*} |EX - EX_{\tau}| \leq ||x'||_{*} \varepsilon,$$

what proves the amart property. L^1 -boundedness follows from

$$\sup E|x'(X_n)| \leq ||x'|| * \sup E||X_n|| < \infty.$$

By the last corollary X_n converges a.s. Integrability of its limit follows easily from L--boundedness of X_n and the Fatou lemma.

We shall also give another proof, which makes use of theorem 5 in [1].

Fix *n* and let $S = K_{1/n}$ (see definition 3). Let $C = \bigcap_{n=1}^{\infty} [X_n \in S]$, by hypothesis P(C(>1-1/n). Lemma 1 says, in the terminology of [5], that there exists a determining set \mathcal{K} for S which consists of linear functionals from E' truncated to S. Let $x' \in \mathcal{K}$. Consider a probability space $(C, C \cup A, P_1)$ and a sequence of real r.v.s $(Y_n, C \cap F_n, n \ge 1)$, where $C \cap A = \{C \cap D \colon D \in A\}$, similarly $C \cap F_n = \{C \cap D \colon D \in F_n\}, Y_n$ is the r.v. $x'(X_n)$ truncated to C, and P_1

66

is simply the measure P truncated to $C \cap A$ and divided (normalized) by dividing by P(C). x'(S) is compact, hence bounded, on the real axis, so, by definition, Y_n is bounded by some real constant. As in the previous proof, we check that $x'(X_n)$ converges a.s., hence Y_n converges a.s. By corollary 1 from [1] $(Y_n, C \cap F_n)$ is an amart, of course L^1 -bounded. Thus, by theorem 5 from [1], X_n converges a.s. on C, so, by an obvious argument, it converges a.s. on Q.

4. Examples.

1. If a L^1 -bounded martingale $(X_n, F_n, n \ge 1)$ takes values in a finitedimensional subspace E_1 of E, it converges a.s. Indeed, as it is mentioned in [8], p. 108, the sequence $(||X_n||, F_n, n \ge 1)$ is a real-valued L^1 -bounded submartingale and thus $Z = \sup_n ||X_n|| < \infty$ a.s. This fact, in connection with compactness of a ball in E_1 , yields (4).

2. In [8], p. 111, we can find an interesting example of a L^1 -bounded martingale taking values in c_0 which diverges a.s. We shall see how our criterion works in that case.

Let Y_n denote a sequence of i.i.d real r.v.s such that $P[Y_n = \pm 1] = 1/2$ and let $X_n = (Y_1, \dots, Y_n, 0, 0, \dots)$.

Let us remark that if we put

$$A = \{ y = (y_1, y_2, \dots) \in c_0 : \exists n_0(y) (\forall n > n_0(y) y_n = 0 \lor \forall n \le n_0(y) y_n = \pm 1 \},\$$

then for $a, b \in A$, $a \neq b$, we have $||a-b|| \ge 1$ and thus every compact subset of A is finite. Now it is obvious that in this case (4) cannot hold.

3. Let, for every $k \in N$, $(X_n^k, F_n^k, n \ge 1)$ be a real martingale such that $P(|X_k^n|>1)=0$ for all $n \in N$ and σ -fields $F_{\infty}^k = \sigma(\bigcup_{n=1}^{\infty} F_n^k)$, $k \in n$, are independent on one another. Let a_1, a_2, \cdots be a sequence of real numbers which converges to zero as $n \to \infty$. Put

$$X_n = (a_1 X_n^1, a_2 X_n^2, a_3 X_n^3, \cdots) \text{ and } F_n = \sigma \left(\bigcup_{k=1}^{\infty} F_n^k \right).$$

 $(X_n, F_n, n \ge 1)$ is a L^1 -bounded martingale taking values in c_0 . Indeed, X_n is F_n -measurable and $||X_n|| \le \sup_m |a_m| < \infty$ for every n. It remains to verify the martingale property. Obviously $E^{F_n}X_{n+1}$ exists. The only question is whether or not it equals to X_n a.s.

Let $x'_i \in c'_0$, $x'_i((x_1, x_2, \dots)) = x_i$, be the coordinate mappings in c_0 . We have

(17)
$$x_{l}'(E^{F_{n}}X_{n+1}) = E^{F_{n}}x_{l}'(X_{n+1}) = a_{l}E^{F_{n}}X_{n+1}^{l}.$$

But

(18)
$$E^{F_n} X_{n+1}^l = E^{F_n^l} X_{n+1}^l.$$

Indeed, $E^{F_n^l} X_{n+1}^k$ is F_n -measurable. It remains to check that

(19)
$$\forall A \in F_n \int_A X_{n+1}^l dP = \int_A E^{F_n^l} X_{n+1}^l dP.$$

It sufficies to verify (19) for sets $A=B\cap C$, where $B\in F_n^l$, $C\in\sigma(\bigcup_{m\neq l}F_n^m)$, because they form a π -system generating a λ -system F_n (see the Dynkin theorem e.g. in [2]). But

(20)
$$\int_{B_{\cap C}} E^{F_n^l} X_{n+1}^l dP = P(C) \int_{B} E^{F_n^l} X_{n+1}^l dP = P(C) \int_{B} X_{n+1}^l dP = \int_{B_{\cap C}} X_{n+1}^l dP,$$

(the first and the last equality follow from an easy to prove fact that if $B \in F_{\infty}^{l}$, X is a F_{∞}^{l} -measurable, integrable r.v. and $C \in \sigma(\bigcup_{m \neq l} F_{n}^{m})$, then C is independent of F_{∞}^{l} and thus

(21)
$$\int_{B_{\cap C}} X dP = P(C) \int_{B} X dP.$$

We have proved (18).

Thus, by (17) and (18), we have

(22)
$$x_{l}'(E^{F_{n}}X_{n+1}) = a_{l}E^{F_{n}^{l}}X_{n+1}^{l} = a_{l}X_{n}^{l},$$

so $E^{F_n}X_{n+1} = (a_1X_n^1, a_2X_n^2, \cdots) = X_n$. We have proved the martingale property (in fact only integrability of X_n , the martingale property of their coordinates and independence of F_{∞}^k have been used).

It is easy to see that a set $K = \{x = (x_1, x_2, \dots) \in c_0 : \forall k \in N | x_k | \le | a_k |\}$ is compact in c_0 , because $\lim_{n\to\infty} \sup_{x\in K} ||R_nx|| = 0$, where $R_n((x_1, \dots, x_n, x_{n+1}, x_{n+2}, \dots)) = (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$. Thus the martingale X_n converges a.s., becaue $P(X_n \in K) = 1$ for every $n \in N$ and thus this sequence is strongly tight.

It is natural to pose a question: is strong tightness sufficient for a.s. convergence of an arbitrary asymptotic martingale (not necessarily L^1 -bounded)? Unfortunately, the answer is negative even in the case of real martingales which are L^{α} -bounded for every $\alpha \in (0, 1)$; a counter-example is given below.

Let $(\Omega, A, P) = ([0, 1], B([0, 1]), \mu)$, where μ is the Lebesgue measure on the unit interval and let $F_0 = \{\emptyset, \Omega\}$. We construct the σ -field F_{n+1} from F_n by dividing each atom of F_n into two parts, one of which has $1/2^{n+1}$ of the mass of the previous one and the second one has $1-1/2^{n+1}$ of it.

Let $X_0=0$ a.s. and let $P(X_1=\pm 1)=1/2$. We construct X_{n+1} from X_n in the following way. If *n* is even (odd), we take each atom of F_n , we divide it into parts as above, we put $X_{n+1}=1$ (0) on the bigger one and such (constant) number on the second one, that the martingale property is retained. In what follows we shall call this procedure balancing to 1 (0). E.g. $P(X_2=0)=3/4$ and $P(X_2=\pm 4)=1/8$. $(X_n, F_n, n\geq 0)$ is a real martingale. It is easy to see that in the real case strong tightness of the sequence X_n is equivalent to

$$\sup |X_n| < \infty$$
 a.s.

68

(23)

and that the martingale defined above fulfils this condition (it sufficies to use the Borel-Cantelli lemma to verify that $P(X_n \notin \{0, 1\}$ for infinitely many n)=0). But $X_{2n} \xrightarrow{a.s.} 0$ and $X_{2n+1} \xrightarrow{a.s.} 1$ as $n \to \infty$, so the martingale X_n does not even converge in law.

We shall show that X_n exhibits one more interesting property: for every $\alpha \in (0, 1)$ it is L^{α} -bounded, i.e.

(24)
$$\sup E |X_n|^{\alpha} < \infty.$$

Let $\alpha \in (0, 1)$. Consider the way in which we construct X_{n+1} from X_n . We have two types of atoms:

i) Atoms, for which $X_n=0$ (if *n* is even) or $X_n=1$ (if *n* is odd) by the basic construction principle. Probability of the sum of these atoms is equal to $1-1/2^n$.

ii) Atoms for which $|X_n| = a = const$, |a| > 1 (in fact, X_n takes only integer values and thus $|a| \ge 2$).

iii) Atoms for which $X_n=1$ if *n* is even) or $X_n=0$ (if *n* is odd). It is easy to see that on these atoms $X_{n+1}=X_n$ a.s., thus if we compare $E|X_{n+1}|^{\alpha}$ to $E|X_n|^{\alpha}$, we can take into account only atoms of type i) and ii).

You can ask whether $X_n = -1$ on some atom of F_n (none of the cases i)iii) covers this situation). It really happens if n=1, but for $n \ge 2$ it is impossible, because it is impossible to balance an integer on $1-1/2^{n+1}$ of an atom to another integer putting $X_{n+1}=-1$ on the remaining $1/2^{n+1}$ of it.

We shall estimate the change of $E|X_n|^{\alpha}$ on the atoms of types i) and ii).

i) a) n is even, so we balance 0 to 1.

Let B be an atom of F_n such that $X_n=0$ on B. We divide B into B_1 and B_2 , $P(B_1)=(1-1/2^{n+1})P(B)$, $P(B_2)=1/2^{n+1}P(B)$.

We put $X_{n+1}=1$ on B_1 and thus we must put $X_{n+1}=1-2^{n+1}$ on B_2 to retain the martingale property. Thus

(25)
$$E |X_{n+1}|^{\alpha} I_{B} = P(B) \left[1^{\alpha} \left(1 - \frac{1}{2^{n+1}} \right) + (2^{n+1} - 1)^{\alpha} \frac{1}{2^{n+1}} \right]$$
$$= P(B) \left[1 - \frac{1}{2^{n+1}} + \frac{(2^{n+1} - 1)^{\alpha}}{2^{n+1}} \right].$$

Summing over all atoms B of type i) we obtain

(26)
$$S_{1}^{n+1} = \sum_{B} E |X_{n+1}|^{\alpha} I_{B} = \left(1 - \frac{1}{2^{n}}\right) \left[1 - \frac{1}{2^{n+1}} + \frac{(2^{n+1} - 1)^{\alpha}}{2^{n+1}}\right] < \left(1 - \frac{1}{2^{n}}\right) \left[1 - \frac{1}{2^{n+1}} + \left(\frac{1}{2^{n+1}}\right)^{1-\alpha}\right] < 2.$$

Observe that on these atoms $S_1^n = E |X_n|^{\alpha} I_B = 0$, so the total increase of S_1^n is in this case less than 2.

b) We balance 1 to 0, n is odd.

We take an atom $B \in F_n$ such that $X_n = 1$ on B. We divide it into B_1 and B_2 like in the point a) and we put $X_{n+1} = 0$ on B_1 and $X_{n+1} = 2^{n+1}$ on B_2 . Similarly like in a)

(27)
$$S_{2}^{n+1} = \sum_{B} E |X_{n+1}|^{\alpha} I_{B} = \left(1 - \frac{1}{2^{n}}\right) \frac{1}{2^{(n+1)(1-\alpha)}}$$

and

(28)
$$S_{2}^{n} = \sum_{B} E |X_{n}|^{\alpha} I_{B} = \left(1 - \frac{1}{2^{n}}\right) \cdot 1 = 1 - \frac{1}{2^{n}},$$

thus here S_2^n decreases.

Let us suppose that n is even and figure the increase from $E|X_n|^{\alpha}$ to $E|X_{n+2}|^{\alpha}$ only on the atoms of type i).

From X_n to X_{n+1} the increase of $E|\cdot|^{\alpha}$ is less than

(29)
$$\left(1-\frac{1}{2^n}\right)\left(1-\frac{1}{2^{n+1}}+\left(\frac{1}{2^{n+1}}\right)^{1-\alpha}\right)$$

and from X_{n+1} to X_{n+2} we have a decrease

(30)
$$\left(1-\frac{1}{2^{n+1}}\right)\left(1-\left(\frac{1}{2^{n+2}}\right)^{1-\alpha}\right).$$

Thus the increase of $E|\cdot|^{\alpha}$ from X_n to X_{n+2} is less than

(31)
$$(1 - \frac{1}{2^{n+1}}) \Big[\Big(\frac{1}{2^{n+2}} \Big)^{1-\alpha} - \frac{1}{2^n} \Big] + \Big(1 - \frac{1}{2^n} \Big) \Big(\frac{1}{2^{n+1}} \Big)^{1-\alpha} \\ < \Big(\frac{1}{2^{1-\alpha}} \Big)^{n+2} + \Big(\frac{1}{2^{1-\alpha}} \Big)^{n+1} - \frac{1}{2^n}.$$

The series $\sum (1/2^{1-\alpha})^n$ and $\sum 1/2^n$ both converge and thus the increase of $E|\cdot|^{\alpha}$ only on all atoms of type i) after an arbitrary even number of steps is bounded above by some integer M and so, by a), the increase after an odd (and thus an arbitrary) number of steps is bounded above by M+2.

ii) a) We balance from a to 0, n is odd, $|a| \ge 2$.

We take an atom $B \in F_n$ such that $X_n = a$ on B, divide it into B_1 and B_2 like in i) a) and put $X_{n+1} = 0$ on B_1 and $X_{n+1} = 2^{n+1}a$ on B_2 .

$$B | X_n | {}^{\alpha} I_B = | a | {}^{\alpha} P(B)$$

and

(33)
$$E |X_{n+1}|^{\alpha} I_{B} = P(B) \frac{1}{2^{n+1}} 2^{(n+1)\alpha} |a|^{\alpha},$$

so
$$\frac{E|X_{n+1}|^{\alpha}I_B}{E|X_n|^{\alpha}I_B} = \frac{1}{2^{(n+1)(1-\alpha)}} < 1$$
,

thus on these atoms $E|\cdot|^{\alpha}$ decreases.

70

b) We balance from a to 1, $|a| \ge 2$, n is even.

We take an atom $B \in F_n$ such that $X_n = a$ on it, divide it into B_1 and B_2 as above and put $X_{n+1}=1$ on B_1 , $X_{n+1}=2^{n+1}(a-1)+1$ on B_2 .

$$(34) E|X_n|^{\alpha}I_B = P(B)|a|^{\alpha}$$

and

(35)
$$E|X|_{n+1}^{\alpha}I_{B} = P(B) \left[|2^{n+1}(a-1)+1|^{\alpha} \frac{1}{2^{n+1}} + 1^{\alpha} \left(1 - \frac{1}{2^{n+1}}\right) \right]$$
$$\leq P(B) \left[1 - \frac{1}{2^{n+1}} + (2^{n+2}|a|)^{\alpha} \frac{1}{2^{n+1}} \right)] < P(B) \left[1 + |a|^{\alpha} 2^{(n+1)(\alpha-1)+\alpha} \right],$$

the inequality follows from $2^{n+1}(a-1)+1 < 2^{n+1}a < 2^{n+2}a$ and |a-1|=-a+1 < 2(-a)=2|a| (and thus, because all the numbers used are integers, $2^{n+1}|a-1|+1 < 2^{n+2}|a|$) for $a \leq -2$, so for every integer a such that $|a| \geq 2$ we have $|2^{n+1}(a-1)+1| < 2^{n+2}|a|$.

But $(n+1)(\alpha-1)+\alpha \rightarrow -\infty$ as $n \rightarrow \infty$, thus there exists n_0 such that for all $n \ge n_0$ we have

(36)
$$\frac{E|X_{n+1}|^{\alpha}I_{B}}{E|X_{n}|^{\alpha}I_{B}} < \frac{1+|a|^{\alpha}(1-1/2^{\alpha})}{|a|^{\alpha}} < \frac{1}{|a|^{\alpha}} + 1 - \frac{1}{2^{\alpha}} \le 1.$$

Thus for $n \ge n_0$ (not dependent on a) $E|\cdot|^{\alpha}$ decreases.

Finally, taking into account i), ii) and iii) we can state that the sequence $E|X_n|^{\alpha}$ is bounded.

The above example shows that the well known Doob's theorem stating that every L^1 -bounded real martingale converges a.s. is, in some sense, the best possible: it cannot be extended to any L^{α} , $\alpha \in (0, 1)$.

Using the martingale $(X_n, F_n, n \ge 1)$ described above we can easily construct an example of a martingale which converges in law and does not converge in probability.

Let $(\Omega, A, P) = ([0, 2], B([0, 2], \mu/2), \text{ i.e. } \mu/2(A) = \mu(A)/2 \text{ for every } A \in B([0, 2]), \text{ where } \mu \text{ is the Lebesgue measure, and let } Y_n(\omega) = X_n(\omega) \text{ for } \omega \in [0, 1] \text{ and } Y_n(\omega) = 1 - X_n(\omega - 1) \text{ for } \omega \in (1, 2], B_n = \sigma(F_n, F_n + 1), \text{ where } F_n + 1 = \{A + 1: A \in F_n\} \text{ and } A + 1 = \{\omega + 1: \omega \in A\}.$

It is obvious that $(Y_n, B_n, n \ge 0)$ is an integrable martingale. Let us remark that $Y_{2n+1} \longrightarrow Y_{\infty}$ and $Y_{2n} \longrightarrow 1 - Y_{\infty}$, where $Y_{\infty} = 1$ on [0, 1] and $Y_{\infty} = 0$ on (1, 2]. Thus Y_n clearly does not converge in probability, although it converges in law, because the laws of Y_{∞} and $1 - Y_{\infty}$ are equal.

Acknowledgements. The authors thank the referee for all his comments. especially for the idea of the second proof of Theorem 2.

References

- [1] Austin, D.G., Edgar, G.A. and Ionescu Tulcea, A. (1974), Pointwise convergence in terms of expectations. Z. Wahrscheinlichkeitsteorie Gebiete 30, 17-26.
- [2] Billingsley, P. (1979), Probrbility and Measure, Wiley, New York.
- [3] Chatterji, S. D. (1968), Martingale convergence and the Radon-Nikodym theorem in Banach spaces. Math. Scand. 22, 21-41.
- [4] Diestel, J. and Uhl, J. J. (1977). Vector Measures. Amer. Math. Soc., Providence, Rhode Island.
- [5] Dunford, N. and Schwartz, J.T. (1957). Linear Operators Part I. Interscience, New York.
- [6] Edgar, G.A. and Sucheston, L. (1976), Amarts: a class of asymptotic martingales.
 A. Discrete parameter. Journ. of Multivar. Anal. 6, No. 2, 193-221.
- [7] Kruk, Ł. and Zięba, W. (1994), On tightness of randomly indexed sequences of random elements. Bull. Pol. Ac.: Math. 42, 237-241.
- [8] Neveu, J. (1975), Discrete-Parameter Martingales. North Holland/American Elsevier.

Institute of Mathematics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland e-mail: lkruk@golem. umcs. lublin. pl.

Institute of Mathematics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland e-mail: zieba@golem. umcs. lublin. pl