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Summary. This is a contribution to the general problem of how the Proper-

ties of geodesic tubes on a Riemannian manifold $(M^{n}, g)$ determine the
geometry of the ambient space. Using Jacobi vector fields and Fermi coordi-
nates, we characterize spaces of constant sectional curvature by means of
the shape operator of small enough geodesic tubes.

1. Introduction

This paper is a contribution to the general problem of investigating how
the properties of small geodesic tubes of a Riemannian manifold determine the
geometry of the manifold. More precisely, in this paper we give a characteri-
zation of the Riemannian manifolds $(M^{n}, g)$ of constant sectional curvature, in
two ways. First, by means of the shape operator on small geodesic tubes,
provided that each tube about every geodesic $\sigma$ of $M$ is a quasi-umbilical hyper-
surface and the eigenvector fields of the corresponding shape operator are
parallel along a unit speed geodesic $\gamma$ of $M$ meeting $\sigma$ orthogonally. Secondly,
by means of the shape operator of small geodesic tubes of $M^{n}$ about every
topologically embedded q-dimensional submanifold $P$ of $M$, provided that the
shape operator of every such tube has a parallel eigenspace of dimenslon
$n-q-1$ along a geodesic $\gamma$ meeting $P$ orthogonally.

The paper is organized as following:
In section two, we recall some facts about Fermi $crdinates$ and Fermi

vector fields and give the relation which exists between Fermi vector fields and
Jacobi vector fields. In section three, we give the definitions of tubes about a
geodesic $\sigma$ and a submanifold $P$ of $M$. Then $uS\dot{i}g$ the relationship between
Jacobi and Fermi vector fields, we show how the shape operator of a tube can
be expressed in terms of Jacobi vector fields. In section four we aPply this
technique to obtain the main results. For more details concerning tubes we
refer to [10] and [13].
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2. Preliminaries

Let $(M, g)$ be a n-dimensional manifold of class $C^{\infty}$ . Denote by $\chi(M)$ the
Lie algebra of $C^{\infty}$ vector fields on $M$. The metric tensor $g$ gives rise to an
inner Product, which will be denoted by $\langle$ , $\rangle$ , on each tangent space $M_{m}$ . The
curvature operator $R$ of $M$ is defined by

(2.1) $R_{XY}=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$

for $X,$ $Y\in\chi(M)$ . Let $\sigma:(a, b)\rightarrow M$ be a curve in $M$ of finite length. To describe
the geometry of a Riemannlan manifold $M$ in a neighborhood of a curve $\sigma$ we
use Fermi coordinates [5]. To define a system of Fermi coordinates we need
an open neighborhood $U$ of $\sigma$ for which every point of $U$ can be joined to $\sigma$

by a shortest-unit speed geodesic, meeting $\sigma$ orthogonally.

Definition 2.1. The Fermi coordmates $(x_{1}, \cdots , x_{n})$ of $U$ centered at $m=\sigma(O)$ ,
relative to a given orthonormal frame field $\{E_{1}, \cdots , E_{n}\}$ , along the curve $\sigma$ for
which $\delta(t)=(E_{1})_{\sigma(t)}$ , are the real-valued functions defined by

(2.2) $x_{1}(\exp_{\sigma(t)}\sum_{f=2}^{n}t_{j}(E_{j})_{\sigma(t)})=t$ , $x_{i}(\exp_{\sigma(t)}\sum_{f=2}^{n}t_{j}(E_{j})_{\sigma(t)})=t_{i}$

provided that the numbers $t_{2},$ $\cdots$ , $t_{n}$ are small enough in order the $\exp_{\sigma(t)}$ to be
a diffeomorpbism.

Since $\exp_{\sigma(t)}$ is a diffeomorphism on $U$, equations (2.2) define a coordinate
system near $m$ . Let $\{\partial/\partial x_{1}, \cdots , \partial/\partial x_{n}\}$ be the coordinate vector fields associated
with the Fermi coordinate system $(x_{1}, \cdots , x_{n})$ . It is known then, [10], that the
restrictions to $\sigma$ of the coordinate vector fields $\{\partial/\partial x_{2}, \cdots , \partial/\partial x_{n}\}$ are orthogonal.

Now, if $\gamma$ is a unit speed geodesic of $M$ normal to $\sigma$ with $\gamma(0)=m=\sigma(0)$

and $u=\gamma^{\prime}(O)$ , then there is a system of Fermi coordinates $(x_{1}, \cdots , x_{n})$ , such that
for small $s$ we have

(2.3) $(\frac{\partial}{\partial_{X_{2}}})_{\gamma(*)}=\gamma^{\prime}(s)$ , $(\frac{\partial}{\partial_{X_{1}}})_{m}=\{\dot{\sigma}(t)\}_{m}$ ,

Furthermore,

$(\frac{\partial}{\partial_{X\ell}})_{m}\in\{\delta(t)\}_{m}^{\perp}$ , $i=2,$ , $n$ .

(2.4) $(x_{\alpha}\circ\gamma)(s)=s\delta_{\alpha}^{2}$ , $1\leqq\alpha\leqq n$

where $\delta_{a}^{2}$ is the Kronecker’s delta.
Let $\chi(U)$ be the Lie algebra of $C^{\infty}$ vector fields on $U$ . We introduce a

certain finite dimensional Abelian subalgebra of the infinite dimensional Lie
algebra $\chi(U)$ .

Definition 2.2. Let $(x_{1}, \cdots , x_{n})$ be a Fermi coordinate system of $U=U(\sigma)$
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relative to the orthonormal frame field $\{E_{1}, \cdots , E_{n}\}$ . We say that $X\in\chi(U)$ is
a Fermi vector field relative to $(x_{1}, \cdots , x_{n})$ provided

(2.5) $X=\sum_{\ell=2}^{n}c_{\ell^{\frac{\partial}{\partial_{X_{i}}}}}$

where the $c_{\ell}’ s$ are constants.

Two other simple objects, $r$ and $N$, will be needed in the following. We
determine them in terms of Fermi coordinates.

Definition 2.3. Let $(x_{1}, \cdots , x_{n})$ be a system of Fermi coordinates for $U=$

$U(\sigma)$ . For $r>0$ we put

(2.6) $r^{2}=\sum_{\ell=2}^{n}x_{i}^{2}$ , $N=\sum_{\ell=2}^{n}\frac{X\ell}{r}\frac{\partial}{\partial x_{i}}$ .
For $ m\in\sigma$ it is easily proved that the definitions of $r$ and $N$ are independent of
the choice of Fermi coordinates at $m$ . In fact, for $m^{\prime}\in M$ near $\sigma,$ $r(m^{\prime})=d(m^{\prime}, \sigma)$

where $d$ is the distance function of $M$. Furthermore,

(2.7) $N_{\gamma(S)}=(\frac{\partial}{\partial x_{2}})_{\gamma(\partial)}=\gamma^{\prime}(s)$ , $s>0$

where $\gamma$ is the unique geodesic from $m^{\prime}$ to $\sigma$ which meets $\sigma$ orthogonally at
$\gamma(0)=m$ .

In what follows we assume that $\sigma$ is also a geodesic of $M$ and put $A=\partial/\partial x_{1}$ .
The most important properties of $N,$ $r$ and the Fermi fields are included in the
following lemma.

Lemma 2.1 [10]. Let $X$ be a Fermi vector field for $U=U(\sigma)$ and $A,$ $r,$ $N$

as Previously. Then we have:

1. $\nabla_{N}N=0$ 4. $A(r)=0$ 7. $[N, rX]=X(r)N$

2. $\Vert N\Vert=1$ 5. [X, $A$] $=[N, A]=0$ 8. $\nabla_{N}^{2}U=R(N, U)N$

3. $N(r)=1$ 6. $[N, X]=-\frac{1}{r}X+\frac{1}{r}X(r)N$

for any $U$ of the form $U=A+rX$ .

If $\xi$ is a curve of $M$ and $Y$ is a vector field along $\xi$ , write $Y^{\prime}=\nabla_{\xi^{\prime}}Y$ and
$Y^{\prime\prime}=\nabla_{\xi}^{l}$ ,Y. Then a vector field $Y$ along a geodesic $\xi$ is called a Jacobi field if
it satisfies the following second order differential equation

(2.8) $Y^{\prime\prime}=R(\xi^{\prime}, Y)\xi^{\prime}$ .
There is a simple but important relation between Fermi fields and Jacobi fields.
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Corollary 2.1. Let $\gamma$ be a geodesic normal to $\sigma$ at $m=\sigma(O)$ and let $X$ be a
Fermi vector field on $U=U(\sigma)$ . Then the restrictions to $\gamma$ of $rX$ and $A$ , i.e.

$ rX|\gamma$ and $ A|\gamma$

are Jacobi vector fields.

Proof. This is an immediate consequence of (8) of Lemma 2.1.
We now generalize the previous ideas, substituting the curve $\sigma$ by a q-

dimensional submanifold of $M$. More precisely let $P$ be a q-dimensional topo-
logically embedded submanifold of a Riemannian manifold $M^{n}$ . To describe
the geometry of $M^{n}$ in a neighborhood of $P$ we use a generalization of Fermi’s
coordinates. We denote by $\nu$ the normal bundle of $P$ in $M$. The exponential
map of $\nu$ is defined on a neighborhood of the zero section of $\nu$ . Let $m\in P$ and
$(y_{1}, \cdots , y_{q})$ be an arbitrary system of coordinates for $P$ defined on a neighbor-
hood $U$ of $m\in P$. Assume that this neighborhood $U$ is sufficiently small so that
$\nu|U$ is parallelizable. Let $E_{q+1},$ $\cdots$ , $E_{n}$ be orthonormal sections of $\nu$ which
effect this parallelization.

Definition 2.4. The Fermi coordinates $(x_{1}, \cdots , x_{n})$ of $P\subset M$ centered at
$m\in P$ (relative to a given coordinate system $(y_{1}, \cdots , y_{q})$ on $P$ at $m$ and given
orthonormal sections $E_{q+1},$ $\cdots$ , $E_{n}$ of $\nu$), are the real valued functions defined by

(2.9) $x_{a}(\exp_{\nu}(\sum_{j=q+1}^{n}t_{j}E_{f}(m^{\prime})))=y_{\alpha}(m^{\prime})$ , $a=1,$ $\cdots$ , $q$

(2.10) $X\ell(\exp_{\nu}(\sum_{f\approx q+1}^{n}t_{j}E_{j}(m^{\prime})))=t_{\ell}$ , $i=q+1,$ $\cdots$ , $n$

for $m^{\prime}\in U$, provided the numbers $t_{q+1},$ $\cdots$ , $t_{n}$ are small enough so that
$\Sigma_{j=q+1}^{n}t_{f}E_{f}(m^{\prime})$ is in the domain of definition $\exp_{\nu}$ .

Similarly now if $(x_{1}, \cdots , x_{n})$ is a system of Fermi coordinates centered at
$m\in P$, then the restrictions to $P$ of the coordinate vector fields $\partial/\partial x_{q+1},$ $\partial/\partial x_{n}$

are orthonormal. $Morver$ , if we suPpose that $\gamma$ is a geodesic of $M$ para-
metrised by its arc length normal to $P$ with $\gamma(0)=m\in P$ and $u=\gamma^{\prime}(O)$, then there
is a system of Fermi coordinates $(x_{1}, \cdots , x_{n})$ such that for small $s$ we have

$(\frac{\partial}{\partial x_{q+1}})_{\gamma(l)}=\gamma^{\prime}(s)$ , $(\frac{\partial}{\partial x_{\alpha}})_{m}\in P_{m}$ ,

(2.11) $(\frac{\partial}{\partial x_{\ell}})_{rn}\in P_{m}^{\perp}$ , $1\leqq\alpha\leqq q,$ $q+1\leqq i\leqq n$ .

Furthermore,

(2.12) $(x_{\alpha}\circ\gamma)(s)=s\delta_{a}^{q+1}$ , $1\leqq\alpha\leqq n$ .
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The relations now (2.6) may be written as

(2.13) $r^{2}=\sum_{\ell=q+1}^{n}x_{t}^{2}$ , $N=\sum_{\ell=q+1}^{n}\frac{X\ell}{\gamma}\frac{\partial}{\partial x_{\ell}}$

where $\gamma$ may be expressed in terms of the distance function of $M$, and $N$ in
terms of velocities of geodesics. We close this section with a brief discussion
of quasi-umbilicity. Normally this refers to the shape operator $S$ of a hyper-
surface, as having at least $m-1$ eigenvalues equal, $m$ being the dimension of
the hypersurface.

3. The shape operator of tubes and other auxiliary results

Let $\sigma:(a, b)\rightarrow M$ be a curve of finite length in a manifold $M$. We now
give the definition of a tube about the curve.

Deflniiton 3.1. A solid tube of radius $r\geqq 0$ about a curve $\sigma$ is the set of
points of $M$ given by

(3.1) $T(\sigma, r)=\{\exp_{\sigma(\ell)}(X)|X\in M_{\sigma(t)}, \Vert X||\leqq r, \langle X, \delta(t)\rangle=0, a<t<b\}$

where $M_{\sigma(t)}$ denotes the tangent space of $M$ at the point $\sigma(t)$ .

For small $s,$ $0<s\leqq r$, we call the hypersurface of the form

(3.2) $P_{*}=\{m^{\prime}\in T(\sigma, r)|d(m^{\prime}, \sigma)=s\}$

the tubular hypersurface at distance $s$ from $\sigma$ , or just tube.
If $\sigma$ is a geodesic of $M$ then the correswnding tubes are called geodesic

tubes.
Similarly, if $P$ is a q-dimensional embedded submanifold of $M$ we have the

following corresponding definitions:

Deflnition 3.2. A solid tube of radius $r\geqq 0$ about a topologically embedded
submanifold $P$ in a Riemannian manifold $M$ is called the set

(3.3) $T(P, r)=\{\exp_{m}(X)|m\in P, X\in P_{m}^{\perp}, \Vert X\Vert\leqq r\}$ .
We assume that $r$ is less than the distance of $P$ to its nearest focal rint.

For small $s$ the hypersurface $P_{*}$ given by (3.2), with $P$ instead of $\sigma$ , is
also closely related to tube and is called the tubular hypersurface at distance $s$

from $P$.
The vector field $N$ is now the unit normal to each of the tubular hyper-

surfaces $s=constant$, about the submanifold $P$ of $M$.
SuPpose now, we are given a unit speed geodesic $\sigma$ in the manifold $M$
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with $\sigma(0)=m$ and let $u$ be a unit vector in $M_{m}$ orthogonal to $\sigma$ at $m$ and denote
by $\gamma$ the geodesic such that $\gamma(0)=m$ and $\gamma^{\prime}(0)=u$ . Let $\{E_{1}, E_{2}, \cdots , E_{n}\}$ be an
orthonormal basis of $M_{m}$ with $E_{1}=\sigma^{\prime}(0)$ and $E_{2}=u$ and let $(x_{1}, \cdots , x_{n})$ be a
corresponding Fermi coordinate system. Denote by $\{e_{1}, \cdots , e_{n}\}$ the parallel
orthonormal frame field along $\gamma$, obtained by parallel translation of $\{E_{1}, \cdots , E_{n}\}$ .
Also let $Y_{1}(s),$ $Y_{s}(s),$ $\cdots$ , $Y_{n}(s)$ the $n-1$ Jacobi vector fields along $\gamma$, uniquely
determined by the initial conditions:

(3.4) $Y_{1}(0)=E_{1}$ , Y\’i(O) $=0$, $Y_{\ell}(O)=0$, $Y_{\ell}^{\prime}(0)=E_{\ell}$ , $i=3,$ $\cdots$ , $n$ .
These vector fields $Y_{\ell},$ $i=1,3,$ $\cdots$ , $n$ are Perpendicular to $E_{t}$ at $m$ , hence, with
respect to the orthonormal frame $\{e_{1} ; e_{s}, \cdots , e_{n}\}$ , we have

(3.5) $Y_{i}(s)=(Y_{\ell 1}(s), Y_{\ell 3}(s),$ $\cdots$ , $Y_{\ell n}(s))$ ‘ ; $i=1,3,$ $\cdots$ , $n$

where $t$
’ denotes the transpose of a matrix. We write

(3.6) $Y_{\ell}(s)=(Be_{\ell})(s)$ .
This defines an endomorphism-valued function $ s-\rangle$ $B(s)$ which satisfies the equa-
tion

(3.7) $B^{\prime}(s)=R(s)\circ B(s)$

where $R(s)$ denotes the endomorphism of $\{\gamma^{\prime}(s)\}^{\perp}\subset M_{\gamma(\cdot)}$ given by

(3.8) $R(s)X=R(N, X)N$ .
In fact, differentiate (3.6) to get

(3.9) $Y_{\ell}^{\prime}(s)=(B^{\prime}e_{\ell})(s)$ and $Y_{\ell}^{\prime\prime}(s)=(B^{\prime}e_{\ell})(s)$ .
The Jacobi field equation along $\gamma$ is

(3.10) $Y_{\ell}^{\prime\prime}(s)=R(N, Y_{\ell})N$, $i=1,3,$ $\cdots$ , $n$ .
Now relation (3.7) is an immediate consequence of (3.6), (3.9) and (3.10) and,
applying Corollary 2.1, we conclude that the vector fields

(3.11) $X_{1}(s)=(\frac{\partial}{\partial x_{1}})_{\gamma(*)}$ ; $sX_{s}(s)=s(\frac{\partial}{\partial x_{8}})_{\gamma(\partial)},$ $\cdots$ $sX_{n}(s)=s(\frac{\partial}{\partial x_{n}})_{\gamma t*)}$

are Jacobi vector fields along the geodesic and satisfy the same initial conditions
(3.4). Hence $Y_{1}(s)=X_{1}(s),$ $Y_{s}(s)=sX_{3}(s),$ $\cdots$ , $Y_{n}(s)=sX_{n}(s)$ , where $X_{1}(s),$ $X_{\$}\langle s$ ),

, $X_{n}(s)$ are the coordinate, Fermi fields along $\gamma$ . Using (3.4) the endomor-
phism $B(s)$ relative to the basis $\{E_{1} ; E_{3}, \cdots , E_{n}\}$ satisfies the following initial
conditions:

$B(0)=\left(\begin{array}{ll}1 & 0\\0 & 0_{n- 2}\end{array}\right)$ $B^{\prime}(0)=\left(\begin{array}{ll}0 & 0\\0 & I_{n- 2}\end{array}\right)$ .
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Denote now by $S(s)$ the shape operator, with respect to $N$ as normal vector
field, of the tubular hypersurface $P_{s}$ , defined by $S(s)=-\nabla N$. Then

(3.12) $Y_{i}^{\prime}(s)=-S(s)Y_{i}(s)$ , $i=1,3,$ $\cdots$ , $n$

since $[N, Y_{\ell}]=0,$ $i=1,$ $\cdots$ , $n$ and $Y_{i}^{\prime}(s)=\nabla_{N}Y_{\ell}(s)$ . Hence, using (3.6) and (3.9)

we obtain

(3.13) $S(s)=-B^{\prime}(s)B^{-1}(s)$ .
This relation is an expression of the shape operator of tubes in terms of the
Jacobi vector fields.

Next, we are going to prove the same equation (3.13), when the tube is
considered about a specific q-dimensional submanifold of the Riemannian mani-
fold $M$, instead about a geodesic of $M$. More precisely let $m\in M$, it is known
that for each small positive number $r$ there exists a neighborhood $N(m;r)$ at
$m$ (more precisely the zero vector at m) in $M_{m}$ , which is mapped diffeomor-
phically onto a neighborhood $U(m, r)$ of $m$ in $M$, by the exponential mapping.
Let $V$ be a q-dimensional subspace of $M_{m}$ and consider the set $V\cap N(m;r)$ .
Denote by $P$ the q-dimensional connected embedded submanifold of $M$ obtained
by $\exp_{m}(V\cap N(m;r))$ . This manifold $P$ has a Riemannian structure induced by
that of $M$. In what follows, we will refer to this specific submanifold $P$.

Following the same notations as previously, let $\gamma$ be a unit speed geodesic
in $M$ meeting $P$ orthogonally at a point $m$ . Assume that $\gamma(0)=m$ and $\gamma^{\prime}(0)\in P_{m}^{\perp}$ .
Then, [12], there is a system of Fermi coordinates $(x_{1}, \cdots , x_{n})$ such that for
small $s$ we have

$(\frac{\partial}{\partial x_{q+1}})_{\gamma(*)}=\gamma^{\prime}(s)$ , $(\frac{\partial}{\partial x_{a}})_{m}\in P_{m}$ , $(\frac{\partial}{\partial x_{\ell}})_{m}\in P_{m}^{\perp}$ , $a=1,$ $\cdots,$ $q,$ $i=q+1,$ $\cdots$ . $n$ .

Furthermore, let $\{E_{1}, \cdots , E_{n}\}$ be an orthonormal basis of $M_{m}$ such that the $E_{\alpha}$ ,
$\alpha=1,$ $\cdots$ , $q$ span $P_{m}$ and

(3.14) $(\frac{\partial}{\partial x_{a}})_{m}=E_{a}$ , $(\frac{\partial}{\partial_{X\ell}})_{m}=E_{\ell}$ , $i=q+2,$ $\cdots$ $n$ .

Assume that $\{e_{1}, \cdots , e_{n}\}$ be the parallel orthonormal frame field along $\gamma$ obtained
by parallel translation of $\{E_{1}, \cdots , E_{n}\}$ . Then the following are Jacobi vector
fields:

(3.15) $(\frac{\partial}{\partial_{X_{1}}})_{\gamma(\iota)}$ , $(\frac{\partial}{\partial_{X_{q}}})_{\gamma t*)}$ ; $s(\frac{\partial}{\partial_{X_{q+2}}})_{\gamma(\cdot)},$ $\cdots$ $s(\frac{\partial}{\partial x_{n}})_{\gamma(\cdot)}$ .
Now consider, as previously, the $n-1$ Jacobi vector fields $Y_{1}(s),$ $\cdots$ , $Y_{q}(s)$ ;
$Y_{q+2}(s),$ $\cdots$ , $Y_{n}(s)$ along $\gamma$, uniquely determined by the initial conditions
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$Y_{\alpha}(O)=E_{a}$ , $Y_{\alpha}^{\prime}(0)=0$ ; $a=1,$ $\cdots$
$q$ ;

(3.16)
$Y_{\ell}(O)=0$, $Y_{\ell}^{\prime}(0)=E_{\ell}$ , $i=q+2,$ $\cdots$ $n$ .

Then it is obvious that

(3.17) $Y_{a}(s)=(\frac{\partial}{\partial_{X_{\alpha}}})_{\gamma(\cdot)}=X_{\alpha}(s)$, $Y_{\dot{l}}(s)=s(\frac{\partial}{\partial_{X_{\ell}}})_{\gamma t\cdot)}=sX_{i}(s)$

since $X_{a}(s),$ $sX_{\ell}(s)$ satisfy the initial conditions (3.16), where $X_{\alpha}(s),$ $X_{\ell}(s)$ are
the coordinate Fermi vector fields along $\gamma$ .

Now define the endomorphism-valued function $s\leftrightarrow B(s)$ by

(3.18) $Y_{\alpha}(s)=(Be_{\alpha})(s)$, $\alpha=1,$ $\cdots$ , $q;q+2,$ $\cdots$ , $n$ .
Since the $Y_{a}’ s$ are Jacobi vector fields, $B$ satisfies

(3.19) $B^{\prime}(s)=R(s)\circ B(s)$

where $R(s)$ is defined by (3.8). Using now (3.16) the endomorphism $B(s)$ rela-
tive to the basis $\{E_{1}, \cdots , E_{q} ; E_{q+2}, \cdots , E_{n}\}$ satisfies the following initial con-
ditions

(3.20) $B(O)=diag(I_{q}, 0)$ , $B^{\prime}(O)=diag(0, I_{n-q-1})$ .
Denote by $S(s)$ the shape operator of the tubular hypersurface $P_{*}$ . Then

$S(s)Y_{\alpha}(s)=-Y_{\alpha}^{\prime}(s)$, $\alpha=1,$ $\cdots$ $q;q+2,$ $\cdots$ $n$

and using (3.18) we obtain again

(3.21) $S(s)=-B^{\prime}(s)B^{-1}(s)$ .
This is the required relation which expresses the shape operator of a tube $P_{l}$ ,
in terms of Jacobi vector fields.

4. The main results

Theorem 4.1. Let $\sigma$ be a geodesic of finite length of a connected Riemannian
manifold $(M, g)$ of dimension $n>2$ and of constant sectional curvature $c$ . Then
every sufficiently small tube about $\sigma$ of radius $s$ is a quasi-umbilical hypersurface
of $M$.

Proof. Suppose that the Riemannian manifold $M$ has constant sectional
curvature $c$ . Then [14]

$R(X, Y)Z=c(g(Y, Z)X-g(X, Z)Y)$

for $X,$ $Y,$ $Z\in\chi(M)$ .
Following the same notation as previously, setting $X=N$ (which is the
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tangent vector field along $\gamma$ ) and $Y=Y_{a}(s),$ $\alpha=1,3,$ $\cdots$ , $n$ (which are orthogonal

to $\gamma$), we get

(4.1) $R(N, Y_{a})N=-cY_{\alpha}$ , $\alpha=1,3,$ $\cdots$ $n$ .
As a consequence, now of this equation and (3.10) we get for the Jacobi vector
fields along $\gamma$ , the following differential equation:

(4.2) $Y_{a}^{\prime\prime}(s)=-cY_{a}(s)$, $\alpha=1,3,$ $\cdots$ $n$ .
Suppose that $c>0$ . Then this equation can be solved explicitly to give

(4.3) $Y_{\alpha}=Y_{\alpha}(s)=\sum_{b\approx 1}^{n}$ ( $c_{\alpha b}$ cos $\sqrt{c}s+c_{\alpha b}^{\prime}$ sin $\sqrt{c}s$ ) $e_{b}(s)$, $\alpha,$ $b=1,3,$ $\cdots$ $n$ .
$b\neq 2$

Where $c_{\alpha b},$
$c_{ab}^{\prime}$ are constants of integration. Applying now the initial conditions

(3.4) we have easily

$c_{\alpha b}=\{01$

,
$otherwiseif\alpha=b=l$ $c_{a}^{\prime}=\{$

$\frac{1}{\sqrt{c}}$ if $\alpha=b=3,$ $\cdots$ $n$

$0$, otherwise.
Hence

$Y_{1}(s)=(s\sqrt{c}s, 0, \cdots , 0)^{\ell}$ ,
(4.4)

$Y_{s}(s)=(0,$ $\frac{\sin\sqrt{c}s}{\sqrt{c}}0,$ $\cdots o)^{t},$ $\cdots$ $Y_{n}(s)=(0,$ $\cdots,$
$0,$ $\frac{\sin\sqrt{c}s}{\sqrt{c}})^{\iota}$ .

Therefore, the representation of $B(s)$ with respect to the orthonormal frame
$\{e_{1} ; e_{s}, ’ e_{n}\}$ is

(4.5) $B(s)=diag(\cos\sqrt{c}s,$ $\frac{1}{\sqrt{c}}$ sin $\sqrt{c}s,$ $\frac{1}{\sqrt{c}}$ sin $\sqrt{c}s)$

Now applying the relation (3.13), we get, for the shape operator $S(s)$ of the
tube $P_{s}$ , the following $(n-1)\times(n-1)$ matrix:

(4.6) $S(s)=diag$ ( $\sqrt{c}$ tan $\sqrt{c}s,$ $-\sqrt{}\overline{c}\cot\sqrt{}\overline{c}s,$ $\cdots$ $-\sqrt{c}\cot\sqrt{c}s$).

Therefore, the shape operator has two distinct eigenfunctions:

$k_{1}=\sqrt{c}$ tan $\sqrt{c}s$

of multiplicity one, and

$k_{2}=-\sqrt{c}\cot\sqrt{}\overline{c}s$

of multiplicity $n-2$ . Now, since the dimension of the tube is $n-1$ , we con-
clude that it is a quasi-umbilical hypersurface.

For the negative curvature case $(c<0)$ , in order to take the shape operator
$S(s)$ , it suffices in (4.6) to $chan_{\backslash }ge$ the trigonometric functions into the corre-
sponding hyperbolic functions, instead of $c$ put $|c|$ and, instead of $\sqrt{c}$tan $\sqrt{cs}$
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$put-\sqrt{|c|}$ tanh $\sqrt Tc\neg s$ . So we again obtain the same conclusion.
For the zero curvature case $(c=0)$, one now easily obtains that the shape

operator $S(s)$ also has two distinct eigenfunctions, $k_{1}=0$ of multiplicity one and
$k_{2}=-1/s$ of multiplicity $n-2$ and, therefore, we also get the same result and
the proof of the Theorem is complete.

We now prove the converse of the above theorem, namely:

Theorem 4.2. Suppose that, for every geodesic $a$ of finite length of a con-
nected Riemannian manifold $(M, g)$ of dimension $>2$ , every sufficiently small tube
about $a$ of radius $s$ is a quasi-umbilical $hyPersurface$ of $M$, and the eigenspace
of dimension $n-2$ of the corresPonding shape operatOr is parallel along every
unit speed geodesic $\gamma$ meeting $a$ orthogonally. Then $M$ has constant sectional
curvature.

Proof. Let $m=\sigma(O)$ be a point of $M$ and denote by $\gamma$ the unit speed geodesic
of $M$ which meets $\sigma$ orthogonally at $m$ , with $\gamma(0)=m$ . Now our hypothesis of
quasi-umbilicity of every sufficiently small tube about $\sigma$ , gives that the shape
operator $S(s)$, for every small $s$ , of each tube will have two smooth distinct
eigenfunctions, say $k_{1}=k_{1}(s)$ of multiplicity one and $k_{2}=k_{2}(s)$ of multiplicity
$n-2$ . Let $\{\epsilon_{1}(s), \epsilon_{2}(s), \cdots , \epsilon_{n}(s)\}$ be the parallel orthonormal frame field along
$\gamma$ such that

(4.7) $S(s)\epsilon_{1}(s)=k_{1}(s)\epsilon_{1}(s)$, $S(s)\epsilon_{\ell}(s)=k_{2}(s)\epsilon_{i}(s)$ , $i=3,$ $\cdots$ $n$ .
and let $\epsilon_{t}(s)=\gamma^{\prime}(s)=N(s)$ .

Now using the equation (3.13), we obtain

$B^{\prime}(s)=-S(s)B(s)$ .
Differentiate and use this relation again to get

$B^{\prime}(s)=(S^{2}(s)-S^{\prime}(s))B(s)$

or equivalently
$Y_{\ell}^{\prime\prime}(s)=(S^{t}(s)-S^{\prime}(s))Y_{\ell}(s)$, $i=1,$ $\cdots$ $n$

where $Y_{i},$ $i=1,3,$ $\cdots$ , $n$ are the Jacobi vector fields along $\gamma$ perpendicular to $N$.
But the $Y_{\ell}’ s$ also satisfy the Jacobi vector field equation

$Y_{l}^{\prime\prime}(s)=R(N(s), Y_{\ell}(s))N(s)$ .
Therefore, we get on $\gamma-\{m\}$

(4.8) $(S^{2}(s)-S^{\prime}(s))Y_{\ell}(s)=R(N(s), Y_{i}(s))N(s)$ .
From (4.8) we conclude that along $\gamma-\{m\}$ for every $Y$ Perpendicular to $N$

(4.8a) $(S^{2}(s)-S^{\prime}(s))Y=R(N, Y)N$ .
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Using the equation (4.7), we now obtain

(4.9) $(k_{1}^{2}-k_{1}^{\prime})\epsilon_{1}(s)=R(N, \epsilon_{1})N$, $(k_{2}^{2}-k_{2}^{\prime})\epsilon_{\ell}(s)=R(N, \epsilon_{i})N$ ; $i=3,$ $\cdots$ $n$ .
From the last equations it is obvious that $\epsilon_{1}(s)$ and $\epsilon_{\ell}(s),$ $i=3,$ $\cdots$ , $n$ are eigen-
vector fields of the mapping $R(N, -)N$ along $\gamma-\{m\}$ , corresponding to the
eigen-functions $k_{1}^{2}(s)-k_{1}^{\prime}(s)$ of multiplicity one and $k_{2}^{2}(s)-k_{2}^{\prime}(s)$ of multiplicity
$n-2$ .

By continuity, at the point $m$ we now have

(4.10) $R(E_{2}, E_{1})E_{2}=k(E_{2}, E_{1})E_{1}$ , $R(E_{8}, E_{\ell})E_{f}=k(E_{2}, E_{\ell})E_{\ell}$ , $i=3,$ $\cdots,$
$n$ .

Since we can take any geodesic of $M$ for $\sigma$ and any geodesic meeting ortho-
gonally to $\sigma$ for $\gamma$, as a consequence of (4.10), we have

(4.11) $R(Y, X)Y=k(Y, X)X$

for any orthogonal pair of unit tangent vectors {X, $Y$ }. In the following, we
will show that the function $k(Y, X)$ does not depend on the choice of {X, $Y$ }

and is a function on $M$. First we fix Y. Let $X_{1},$ $X_{2}$ be orthogonal vectors
perpendicular to Y. It follows from

(4.12) $R(Y, X_{1}+X_{2})Y=R(Y, X_{1})Y+R(Y, X_{2})Y$

$=k(Y, X_{1})X_{1}+k(Y, X_{2})X_{2}$

and

(4.13) $R(Y, X_{1}+X_{2})Y=k(Y, X_{1}+X_{2})(X_{1}+X_{2})$

that

(4.14) $k(Y, X_{1})=k(Y, X_{f})=k(Y, X_{1}+X_{2})$ .
This shows that the function $k(Y, X)$ does not depend on $X$ and (4.11) can be
written as

(4.15) $R(Y, X)Y=k(Y)X$ .
Since $g(R(Y, X)Y,$ $X$)$=g(R(X, Y)X,$ $Y$ ), we have $k(Y)=k(X)$ , which shows that
$k$ is a function on $M$. By Schur’s theorem ([14]), $k$ must be constant on $M$

and the $prf$ is completed.

Theorem 4.3. Let $(M, g)$ be a connected n-dimensional $(n>2)$ Riemannian
manifold of constant sectional curvature $c$ and $P$ be a q-dimensional submanifold
of $M$ obtained by exp$m(V\cap N(m;r))$ , where $m\in M,$ $V$ is a q-dimensional subspace

of $M_{m},$ $N(m;r)$ is a neighborhood at $m$ in $M_{m}$ and $r$ is a positive number. Then
the shaPe operator of every sufficiently small tube about $P$ of radius $s$ has $ tw\iota$

distinct eigenfunctions, of multiplicity $q$ and $n-q-1$ respectively.
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Proof. Since the Riemannian manifold $M$ has constant sectional curvature
$c$ , we have

(4.17) $R(X, Y)Z=c(g(Y, Z)X-g(X, Z)Y)$

for $X,$ $Y,$ $Z\in\chi(M)$ .
Following the same notation, as previously, setting $X=\gamma^{\prime}(s)$ and $Y=Y_{a}(s)$,

$\alpha=1,$ $\cdots$ , $q;q+2,$ $\cdots$ , $n$ we get

(4.18) $R(\gamma^{\prime}(s), Y_{\alpha}(s))\gamma^{\prime}(s)=-cY_{\alpha}(s)$ .
Now, as a consequence of this equation, and that the $Y_{\alpha}’ s$ are Jacobi fields
along $\gamma$, we deduce that

(4.19) $Y_{a}^{\prime\prime}(s)=-cY_{\alpha}(s)$, $\alpha=1,$ $q;q+2,$ , $n$ .
Suppose now that $c>0$ . Then this equation can be solved explicitly, to give

(4.20) $Y_{\alpha}(c)$
$\sum_{b\approx 1,b\neq q+1}^{n}$

( $c_{\alpha b}$ cos $\sqrt{c}s+c_{\alpha b}^{\prime}$ sin $\sqrt{c}s$ ) $e_{b}$ , $1\leqq\alpha\neq q+1\leqq n$

where each $e_{b}$ is parallel along the geodesic $\gamma$ .
Now using the initial conditions (3.20), we get

$Y_{1}(s)=X_{1}(s)=(\cos\sqrt{c}s, 0, 0)^{\ell},$ $\cdots,$ $Y_{q}(s)=X_{q}(s)=(0,$ $\cdots$ , cos $\sqrt{c}s,$ $0)^{\ell}$

$Y_{q+2}(s)=sX_{q+2}(s)=(0,$ $\cdots$ $\frac{\sin\sqrt{c}s}{\sqrt{c}}$ $0)^{\ell},$ $\cdots Y_{n}(s)=sX_{n}(s)$

$=(0,$ $0,$ $\frac{\sin\sqrt{c}s}{\sqrt{c}})^{\ell}$ .
Hence, the representation of $B(s)$ with respect to the orthonormal frame field
$\{e_{1}, \cdots e_{q} ; e_{q+2}, \cdots e_{n}\}$ is

$B(s)=diag(\cos\sqrt{c}s,$ $\cdots$ , cos $\sqrt{c}s,$ $\frac{1}{\sqrt{c}}$ sin $\sqrt{c}s,$ $\frac{1}{\sqrt{c}}$ sin $\sqrt{c}s)$ .
Now, easily evaluating $B^{\prime}(s)$ and $B^{-1}(s)$, and using (3.21) we get, for the shape
operator $S(s)$, of each tube $P_{t}$ :

(4.21) $S(s)=diag$ ( $\sqrt{c}$tan $\sqrt{c}s,$
$\cdots,$

$\sqrt{c}$tan $\sqrt{c}s,$ $-\sqrt{c}$cot $\sqrt{c}s,$
$\cdots,$

$-\sqrt{c}$cot $\sqrt{c}s$).

Therefore, the shape operator has two distinct eigenfunctions, $k_{1},$ $k_{8}$ such that

$k_{1}=\sqrt{c}$ tan $\sqrt{c}s$

of multipliclty $q\geqq 2$ and
$k_{8}=-\sqrt{c}$ cot $\sqrt{c}s$

of multiplicity $n-q-1<n-2$ .
For the negative curvature case $(c<0)$ and for the zero curvature case $(c=0)$
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the proof is similar to that of Theorem 4.1, so we omit it.
Next, we state the converse of the above theorem, namely:

Theorem 4.4. Let $P$ be a q-dimensional submanifold of a connected n-dimen-
sional $(n>2)$ Riemannian manifold $M$ obtained, for $m\in M$, by $\exp_{m}(V\cap N(m;r))$ ,
where $V$ is a q-dimenstonal subspace of $M_{m},$ $N(m;r)$ is a neighborhood at $m$ in
$M_{m}$ , and $r$ a small Positive number. Assume that the shape-oPerator of every
$suffic\dot{\iota}ently$ small tube about $P$ of radius $s$ for every q-dimensional submamfold $P$

has a $(n-q-1)$-dimensional Parallel eigenspace, along the corresPonding unit
speed geodesic $\gamma$ of $M$ meeting $P$ orthogonally at M. Then $M$ has constant cur-
vature.

Proof. Let $m=a(O)$ be a point of $M$ and denote by $\gamma$ the unit speed geo-
desic of $M$ which meets $P$ orthogonally at $m$ , with $\gamma(0)=m$ . Let $k_{1}=k_{1}(s)$ and
$k_{2}=k_{2}(s)$ , be the distinct eigenfunctions of multiplicity $q$ and $n-q-1$ respec-
tively, of the shape operator $S(s)$ for every small $s$ of each tube $P_{*}$ . Let
$\{\epsilon_{1}(s), \cdots , \epsilon_{q}(s);\epsilon_{q+2}(s), \cdots , \epsilon_{n}(s)\}$ be the parallel orthonormal frame field along

$\gamma$ such that

(4.22) $S(s)\epsilon_{\alpha}(s)=k_{1}(s)\epsilon_{\alpha}(s)$ , $S(s)\epsilon_{\ell}(s)=k_{2}(s)\epsilon_{i}(s)$ ; $a=1,$ $\cdots,$ $q;i=q+2,$ $\cdots,$
$n$

and let $\epsilon_{q+1}(s)=\gamma^{\prime}(s)$ . Now using the equation (3.21) we obtain

$B^{\prime}(s)=-S(s)B(s)$

from which by differentiation we have

$B^{\prime\prime}(s)=(S^{2}(s)-S^{\prime}(s))B(s)$

or equivalently

$Y_{i}^{\prime\prime}(s)=(S^{f}(s)-S^{\prime}(s))Y_{i}(s)$ ; $i=1,$ $\cdots$ $q;q+2,$ $\cdots$ $n$

where $Y_{\ell}$ are the Jacobi vector fields along $\gamma$ . But the $Y_{\ell}’ s$ also satisfy the
Jacobi field equation

$Y_{i}^{\prime\prime}(s)=R(N(s), Y_{\ell}(s))N(s)$

where $N(s)=\gamma^{\prime}(s)$ . Therefore, we get on $\gamma-\{m\}$

(4.23) $(S^{2}(s)-S^{\prime}(s))Y_{i}(s)=R(N(s), Y_{i}(s))N(s)$ .
From this equation one concludes that along $\gamma-\{m\}$ for every $Y$ perpendicular
to $N$

$(S^{2}(s)-S^{\prime}(s))Y=R(N, Y)N$.
Hence, along $\gamma-\{m\}$ , since the $\epsilon_{\alpha}’ s,$ $\alpha=1,$ $\cdots$ , $n,$ $\alpha\neq q+1$ , are parallel, from
this equation and (4.22) we get
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(4.24) $(k_{1}^{2}(s)-k_{1}^{\prime}(s))\epsilon_{a}(s)=R(N, \epsilon_{\alpha}(s))N$ ; $a=1,$ $\cdots$
$q$

(4.25) $(k_{2}^{2}(s)-k_{2}^{\prime}(s))\epsilon_{\ell}(s)=R(N, \epsilon_{\ell}(s))N$ ; $i=q+2,$ $\cdots$ , $n$ .
From these equations, it is obvious that $\epsilon_{\alpha}(s)$ and $\epsilon_{\ell}(s)$ are eigenvector fields of
the mapping $R(N, -)N$, along $\gamma-\{m\}$ with corresponding eigenfunctions $k_{1}^{g}(s)-$

$k_{1}^{\prime}(s)$ of multiplicity $q$ and $k_{2}^{2}(s)-k_{2}^{\prime}(s)$ of multiplicity $n-q-1$ . By continuity,
at the point $m$ we will now have:

(4.26) $R(E_{2}, E_{a})E_{2}=k(E_{2}, E_{\alpha})E_{\alpha}$ , $R(E_{2}, E_{1})E_{2}=k(E_{2}, E_{i})E_{i}$ .
Now, following the same method which we developed in the proof of Theorem
4.2, we conclude that the functions $k$ are constant and hence the manifold is
of constant curvature and the proof of the Theorem is complete.

Remark 1. Now it seems that this method of tubes may be applied to the
K\"ahler manifolds of constant holomorphic sectional curvature, as well as Pos-
sibly, to locally symmetric spaces and to Sasakian manifolds of constant $\varphi-$

sectional curvature.

Remark 2. After this work had been completed I was informed by Professor
L. Vanhecke, that his colleague, L. Gheysens, proved similar results in his Ph.
D., which as far as I know, he hasn’t published yet.
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