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Abstract. Various mapping results are given involving perturbations of ac-
cretive operators in a Banach space $X$ . The inclusions studied are mainly of
the form

$Tx+Cx\ni p$ , $(*)$

where $T:X\supset D(T)\rightarrow 2^{X}$ is m-accretive and $C:\overline{D(T)}\rightarrow X$ is compact. It is
shown that recent results of Yang and Morales can be improved without
using the concept of a generalized topological degree. A Leray-Schauder
boundary condition is also considered for the sum $T+C$ , and various results of
of Morales involving $(*)$ with $C=0$ are extended.

1. Introduction-Preliminaries

In what follows, the symbol $X$ stands for a real Banach space with norm
$\Vert\cdot\Vert$ and (normali $z$ed) duality mapping $J$ . An operator $T:X\supset D(T)\rightarrow 2^{X}$ is
called “accretive” if for every $x,$ $y\in D(T)$ there exists $j\in J(x-y)$ such that

$\langle u-v, \int\rangle\geqq 0$

for all $u\in Tx,$ $v\in Ty$ . An accretive operator $T$ is “m-accretive”, if $R(T+\lambda I)$

$=X$ for all $\lambda\in(0, \infty)$ . We denote by $B_{\tau}(O)$ the open ball of $X$ with center at
zero and radius $r>0$ .

For an m-accretive operator $T$ , the “resolvents” $J_{\lambda}$ : $X\rightarrow D(T)$ of $T$ are
defined by $J_{\lambda}=(I+\lambda T)^{-1}$ for all $\lambda\in(0, \infty)$ . The “Yosida approximants” $T_{\lambda}$ :
$X\rightarrow X$ of $T$ are defined by $T_{\lambda}=(1/\lambda)(I-J_{\lambda})$ .

Some of the main properties of $J_{\lambda}$ and $T_{\lambda}$ are given below:
1. $\Vert J_{\lambda}x-J_{\lambda}y\Vert\leqq\Vert x-y\Vert$ for all $x,$ $y\in X$ .
2. $\Vert J_{\lambda}-x\Vert=\lambda\Vert T_{\lambda}x\Vert\leqq\lambda$ $inf\{\Vert y\Vert ; y\in Tx\}$ for all $x\in D(T)$ .
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3. $T_{\lambda}$ is m-accretive on $X$ and $\Vert T_{\lambda}x-T_{\lambda}y\Vert\leqq(2/\lambda)\Vert x-y\Vert$ for all $\lambda>0,$ $x$ ,
$y\in X$ .

4. $T_{\lambda}x\in TJ_{\lambda}x$ for all $x\in X$ .
In what follows, ”continuous” means ”strongly continuous” and the symbol

$\rightarrow$ $(\rightarrow)$ means strong (weak) convergence. The symbol $R(R_{+})$ stands for
the set $(-\infty, \infty)([0, \infty))$ and the symbols $\partial D$ , intD, $\overline{D}$ denote the strong
boundary, interior and closure of the set $D$ , respectively. An accretive operator
$T$ is called “strongly accretive” if there exists a constant $\alpha>0$ such that: for
each $x,$ $y\in D(T)$ there exists $j\in J(x-y)$ such that

$\langle u-v, j\rangle\geqq\alpha\Vert x-y\Vert^{2}$

for all $u\in Tx,$ $v\in Ty$ . An operator $T:X\supset D(T)\rightarrow X$ is “bounded” if it maps
boundep subsets of $D(T)$ onto bounded sets. It is “compact” if it is continuous
and maps bounded subsets of $D(T)$ onto relatively compact sets. It is called
”demicontinuous” (completely continuous”) if it is strong-weak (weak-strong)
continuous on $D(T)$ .

For facts involving accretive operators, and other related concepts, the reader
is referred to Barbu [3], Browder [4], Cioranescu [6] and Lakshmikantham and
Leela [20]. We cite the books of Lloyd [21], Petryshyn [25], Rothe [27] and
the paper of Nagumo [24] as references to the degree theories discussed herein.
For a survey article on recent mapping theorems involving compactness and
accretiveness, we refer to [15].

In this paper we first show (Theorem 1) how Theorem 1 of Yang [29] and
Corollary 2 of Morales [23] can be improved. Yang was unaware of Morales’
result, but gave an interesting extension of it in [29] by using the concept of
generalized degree introduced by Chen in [5]. In our approach, we use two
homotopy equations, $H_{i}(t, x)=0,$ $i=1,2$ , whose solvability, for $t=0$ or $t=1$ , leads
eventually to the solvability of our target equation

$Tx+Cx\ni p$ , $(*)$

where $p$ is a fixed point in $X$ . We make use of specific homotopies related to
those used by Yang in [29] and [30].

Applications of results involving compact perturbations and compact resol-
vents of accretive operators can be found in the papers [11], [17] and [18].
Various results involving sums of three operators can be found in [8].

2. Main Results

For a set $A\subset X$ we set $|A|=\inf\{\Vert x\Vert : x\in A\}$ . Morales gave in [23] the
following result.
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Theorem A. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive and $C:\overline{D(T}$) $\rightarrow X$ compact.
Assume that there exists a positive constant $r$ and $z\in D(T)$ such that

$\Vert Cz\Vert<r\leqq\lim_{||x||\rightarrow,x\in D}\inf_{\infty,(T)}|Tx+Cx|$
.

Assume, further, that there exists a constant $r_{1}>0$ such that for every $x\in D(T)$

with $\Vert x\Vert\geqq\gamma_{1}$ there exists $j\in J(x)$ such that

$\langle u+Cx-Cz, j\rangle\geqq 0$ , for every $u\in Tx$ .

Then $B_{\mu}(0)\subset\overline{R(T+C})$ , where $\mu=(r-\Vert Cz\Vert)/2$ .

Yang gave in [29] the following theorem.

Theorem B. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive, with $O\in D(T)$ and $O\in T(O)$ ,
and $C:X\rightarrow X$ compact. Assume that there exists a positive constant $r$ such that

$\Vert C(0)\Vert<r\leqq\lim_{||x\Vert\rightarrow,x\in D}\inf_{\infty,(T)}|Tx+Cx|$
.

Assume, further, that there exists a constant $r_{1}>0$ such that for every $x\in D(T)$

with $\Vert x\Vert\geqq r_{1}$ , there exist $j\in J(x)$ such that

$\langle u+Cx-C(O), j\rangle\geqq 0$ , for every $u\in Tx$ .
Then $\overline{B_{r}(0}$) $\subset\overline{R(T+C}$ ).

One of our intentions here is to give a theorem, Theorem 1 below, that
unifies and improves the above two results. We would like to point out that
our method does not involve the complicated homotopy argument in [23, proof
of Theorem 6] and does not make use of Chen’s topological degree as in [29].

The reader should note that the assumption that $O\in T(O)$ cannot be omitted in
the proof of Yang [23], because of the generalized degree-theoretic approach.
Also, in Young’s result the operator $C$ is defined on all of $X$ . In addition,

Yang’s result is considerably stronger than Morales’ result in many cases. In
fact, if $C(O)=0$ in the two results and the assumptions of Yang hold also in

Morales’ result, Yang’s result says that the entire closed ball $\overline{B_{r}(0)}$ lies in $\overline{R(T+C)}$ ,

while Morales’ result says that only the closed ball with half that radius lies
in the same set.

Theorem 1. Let $T:X_{-}\supset D(T)\rightarrow 2^{X}$ be m-accretive and $C:\overline{D(T}$) $\rightarrow X$ compact.
Let $z_{0}\in X$ and the positive constant $r$ be snch $ tha\ell$

$\Vert z_{0}\Vert<r\leqq\lim_{||x||\rightarrow,x\in D}\inf_{\infty,(T)}|Tx+Cx|$
.

Assume, further, that there exists a constant $r_{1}>0$ such that for every $x\in D(T)$
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wzth $\Vert x\Vert\geqq\gamma_{1}$ there exists $j\in J(x)$ such that

$\langle u+Cx-z_{0}, j\rangle\geqq 0$ , for every $u\in Tx$ .
Then $\overline{B_{r}(0}$) $\subset\overline{R(T+C)}$ .

Proof. Fix $x_{0}\in D(T)$ and consider the mappings $T;x\rightarrow T(x+x_{0})-v_{0},\tilde{C}$ :
$x\rightarrow C(x+x_{0})+v_{0},$ $x\in D(7)\equiv D(T)-x_{0}$ , where $v_{0}$ is a fixed vector in $Tx_{0}$ . It is
easy to see that $0\in D(7),$ $0\in 7(0)$ and

$\Vert z_{0}\Vert<r\leqq\lim_{||x||\rightarrow,x\in D}\inf_{\infty,\langle\tilde{T})}|\mathcal{T}_{X}+\tilde{C}x|$
.

Also, for every $x\in D(ff)$ with $\Vert x+x_{0}\Vert\geqq\gamma_{1}$ there exists $j\in J(x+x_{0})$ such that
$\langle\tilde{u}+\tilde{C}x-z_{0}, j\rangle\geqq 0$ , for every $\tilde{u}\in Tx$ . (1)

We are planning to solve the approximate equation

$T_{x+\tilde{C}x+(1/n)(x+x_{0})}\ni p$ , $(*)_{n}$

where $p\in B_{r}(0)$ is a fixed vector. To this end, we consider the homotopy
equations

$H_{1}(t, x)\equiv x-(t7+(1/n)I)^{-1}(-t(\tilde{C}x-z_{0}))=0$ , (2)
and

$H_{2}(t, x)\equiv x-(ff+(1/n)I)^{-1}(-\tilde{C}x+tz_{0}+(1-t)(p-(1/n)x_{0}))=0$ , (3)

for a fixed positive integer $n$ and $t\in[0,1]$ . We choose a number $\epsilon>0$ and a
positive integer $n_{0}$ so that

$r-2\epsilon>\max\{\Vert p\Vert+(1/n_{0})\Vert x_{0}\Vert, \Vert z_{0}\Vert\}$ . (4)

We also note that there exists $ Q=Q(\epsilon)>r_{1}+2\Vert x_{0}\Vert$ such that: for every $ x\in$

$D(\oint)$ with $\Vert x\Vert=Q$ ,
$|\mathcal{T}_{x+\tilde{C}x|\geqq r-\epsilon}$ (5)

and there exists $j\in J(x+x_{0})$ such that (1) is satisfied. Since (4) holds for any
$n>n_{0}$ instead of $n_{0}$ , we may choose $n_{0}$ further so that $ Q/n_{0}<\epsilon$ . We consider
only values of $n$ such that $n\geqq n_{0}$ . Since we are only interested in the range
of the operator $C$ on the ball $\overline{B_{Q}(0}$) and the set $\overline{B_{Q}(0}$) $\cap\overline{D(f}$) is closed and
bounded, we may extend the operator $\tilde{C}$ to the whole space $X$ by Lemma 31
in Rothe’s book [27]. We use the same symbol, $\tilde{C}$ , for this extension. Before
we proceed with the homotopy arguments, we should note that the mapping
$H_{1}(t, x)$ is actually a homotopy of compact transformations. In fact, as in
Theorem 4 of the author in [14], we have

$\Vert H_{1}(t, x)-H_{1}(t_{0}, x)\Vert\leqq\frac{2|t-t_{0}|}{t_{0}}\Vert nt(\tilde{C}x-z_{0})\Vert+n|t-t_{0}|\Vert\tilde{C}x-z_{0}\Vert$ ,
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for $t_{0},$ $t\in(O, 1$ ], and
$\Vert H_{1}(t, x)-x\Vert\leqq nt\Vert\tilde{C}x-z_{0}\Vert$ ,

for all $t\in[0,1]$ . These two inequalities show the continuity of the $H_{1}(t, x)$

w.r.t. $t$ uniformly for $x$ lying in any bounded set.
We want to show that

$d(H_{1}(1, ),$ $B_{Q}(0),$ $0$) $=1$ (6)

and

$d(H_{2}(0, ),$ $B_{Q}(0),$ $0$) $=d(H_{1}(1, ),$ $B_{Q}(0),$ $0$) $=1$ , (7)

where the degree function $d=d(\cdot, \cdot, )$ denotes the Leray-Schauder degree,
provided that $0$ is not in the image of $\partial B_{Q}(0)$ by the mappings $H_{1}(1, ),$ $H_{2}(0, )$ .
To show (6), let us assume that the homotopy equation (2) has a solution $ x_{t}\in$

$\partial B_{Q}(0)$ . We have
$t(\tilde{y}_{t}+\tilde{C}x_{t}-z_{0})+(1/n)x_{t}=0$ , (8)

for some $\tilde{y}_{t}\in \mathcal{T}x_{t}$ . Obviously, $t=0$ implies $x_{t}=0$ , i.e., a contradiction. Thus
$t\in(O, 1]$ and, after dividing (8) by $t$ , we obtain, for an appropriate $j_{t}\in J(x_{t}+x_{0})$ ,

$ 0=\langle\vee\tilde{v}_{t}+\tilde{C}x_{t}-z_{0}, j_{t}\rangle+\langle(1/(nt))x_{t}, j_{t}\rangle$

$\geqq[1/(nt)]\langle x_{t}+x_{0}, j_{t}\rangle-[1/(nt)]\langle x_{0}, j_{t}\rangle$

$\geqq[1/(nt)]\Vert x_{t}+x_{0}\Vert^{2}-[1/(nt)]\Vert x_{0}\Vert\Vert x_{t}+x_{0}\Vert$

$\geqq[1/(nt)](\Vert x_{t}\Vert-2\Vert x_{0}\Vert)\Vert x_{t}+x_{0}\Vert$

$\geqq[1/(nt)](\Vert x_{t}\Vert-2\Vert x_{0}\Vert)(\Vert x_{t}-2\Vert x_{0}\Vert)$

$=[1/(nt)](Q-2\Vert x_{0}\Vert)^{2}$

$>0$ ,

i.e., a contradicition. Consequently, the Leray-Schauder degree $d(H_{1}(t, )$ ,

$B_{Q}(0),$ $0$) is well-defined for all $t\in[0,1]$ and equals 1 because we have $0\in B_{Q}(0)$

and $d(H_{1}(0, ),$ $B_{Q}(0),$ $0$) $=d(I, B_{Q}(0),$ $0$) $=1$ .
To show (7), let (3) have a solution $x_{t}\in\partial B_{Q}(0)$ . Then we have

$\tilde{y}_{t}+\tilde{C}x_{t}-tz_{0}+(1-t)(-p+(1/n)x_{0})+(1/n)x_{t}=0$ ,

where $\tilde{y}_{t}\in ffx_{t}$ . Since $\Vert x_{t}\Vert=Q$ , we also have

$ 0=\Vert\tilde{y}_{t}+\tilde{C}x_{t}+(1/n)x_{t}-tz_{0}+(1-t)(-p+(1/n)x_{0})\Vert$

$\geqq|\mathcal{T}_{x_{t}+\tilde{C}x_{t}|-(1/n)\Vert x_{t}\Vert-(t\Vert z_{0}\Vert+(1-t)\Vert-p+(1/n)x_{0}\Vert)}$

$\geqq|T_{x_{t}+\tilde{C}x_{t}|-(1/n)Q-\max(\Vert p\Vert+(1/n)\Vert x_{0}\Vert},$ $\Vert z_{0}\Vert$ }
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$\geqq r-2\epsilon-\max\{\Vert p\Vert+(1/n_{0})\Vert x_{0}\Vert, \Vert z_{0}\Vert\}$

$>0$ .
This contradiction says that $d(H_{2}(t, ),$ $B_{Q}(0),$ $0$) is well-defined for all $t\in[0,1]$

and equals the degrees $d(H_{1}(1, ),$ $B_{Q}(0),$ $0$) and $d(H_{2}(0, ),$ $B_{Q}(0),$ $0$). Since we
have already established (6), we conclude that $d(H_{2}(0, ),$ $B_{Q}(0),$ $0$) $=1$ , which
implies that

$x-(7+(1/n)I)^{-1}(-\tilde{C}x+p-(1/n)x_{0})=0$ ,

for some $x\in B_{Q}(0)$ . Thus we have the solvability of $(*)_{n}$ for each $n\geqq n_{0}$ , i.e.,
the solvability of the inclusion

$Tx+Cx+(1/n)x\ni p$ (9)

with solution $x_{n}\in B_{Q}(x_{0}),$ $n\geqq n_{0}$ . Since $\Vert x_{n}-x_{0}\Vert<Q$ , it is easy to see that
Inclusion (9) implies $p\in\overline{(T+C)(B_{Q}(x_{0})\cap D(T}$)). The proof is complete. $\blacksquare$

Evidently, Theorems A and $B$ are special cases of Theorem 1. We can
actually generalize Theorems $A,$ $B$ and 1 by using a localized version of
Theorem 1 as follows.

Theorem 2. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive and $C:\overline{D(T}$) $\rightarrow X$ compact.
Assume that there exist $x_{0}\in D(T)$ and a bounded open set $G$ containing $x_{0}$ such that:

$|Tx+Cx|\geqq r>\Vert z_{0}\Vert$ , $x\in\partial G\cap D(T)$ ,

and for each $x\in\partial G\cap D(T)$ there exists $j\in Jx$ such that

$\langle u+Cx-z_{0}, j\rangle\geqq 0$ , for every $u\in Tx$ .
Then $\overline{B_{r}(0}$) $\subset\overline{(T+C)(G\cap D(T))}$ .

Proof. We consider the operators $\tau,\tilde{C}$ and the domain $D(F)$ as in the
proof of Theorem 1. We also set $\tilde{G}=G-x_{0}$ . In order to imitate the proof of
Theorem 1, we let $Q=\sup\{\Vert x\Vert : x\in\partial\tilde{G}\}$ and fix $\epsilon,$ $n_{0}$ such that $ Q/n_{0}<\epsilon$ and

$r-2\epsilon>\max\{\Vert p\Vert+(1/n_{0})\Vert x_{0}\Vert, \Vert z_{0}\Vert\}$ .
Then

$|T_{X+\tilde{C}x|\geqq r>r-\epsilon}$ , $x\in\partial\tilde{G}\cap D(ff)$ ,

$with\partial\tilde{G}=\partial(G-x_{0})=\partial G-x_{0}.TheproofnowB_{Q}(0)rep1acedby\tilde{G}.Itisthereforeomitted.$

$f$ollows- as in Theorem 1 with

Naturally, if $O\in D(T)$ in the proof of Theorem 1, we may take $x_{0}=0$ and
$v_{0}\in T(0)$ . If $O\in T(O)$ , then we may also choose $v_{0}=0$ . A similar remark holds
for Theorem 2.
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Proposition 1. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive and $C:X\supset\overline{G}\rightarrow X$ com-
pact, where $G$ is open and bounded. Assume that there exists $x_{0}\in G\cap D(T)$ such
that

$Tx+Cx\not\equiv\mu(x-x_{0})$ , for every $(\mu, x)\in(-\infty, O)\times(\partial G\cap D(T))$ . (10)

Then $0\in(\overline{T+C)(G\cap D(T)})$ . Moreover, $0\in(T+C)(\overline{G}\cap D(T))$ under one of the
following condztions:

(i) $X$ is uniformly convex, $\overline{G}$ is convex and $C$ is completely continuous;
(ii) $T$ is strongly accretive on $G\cap D(T)$ ;
(iii) the compactness assumption on $C$ is replaced by: $C$ is bounded, continuous

and the resolvent $(T+I)^{-1}$ is compat.

Proof. Again, we may assume that $x_{0}=0\in T(0)$ . If this is not true, then
we consider instead the operators $Tx\equiv T(x+x_{0})-v_{0},\tilde{C}x\equiv C(x+x_{0})+v_{0}$ on $D(T)$

$=D(T)-x_{0}$ , and replace $G$ by $\tilde{G}=G-x_{0}$ . In this case, Relation (10) should be
replaced by

$Tx+\tilde{C}x\not\equiv\mu x$ , for $(\mu, x)\in(-\infty, 0)\times(\partial\tilde{G}\cap D(T))$ .
Now, we consider the homotopy equation

$H(t, x)\equiv x-(tT+(1/n)I)^{-1}(-tCx)=0$ , for $(t, x)\in[0,1]\times\overline{G}$ , (11)

$n=1,2,$ $\cdots$ . As we mentioned in the proof of Theorem 1, the author has shown
in [14, Theorem 4] that the mapping $H(t, x)$ in (11) is a homotopy of compact

transformations. Because of this, (11) has a zero $x\in G$ for $t=1$ if it does not
possess any solutions $x_{t}\in\partial G$ for any $t\in[0,1]$ . We know that $H(O, x)=0$ has
no solution $x\in\partial G$ . Thus, we may assume that $t\in(O, 1$ ]. Let $x_{t}\in\partial G$ solve (11)

for some $t\in(O, 1$ ]. Then

$t(Tx_{t}+Cx_{t})+(1/n)x_{t}\ni 0$ ,

or
$Tx_{t}+Cx_{t}+[1/(nt)]x_{t}\ni 0$ ,

$i.e.$ , a contradiction to Relation (10) (with $x_{0}=0$). It follows that

$Tx+Cx+(1/n)x\ni 0$ (12)

is solvable for all sufficiently large $n$ . We let $x_{n}$ denote a solution of (12).

Since $\{x_{n}\}\subset G$ , it is bounded. Thus, $0\in(\overline{T+C)(G\cap D(T)})$ .
Let us assume (i). Then $x_{n}\rightarrow(some)x_{0}\in\overline{G}$ and $Cx_{n}\rightarrow Cx_{0}$ . Now, we can

apply a ”multi-valued” version of Lemma 1 in [13] (cf. also [8, Lemma 1]) in
order to conclude that $x_{0}\in D(T)$ and $Tx_{0}+Cx_{0}\ni 0$ .

In the case of Assumption (ii), we have that the sequence $\{x_{n}\}$ is Cauchy.

This follows easily from the strong accetiveness of $T$ . If we let $x_{0}\in\overline{G}$ denote
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the strong limit of $\{x_{n}\}$ , we have $Cx_{n}\rightarrow Cx_{0}$ . Since $T$ is closed, $x_{0}\in D(T)$ and
$Tx_{0}\ni-Cx_{0}$ .

In Case (iii) is satisfied, the proof of the theorem goes through up to the
point of the existence of $\{x_{n}\}$ because (10) defines still a homotopy of compact
transformations. Now, we may add $dx$ to both sides of (12) and then invert
$T+dI$ to obtain

$x_{n}=(T+dI)^{-1}(-(C+(1/n)I)x_{n}+dx_{n})$ ,

which shows that $\{x_{n}\}$ lies inside a compact set. Thus, there exists a subse-
quence of $\{x_{n}\}$ , denoted again by $\{x_{n}\}$ , such that $x_{n}\rightarrow x_{0}\in\overline{G}$ . We have $ Cx_{n}\rightarrow$

$Cx_{0}$ . Since $T$ is closed, $x_{0}\in D(T)$ and $Tx_{0}\ni-Cx_{0}$ . $\blacksquare$

Obviously, a condition like one of $(i)-(iii)$ of Proposition 1 ensures the fact
that $B_{r}(0)\subset R(T+C)$ in Theorems 1 and 2 as well. Proposition 1 is a signifi-
cant improvement of Yang’s Theorem 2 in [29]. Yang assumed that $T:X\rightarrow X$

is a (single-valued) bounded, demicontinuous and strongly accretive operator on
all of $X$ with $x*uniformly$ convex in order to show that $T+C$ has a zero in
$\overline{G}$ . It is well.known that such an operator $T$ is m-accretive.

For other applications of Condition (10), the reader is referred to the book
of Petryshyn [25] (especially pages 193-195) and several of the references
therein. In particular, let us examine the Leray-Schauder fixed point theorem
on page 191 of [25]. It says that, for an open, bounded set $G\subset X$ containing
the point $x_{0}$ and $C:\overline{G}\rightarrow X$ compact, the condition

$Cx-x_{0}\neq\eta(x-x_{0})$ , for all $x\in\partial G$ , $\eta>1$ , $(LS)$

implies that $C$ has a fixed point in $\overline{G}$ . This condition (LS) is exactly Condition
(10) with $T=I$ and $\mu=(1-\eta)$ . In fact, (LS) is equivalent to $x-Cx+x_{0}\neq x-$

$\eta(x-x_{0})$ , or $(I-C)x\neq(1-\eta)(x-x_{0})$ , i.e., Condition (10).
An application of the above theorem is Corollary 1 below, which extends

Theorem 2 of He [9] to m-accretive operators in general Banach spaces. He’s
result (actually the main part of it) is given in Theorem $C$ below. He assumes
in [9] that $T$ and $C$ are only defined on the domain $G$ below, but he needs to
apply Corollary 4 there. Therefore, $T,$ $C$ should be defined on $\overline{G}$ .

Theorem C. Let $x*$ be uniformly convex and let let $G\subset X$ be open with
$O\in G$ . Let $T:X\supset\overline{G}\rightarrow X$ be continuous, accretive and $C:\overline{G}\rightarrow X$ compact. Assume
that there exist positive constants $b,$ $r$ such that for every $x\in G$ with $\Vert x\Vert\geqq b$ we
have

$\Vert Tx+Cx\Vert\geqq\Vert Tx+Cx-x\Vert\geqq r$ . (13)

Then $\overline{B_{r}(0}$) $\subset(\overline{T+C)(B_{b}(0)\cap G).}$
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Corollary 1. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive, with $O\in D(T)$ and $C$ :
$\overline{G}\rightarrow X$ compact, where $G\subset X$ is open, bounded and such that: $O\in G$ and there
exists $r>0$ such that

$\Vert y+Cx\Vert\geqq\Vert y+Cx-x\Vert\geqq r$ , for every $x\in\partial G\cap D(T)$ , $y\in Tx$ . (14)

Then $\overline{B_{r}(0}$) $\subset(\overline{T+C)(G\cap D(T)).}$

Proof. We first note that we may assume that $O\in T(O)$ , otherwise we
replace the operators $T,$ $C$ by $\mathcal{T}_{x}\equiv T(x)-v_{0},\tilde{C}x\equiv Cx+v_{0}$ , respectively, where
$v_{0}\in T(0)$ is fixed. With this substitution, Inequality (14) becomes

$\Vert y+\tilde{C}x\Vert\geqq\Vert y+\tilde{C}x-x\Vert\geqq r$ , for all $x\in\partial G\cap D(T)$ , $y\in \mathcal{T}_{\chi}$ .
We consider the homotopy equations

$H_{1}(t, x)\equiv x-(tT+(1/n)I)^{-1}(-tCx)=0$ (15)

and
$H_{2}(t, x)\equiv x-(T+(1/n)I)^{-1}(-(Cx-(1-t)p))=0$ , (16)

where $p\in B_{r}(0)$ is fixed. We note first that $d(H_{1}(1, ),$ $G,$ $0$) $=1$ . To see this,

it suffices to show that (15) has no solutions $x_{t}\in\partial G$ . In fact, this is obviously
true for $t=0$ . We assume that $t\in(O, 1$ ] and leth $x_{t}$ be such a solution. Then

$ty_{t}+tCx_{t}+(1/n)x_{t}=0$ , (17)

or
$y_{t}+Cx_{t}=\mu_{0^{X_{t}}}$ , (18)

where $\mu_{0}=-1/(nt),$ $y_{t}\in Tx_{t}$ . To show that (18) is impossible, let $Sx_{t}\equiv y_{t}+Cx_{t}$

and $\nu_{0}=-\mu_{0}$ , and observe that (14) implies

$\Vert Sx_{t}\Vert^{2}\geqq\Vert Sx_{t}-x_{t}\Vert^{2}-\Vert x_{t}\Vert^{2}$ . (19)

Since $Sx_{t}=-\nu_{0}x_{t}$ , we use (19) to get

$\nu_{0}^{2}\Vert x_{t}\Vert^{2}\geqq\Vert-\nu_{0}x_{t}-x_{t}\Vert^{2}-\Vert x_{t}\Vert^{2}$

$=(\nu_{0}+1)^{2}\Vert x_{t}\Vert^{2}-\Vert x_{t}\Vert^{2}$ .
Since $\Vert x_{t}\Vert\neq 0$ , we obtain

$\nu_{0}^{2}\geqq(\nu_{0}+1)^{2}-1$ ,

which is a contradiction. Thus, $d(H_{1}(1, ),$ $G,$ $0$) $=1$ .
We now examine the homotopy equation (16). We fix $\epsilon\in(0, r),$ $p\in B_{r-}.(0)$

and assume that $n$ is sufficiently large so that $(1/n)\Vert x\Vert<\epsilon/2,$ $x\in\partial G$ , and con-
sider from this point on only such values of $n$ . We want to show that
$d(H_{2}(0, ),$ $G,$ $0$) $=1$ . To this end, we assume that (16) has a solution $x_{t}\in\partial G$ .
Then, for some $y_{t}\in Tx_{t}$ , we have
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$ 0=\Vert y_{t}+Cx_{t}+(1/n)x_{t}-(1-i)p\Vert$

$\geqq\Vert y_{t}+Cx_{t}\Vert-(1/n)\Vert x_{t}\Vert-\Vert p\Vert$

$>r-\epsilon/2-(r-\epsilon)=\epsilon/2>0$ ,

i.e., a contradiction. It follows that

$d(H_{2}(t, ),$ $G,$ $O$) $=const.=d(H_{2}(1, ),$ $G,$ $0$) $=d(H_{1}(1, ),$ $G,$ $0$) $=1$ .
This implies the solvability of the equation $H_{2}(0, u)=0$ , or the inclusion

$Tx+Cx+(1/n)x\ni p$ ,

for $p\in B_{r-\epsilon}(0)$ . It is easy to see, as before, that $p\in\overline{R(T+C)}$. $\blacksquare$

3. Discussion

It should not be surprising that the boundary condition (10) (with $C=0$) is
actually necessary and sufficient for the existence of a zero of the m-accretive
operator $T$ in pretty general Banach spaces. In order to further elaborate on
this item, we cite a relevant result of Reich and Torrej6n [26, Theorems 3, 4].
The space $X$ is called a (BCC) $((BUC))$ space if every nonempty, bounded, closed
and convex set $M\subset X$ (the closed unit ball of $X$) has the fixed point property
for nonexpansive self-mappings,

Theorem D. Let $T:X\supset D(T)\rightarrow 2^{X}$ be m-accretive. Then the following two
statements are true.

(I) Let $X$ be a $(BCC)$ space. Then $O\in R(T)$ if and only if there exists an
open, bounded set $G\subset X$ and a point $x_{0}\in G\cap\overline{D(T)}$ such that $\langle y, x-x_{0}\rangle_{+}\geqq 0$ for
every $x\in\partial G\cap D(T)$ and $y\in Tx$ .

(II) Let $X$ be a $(BUC)$ space. Then $O\in R(T)$ if and only if there exists
$r>0$ and $x_{0}\in\overline{D(T}$ ) such that $\langle y, x-x_{0}\rangle_{+}\geqq 0$ for every $x\in\partial B_{r}(x_{0})\cap D(T)$ and
every $y\in Tx$ .

The symbol $\langle y, x\rangle_{+}$ stands for max $j\in Jx\{\langle y, j\rangle\}$ . It is easy to see that “
$x_{0}$

$\in G\cap\overline{D(T)}$ can be replaced in Theorem $D$ by $x_{0}\in G\cap D(T)$ and $x_{0}\in\overline{D(T}$)

can be replaced in Theorem $D$ by ” $x_{0}\in G\cap D(T)$ and “
$x_{0}\in\overline{D(T}$) by ”

$ x_{0}\in$

$D(T)$ . This can be done by careful examination of the proofs of Theorems 3
and 4 in [26]. If we let $\mu=-(1/t)$ in Condition (10), with $C=0,$ $t>0$ , we have

$tTx+x\ni x_{0}$ , $(t, x)\in(O, \infty)\times(\partial G\cap D(T))$ .

Thus, the existence of such an open set $G$ and a point $x_{0}\in G\cap D(T)$ , in a
(BCC) space $X$ , is equivalent to the statement that there exists a point $ x_{0}\in$
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$G\cap D(T)$ such that $J_{t}x_{0}\not\in\partial G,$ $t\in(O, \infty)$ . This is nothing more than saying that
the continuous function $t\rightarrow J_{t}x_{0}$ is bounded because it never leaves the bounded
set $G$ . By Theorem 1 of Kirk and Sch\"oneberg [19], the boundedness of the
set $\{J_{t}x_{0} ; t>0\}$ is equivalent to the existence of a zero of $T$ . This result is
practically included in the proof of Theorem 3 of [26]. It is also included in
Theorem 1 of Morales [22], who was not aware of the Reich and Torrej6n
paper. The analogous statement for (BUC) spaces can be found in $Torrej6n’ s$

paper [28].

Inequality (19), with $x$ instead of $x_{t}$ , is called “Altman’s Condition” and is
used in Altman’s fixed point theorem in [1] and [2]. It would be interesting
to see Altman’s fixed point theorem extended to so that it includes the existence
of zeros of mappings $S=T+C$ , where $T:\overline{G}\rightarrow X$ is demicontinuous accretive,
with $x*$ uniformly convex, and $C:\overline{G}\rightarrow X$ is compact. The same problem is
open for continuous accretive operators $T$ in general Banach spaces. Here, $G$

is an open and bounded subset of $X$ .
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