Yokohama Mathematical Journal Vol. 43, 1995

SOME CONDITIONS FOR UNIVALENCE DEFINED BY RUSCHEWEYH'S DERIVATIVE

By

MILUTIN OBRADOVIĆ AND MAMORU NUNOKAWA

(Received December 1, 1994)

Abstract. For a function $f(z)=z+a_2z^2+\cdots$ analytic in the unit disc we give certain criteria for univalence in terms of $(D^nf(z))/z$, where D^nf denotes the Ruscheweyh derivative.

1. Introduction

Let A denote the class of functions analytic in the unit disc $U = \{z : |z| < 1\}$ with f(0) = f'(0) - 1 = 0.

In his paper [2] Ruscheweyh proved that if $f \in A$ and

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \frac{1}{2}, \ z \in U, \ n \in N_{0} = N \cup \{0\} = \{0, \ 1, \ 2, \ \cdots\}$$

where $D^n f = (z/(1-z)^{n+1})*f$ means the Hadamard product or convolution of the functions $z/(1-z)^{n+1}$ and f, then $f \in S^*(1/2)$, i.e. f is starlike function of order 1/2.

We note that for $D^n f$ we have the identity

(1)
$$z(D^n f)' = (n+1)D^{n+1}f - nD^n f, n \in N_0$$

In this paper we give some conditions for univalence in U by using $(D^n f)/z$. For the proofs of our results we need the following well-known lemma.

Lemma 1 (Jack [1]). Let ω be nonconstant and analytic in U with $\omega(0)=0$. If $|\omega|$ attains its maximum value at a point z_0 on the circle |z|=r<1, we have $z_0\omega'(z_0)=k\omega(z_0), k\geq 1$.

2. Some conditions for univalence

Theorem 1. Let $f \in A$ and

AMS Subject Classification 30C45

(2)
$$\operatorname{Re}\left\{\frac{D^n f(z)}{z}\right\} > \alpha_n, \quad z \in U, n \in N,$$

where α_n is defined by

(3)
$$\alpha_n = \frac{1}{2n} [(2n+1)\alpha_{n-1} - 1], \quad n \ge 2, \text{ and } \alpha_1 = 0,$$

then f is univalent in U and $\operatorname{Re}\{f'(z)\} > 0 \ (z \in U)$.

Proof. Let us show that the following implication

(4)
$$\operatorname{Re}\left\{\frac{D^{n}f(z)}{z}\right\} > \alpha_{n} \Rightarrow \operatorname{Re}\left\{\frac{D^{n-1}f(z)}{z}\right\} > \alpha_{n-1} \ (n \ge 2),$$

is true, where α_n is defined by (3). In that sense, let (2) be satisfied and let's put

(5)
$$\frac{D^{n-1}f(z)}{z} = \frac{1 - (2\alpha_{n-1} - 1)\omega(z)}{1 - \omega(z)}.$$

Then ω is analytic in U and $\omega(0)=0$. From (5) by multiplying with z, differentiation, by using the identity (1) and some simple transformations we get

(6)
$$\frac{D^n f(z)}{z} = \frac{1 - (2\alpha_{n-1} - 1)\omega(z)}{1 - \omega(z)} + \frac{2(1 - \alpha_{n-1})}{n} \cdot \frac{z\omega'(z)}{(1 - \omega(z))^2}$$

We want to show that $|\omega(z)| < 1$, $z \in U$. If not $|\omega(z)| < 1$, then there exists a point z_0 , $|z_0| < 1$, such that $|\omega(z_0)| = 1$ and $z_0 \omega'(z_0) = k \omega(z_0)$, $k \ge 1$ (where we use Lemma 1). If we put $\omega(z_0) = e^{i\theta}$, then $z_0 \omega'(z_0) = k e^{i\theta}$ and from (6) for such z_0 we obtain

$$\operatorname{Re}\left\{\frac{D^{n}f(z_{0})}{z_{0}}\right\} = \operatorname{Re}\left\{\frac{1-(2\alpha_{n-1}-1)e^{i\theta}}{1-e^{i\theta}} + \frac{2(1-\alpha_{n-1})}{n}\frac{ke^{i\theta}}{(1-e^{i\theta})^{2}}\right\}$$
$$= \alpha_{n-1} + \frac{2(1-\alpha_{n-1})k}{n}\left(-\frac{1}{4\sin^{2}(\theta/2)}\right)$$
$$\leq \alpha_{n-1} - \frac{1-\alpha_{n-1}}{2n} = \alpha_{n},$$

which is the contradiction to (2). From the implication (4) we conclude that $\operatorname{Re} \{D^n f(z)/z\} > \alpha_n$ implies $\operatorname{Re} \{D^1 f(z)/z\} = \operatorname{Re} \{f'(z)\} > 0, z \in U$, i.e. f is univalent (close-to-convex) in U.

For example, for n=2 from Theorem 1 we have

Corolary 1. If $f \in A$ and

$$\operatorname{Re}\left\{f'(z) + \frac{1}{2}zf''(z)\right\} > -\frac{1}{4}, z \in U,$$

then f is univalent in U with $\operatorname{Re}\{f'(z)\} > 0, z \in U$.

Theorem 2. Let $f \in A$ and let

(7)
$$\left|\frac{D^n f(z)}{z} - 1\right| < \frac{n+1}{2}, z \in U, n \in N,$$

then f is univalent in U and $|f'(z)-1| < 1, z \in U$.

Proof. Since (7) is equivalent to

$$\frac{D^n f(z)}{z} < 1 + \frac{n+1}{2}z,$$

let show that (8) implies that $D^{n-1}f(z)/z \ll 1 + (n/2)z$. If we put

(9)
$$\frac{D^{n-1}f(z)}{z} = 1 + \frac{n}{2}\omega(z),$$

then $\omega(0)=0$ and $\omega(z)$ is analytic in U. By using the same method as in Theorem 1, from (9) we obtain

(10)
$$\frac{D^n f(z)}{z} = 1 + \frac{n}{2} \omega(z) + \frac{1}{2} z \omega'(z).$$

We want to show that $|\omega(z)| < 1$, $z \in U$. If not $|\omega(z)| < 1$, then there exists (by Lemma 1) a point z_0 , $|z_0| < 1$, such that $|\omega(z_0)| = 1$ and $z_0 \omega'(z_0) = k \omega(z_0)$, $k \ge 1$. If we put $\omega(z_0) = e^{i\theta}$, then $z_0 \omega'(z_0) = k e^{i\theta}$ and from (10) for such z_0 we have

$$\left|\frac{D^{n}f(z_{0})}{z_{0}}-1\right|=\left|\frac{n+k}{2}e^{i\theta}\right|=\frac{n+k}{2}\geq\frac{n+1}{2},$$

which is the contradiction to (7). In that sense we conclude that (7) implies

$$\left|\frac{D^1f(z)}{z}-1\right|<1, z\in U,$$

which is the same as |f'(z)-1| < 1, $z \in U$, and the proof is complete.

For n=2 from Theorem 2 we get

Corollary 2. If $f \in A$ and if

$$\left|f'(z) + \frac{1}{2}zf''(z) - 1\right| < \frac{3}{2}, z \in U,$$

then f is univalent and $|f'(z)-1| < 1, z \in U$.

Remark 1. By induction we easily conclude that the disc |w-1| < (n+1)/2 doesn't belongs to the half-plane defined by $\operatorname{Re}\{w\} > \alpha_n$, where α_n is defined by (3). It means that the result of Theorem 2 is not a consequence of Theorem 1.

Theorem 3. Let $f \in A$ and

(11)
$$\left|\arg\frac{D^nf(z)}{z}\right| < \frac{\pi}{2}\alpha_n, \ n \in \mathbb{N}, \ z \in U,$$

where

(12)
$$\begin{cases} \alpha_n \leq \alpha_{n-1} + \frac{2}{\pi} \arctan \frac{\alpha_{n-1}}{n}, n \geq 2, \alpha_1 = 1\\ \alpha_n + \alpha_{n-1} \leq 3 \end{cases}$$

Then f is univalent in U and $|\arg f'(z)| < \pi/2, z \in U$.

Proof. First, let show that the following implication

(13)
$$\left| \arg \frac{D^{n+1}f(z)}{z} \right| < \alpha_{n+1} \Rightarrow \left| \arg \frac{D^n f(z)}{z} \right| < \alpha_n$$

is true, where α_n is defined by (12). Suppose that

(14)
$$\left|\arg\frac{D^{n+1}f(z)}{z}\right| < \alpha_{n+1}$$

and put

(15)
$$\frac{D^n f(z)}{z} = \left(\frac{1+\omega(z)}{1-\omega(z)}\right)^{\alpha_n}.$$

Then $\omega(z)$ is analytic in U and $\omega(0)=0$ (we take the principal values). From (15), as in the proofs of previous theorems, we can get

(16)
$$\frac{D^{n+1}f(z)}{z} = \left(\frac{1+\omega(z)}{1-\omega(z)}\right)^{\alpha n} \left[1 + \frac{\alpha_n}{n+1} \frac{2z\omega'(z)}{1-\omega^2(z)}\right]$$

We want to show that $|\omega(z)| < 1$, $z \in U$. If not then by Jack's lemma there exists a z_0 , $|z_0| < 1$, such that $|\omega(z_0)| = 1$, i.e. $\omega(z_0) = e^{i\theta}$, and $z_0 \omega'(z_0) = k \omega(z_0) = k e^{i\theta}$, $k \ge 1$. From (16) for such z_0 we have

(17)

$$\frac{D^{n+1}f(z_0)}{z_0} = \left(\frac{1+e^{i\theta}}{1-e^{i\theta}}\right)^{\alpha_n} \left[1 + \frac{\alpha_n}{n+1} \frac{2ke^{i\theta}}{1-e^{2i\theta}}\right]$$

$$= \left(i \operatorname{ctg} \frac{\theta}{2}\right)^{\alpha_n} \left[1 + \frac{\alpha_n k}{n+1} \frac{1 + \operatorname{ctg}^2(\theta/2)}{2\operatorname{ctg}(\theta/2)}i\right]$$

$$= (it)^{\alpha_n} \left[1 + \frac{\alpha_n k}{2(n+1)} \left(t + \frac{1}{t}\right)i\right],$$

5

where we put $ctg(\theta/2)=t$. If take t>0, then from (17) we have

$$\arg \frac{D^{n+1}f(z_0)}{z_0} = \frac{\pi}{2}\alpha_n + \arctan\left[\frac{\alpha_n k}{2(n+1)}\left(t+\frac{1}{t}\right)\right],$$

and from there

$$\frac{\pi}{2}\alpha_{n+1} \leq \frac{\pi}{2}\alpha_n + \arctan\frac{\alpha_n}{n+1} \leq \arg\frac{D^{n+1}f(z_0)}{z_0} \leq \frac{\pi}{2}\alpha_n + \frac{\pi}{2}.$$

If we consider the case t < 0, then in the both cases we get

$$\frac{\pi}{2}\alpha_{n+1} \leq \left|\arg\frac{D^{n+1}f(z_0)}{z_0}\right| \leq \frac{\pi}{2}\alpha_n + \frac{\pi}{2} \leq 2\pi - \frac{\pi}{2}\alpha_{n+1}.$$

which implies that $(D^{n+1}f(z_0))/z_0$ lies outside the angle $|\alpha| < (\pi/2)\alpha_{n+1}$. This is the contradiction to (14). Now by induction from (13) we conclude that (11) implies

$$\left|\arg\frac{D^{1}f(z)}{z}\right| = \left|\arg f'(z)\right| < \frac{\pi}{2}, z \in U,$$

i.e. f is univalent.

For n=2, from Theorem 3 we derive

Corollary 3. If $f \in A$ and if

$$\left| \arg \left(f'(z) + \frac{1}{2} z f''(z) \right) \right| < \frac{\pi}{2} \alpha_2, z \in U,$$

where $\alpha_2 = 1 + (2/\pi) \arctan(1/2) = 1.2951 \ge$, then f is univalent in U and $|\arg f'(z)| < \pi/2, z \in U$.

Remark 2. From the result of the previous corollary we conclude that it doesn't follow from Theorem 1 or Theorem 2.

Acknowledgement. This work of the first author was supported by the Science Fund of Serbia under Grant No. 0401A through Matematicki institut.

References

- [1] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2) 3 (1971), 469-474.
- [2] S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109-115.

Department of Mathematics	Department of Mathematics
Faculty of Technology and Metallurgy	University of Gunma
4 Karnegieva Street	Aramaki, Maebaschi
11000 Belgrade, Yugoslavia	Gunma 371, Japan
e-n	nail: nunokawa@aramaki.la.gunma-u.ac.jp