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Abstract. For a function $ f(z)=z+a_{2}z^{2}+\cdots$ analytic in the unit disc we give
certain criteria for univalence in terms of $(D^{n}f(z))/z$ , where $D^{n}f$ denotes
the Ruscheweyh derivative.

1. Introduction

Let A denote the class of functions analytic in the unit disc $U=\{z:|z|<1\}$

with $f(O)=f^{\prime}(O)-1=0$.
In his paper [2] Ruscheweyh proved that if $f\in A$ and

${\rm Re}\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\}>\frac{1}{2},$ $z\in U,$ $n\in N_{0}=N\cup\{0\}=\{0,1, 2, \}$

where $D^{n}f=(z/(1-z)^{n+1})*f$ means the Hadamard product or convolution of the
functions $z/(1-z)^{n+1}$ and $f$, then $f\in S^{*}(1/2),$ $i.e$ . $f$ is starlike function of order
1/2.

We note that for $D^{n}f$ we have the identity

(1) $z(D^{n}f)^{\prime}=(n+1)D^{n+1}f-nD^{n}f,$ $n\in N_{0}$ .
In this paper we give some conditions for univalence in $U$ by using $(D^{n}f)/z$ .

For the proofs of our results we need the following well-known lemma.

Lemma 1 (Jack [1]). Let $\omega$ be nonconstant and analytic in $U$ with $\omega(0)=0$.
If $|\omega|$ attains its maximum value at a point $z_{0}$ on the circle $|z|=r<1$ , we have
$z_{0}\omega^{\prime}(z_{0})=k\omega(z_{0}),$ $k\geqq 1$ .

2. Some conditions for univalence

Theorem 1. Let $f\in A$ and
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(2) ${\rm Re}\{\frac{D^{n}f(z)}{z}\}>\alpha_{n}$ , $z\in U,$ $n\in N$ ,

where $\alpha_{n}$ is defined by

(3) $\alpha_{n}=\frac{1}{2n}[(2n+1)\alpha_{n-1}-1]$ , $n\geqq 2$, and $\alpha_{1}=0$ ,

then $f$ is umvalent in $U$ and ${\rm Re}\{f^{\prime}(z)\}>0(z\in U)$ .

Proof. Let us show that the following implication

(4) ${\rm Re}\{\frac{D^{n}f(z)}{z}\}>\alpha_{n}\Rightarrow{\rm Re}\{\frac{D^{n-1}f(z)}{z}\}>\alpha_{n-1}(n\geqq 2)$ ,

is true, where $\alpha_{n}$ is defined by (3). In that sense, let (2) be satisfied and let’s
put

(5) $\frac{D^{n-1}f(z)}{z}=\frac{1-(2\alpha_{n-1}-1)\omega(z)}{1-\omega(z)}$ .

Then $\omega$ is analytic in $U$ and $\omega(0)=0$ . From (5) by multiPlying with 2, differen-
tiation, by using the identity (1) and some simple transformations we get

(6) $\frac{D^{n}f(z)}{z}=\frac{1-(2\alpha_{n-1}-1)\omega(z)}{1-\omega(z)}+\frac{2(1-\alpha_{n-1})}{n}\cdot\frac{z\omega^{\prime}(z)}{(1-\omega(z))^{2}}$

We want to show that $|\omega(z)|<1,$ $z\in U$ . If not $|\omega(z)|<1$ , then there exists a
point $z_{0},$ $|z_{0}|<1$ , such that $|\omega(z_{0})|=1$ and $z_{0}\omega^{\prime}(z_{0})=k\omega(z_{0}),$ $k\geqq 1$ (where we use
Lemma 1). If we Put $\omega(z_{0})=e^{i\theta}$ , then $z_{0}\omega^{\prime}(z_{0})=ke^{\ell\theta}$ and from (6) for such $z_{0}$

we obtain

${\rm Re}\{\frac{D^{n}f(z_{0})}{z_{0}}\}={\rm Re}\{\frac{1-(2a_{n-1}-1)e^{t\theta}}{1-e^{\ell\theta}}+\frac{2(1-\alpha_{n-1})ke^{\ell\theta}}{n(1-e^{\ell\theta})^{2}}\}$

$=\alpha_{n-1}+\frac{2(1-\alpha_{n-1})k}{n}(-\frac{1}{4\sin^{8}(\theta/2)})$

$\leqq\alpha_{n-1}-\frac{1-\alpha_{n-1}}{2n}=\alpha_{n}$ ,

which is the contradiction to (2). From the implication (4) we conclude that
${\rm Re}\{D^{n}f(z)/z\}>\alpha_{n}$ implies ${\rm Re}\{D^{1}f(z)/z\}={\rm Re}\{f^{\prime}(z)\}>0,$ $z\in U$ , i.e. $f$ is univalent
(close-to-convex) in $U$ .

For example, for $n=2$ from Theorem 1 we have

Corolary 1. If $f\in A$ and
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${\rm Re}\{f^{\prime}(z)+\frac{1}{2}zf^{\prime\prime}(z)\}>-\frac{1}{4}$ , $z\in U$ ,

then $f$ is umvalent in $U$ with ${\rm Re}\{f^{\prime}(z)\}>0,$ $z\in U$ .

Theorem 2. Let $f\in A$ and let

(7) $|\frac{D^{n}f(z)}{z}-1|<\frac{n+1}{2},$ $z\in U,$ $n\in N$ ,

then $f$ is univalent in $U$ and $|f^{\prime}(z)-1|<1,$ $z\in U$ .

Proof. Since (7) is equivalent to

(8) $\frac{D^{n}f(z)}{z}\prec 1+\frac{n+1}{2}z$ ,

let show that (8) implies that $D^{n-1}f(z)/z\prec 1+(n/2)z$ . If we put

(9) $\frac{D^{n-1}f(z)}{z}=1+\frac{n}{2}\omega(z)$ ,

then $\omega(0)=0$ and $\omega(z)$ is analytic in $U$ . By using the same method as in Theorem
1, from (9) we obtain

(10) $\frac{D^{n}f(z)}{z}=1+\frac{n}{2}\omega(z)+\frac{1}{2}z\omega^{\prime}(z)$ .

We want to show that $|\omega(z)|<1,$ $z\in U$ . If not $|\omega(z)|<1$ , then there exists (by
Lemma 1) a point $z_{0},$ $|z_{0}|<1$ , such that $|\omega(z_{0})|=1$ and $z_{0}\omega^{\prime}(z_{0})=k\omega(z_{0}),$ $k\geqq 1$ .
If we put $\omega(z_{0})=e^{i\theta}$ , then $z_{0}\omega^{\prime}(z_{0})=ke^{i\theta}$ and from (10) for such $z_{0}$ we have

$|\frac{D^{n}f(z_{0})}{z_{0}}-1|=|\frac{n+k}{2}e^{i\theta}|=\frac{n+k}{2}\geqq\frac{n+1}{2}$ ,

which is the contradiction to (7). In that sense we conclude that (7) implies

$|\frac{D^{1}f(z)}{z}-1|<1,$ $z\in U$ ,

which is the same as $|f^{\prime}(z)-1|<1,$ $z\in U$ , and the proof is complete.
For $n=2$ from Theorem 2 we get

Corollary 2. If $f\in A$ and if

$|f^{\prime}(z)+\frac{1}{2}zf^{\prime}(z)-1|<\frac{3}{2},$ $z\in U$ ,

then $f$ is univalent and $|f^{\prime}(z)-1|<1,$ $z\in U$ .
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Remark 1. By induction we easily conclude that the disc $|w-1|<(n+1)/2$
doesn’t belongs to the half-plane defined by ${\rm Re}\{w\}>\alpha_{n}$ , where $\alpha_{n}$ is defined by
(3). It means that the result of Theorem 2 is not a consequence of Theorem 1.

Theorem 3. Let $f\in A$ and

(11) $|\arg\frac{D^{n}f(z)}{z}|<\frac{\pi}{2}\alpha_{n},$ $n\in N,$ $z\in U$ ,

where

(12) $\left\{\begin{array}{l}a_{n}\leqq\alpha_{n-1}+\frac{2}{\pi}\arctan\frac{a_{n-1}}{n} , n\geqq 2, \alpha_{1}=1\\\alpha_{n}+a_{n-1}\leqq 3\end{array}\right.$

Then $f$ is univalent in $U$ and arg$f^{\prime}(z)|<\pi/2,$ $z\in U$ .

Proof. First, let show that the following implication

(13) $|\arg\frac{D^{n+1}f(z)}{z}|<\alpha_{n+1}\Rightarrow|\arg\frac{D^{n}f(z)}{z}|<\alpha_{n}$

is true, where $\alpha_{n}$ is defined by (12). Suppose that

(14) $|\arg\frac{D^{n+1}f(z)}{z}|<\alpha_{n+1}$

and put

(15) $\frac{D^{n}\beta(z)}{z}=(\frac{1+\omega(z)}{1-\omega(z)})^{a_{n}}$

Then $\omega(z)$ is analytic in $U$ and $\omega(0)=0$ (we take the principal values). From
(15), as in the proofs of previous theorems, we can get

(16) $\frac{D^{n+1}f(z)}{z}=(\frac{1+\omega(z)}{1-\omega(z)})^{a_{n}}[1+\frac{\alpha_{n}}{n+1}\frac{2z\omega^{\prime}(z)}{1-\omega^{2}(z)}]$ .

We want to show that $|\omega(z)|<1,$ $z\in U$ . If not then by Jack’s lemma there
exists a $z_{0},$ $|z_{0}|<1$ , such that $|\omega(z_{0})|=1,$ $i.e$ . $\omega(z_{0})=e^{\ell\theta}$ , and $z_{0}\omega^{\prime}(z_{0})=k\omega(z_{0})=$

$ke^{\ell\theta},$ $k\geqq 1$ . From (16) for such $z_{0}$ we have

$\frac{D^{n+1}f(z_{0})}{z_{0}}=(\frac{1+e^{\ell\theta}}{1-e^{\ell\theta}})^{\alpha_{n}}[1+\frac{\alpha_{n}}{n+1}\frac{2ke^{\ell\theta}}{1-e^{\ell\theta}}]$

(17) $=(lCtg\frac{\theta}{2})^{\alpha_{n}}[1+\frac{\alpha_{n}k1+ctg^{1}(\theta/2)}{n+12ctg(\theta/2)}’]$

$=(\dot{\iota}t)^{a_{n}}[1+\frac{a_{n}k}{2(n+1)}(t+\frac{1}{t})\dot{l}]$ ,
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where we Put $ctg(\theta/2)=t$ . If take $t>0$, then from (17) we have

$\arg\frac{D^{n+1}\beta(z_{0})}{z_{0}}=\frac{\pi}{2}\alpha_{n}+\arctan[\frac{\alpha_{n}k}{2(n+1)}(t+\frac{1}{t})]$ ,

and from there

$\frac{\pi}{2}\alpha_{n+1}\leqq\frac{\pi}{2}\alpha_{n}+\arctan\frac{a_{n}}{n+1}\leqq\arg\frac{D^{n+1}f(z_{0})}{z_{0}}\leqq\frac{\pi}{2}\alpha_{n}+\frac{\pi}{2}$ .

If we consider the case $t<0$, then in the both cases we get

$\frac{\pi}{2}\alpha_{n+1}\leqq|\arg\frac{D^{n+1}f(z_{0})}{z_{0}}|\leqq\frac{\pi}{2}\alpha_{n}+\frac{\pi}{2}\leqq 2\pi-\frac{\pi}{2}\alpha_{n+1}$ .

which implies that $(D^{n+1}f(z_{0}))/z_{0}$ lies outside the angle $|\alpha|<(\pi/2)\alpha_{n+1}$ . This
is the contradiction to (14). Now by induction from (13) we conclude that (11)

implies

$|\arg\frac{D^{1}f(z)}{z}|=|$ arg $f^{\prime}(z)|<\frac{\pi}{2},$ $z\in U$ ,

$i.e$ . $f$ is univalent.
For $n=2$, from Theorem 3 we derive

Corollary 3. If $f\in A$ and if
$|\arg(f^{\prime}(z)+\frac{1}{2}zf^{\chi}(z))|<\frac{\pi}{2}a_{2},$ $z\in U$ ,

where $\alpha_{a}=1+(2/\pi)$ arctan $(1/2)=1.2951\geqq$ , then $\beta$ is univalent in $U$ and larg$f^{\prime}(z)|$

$<\pi/2,$ $z\in U$ .

Remark 2. From the result of the previous corollary we conclude that it
doesn’t follow from Theorem 1 or Theorem 2.
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