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Abstract. We show that a subset of $\tau$-smooth measures on a product of
regular spaces is relatively compact with respect to the weak topology of
measures if and only if the sets of its marginals on the factor spaces are
relatively compact. This criterion has a lot of applications.

1. Introduction and notation

Since the notion of $\tau$-smoothness was introduced by LeCam [13], it has
been known that the object best suited for the study of weak convergence of
measures on regular spaces is the space of not Radon but $\tau$-smooth measures
(see Topse [18]). In this paper, we give a weak compactness criterion for $\tau-$

smooth measures on a product of regular spaces. In fact, we show that a
subset of $\tau$-smooth measures on a product of regular spaces is relatively com-
pact with respect to the weak topology of measures if and only if the sets of
its marginals on the factor spaces are relatively compact. This criterion has a
lot of applications. We first apply it to prove the celebrated Strassen’s theorem
for not Radon but $\tau$-smooth probability measures on a product of two regular
spaces. Since Strassen [16] first gave a necessary and sufficient condition for
the existence of probability measures with given marginals, this result has
been extended by many authors in more general settings under the assumption
that the measures are Radon (see section 3). This is indeed a convenient as-
sumption, but is not necessary to extend Strassen’s theorem for regular spaces.
We only assume the $\tau$-smoothness of measures. However it is not easy to see
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this, and indeed we need the above compactness criterion. Next we apply it
to establish the weak convergence of product measures and compound measures
on a product of completely regular spaces.

In the rest of this section, we prepare basic results and notation. Let $X$

be a topological space (which is always assumed to be Hausdorff) and $B(X)$ be
the $\sigma$-algebra of all Borel subsets of $X$ . By $\ovalbox{\tt\small REJECT}^{+}(X)$ we denote by the set of
all non-negative, totally finite measures defined on $B(X)$ . We endow $R^{+}(X)$

with the weak topology in the sense of Topse [18], that is, the weakest
topology for which all functionals $\mu\rightarrow\int_{X}f(x)\mu(dx)$ are upper semicontinuous
$(u.s.c.)$ whenever $f$ is a bounded u.s. $c$ . real-valued function. In this topology,
a net $\{\mu_{\alpha}\}$ converges to $\mu$ (we write $\mu_{\alpha}\rightarrow w\mu$ ) if and only if $\lim_{\alpha}\mu_{a}(X)=\mu(X)$

and $\lim\sup_{\alpha}\mu_{a}(F)\leqq\mu(F)$ for all closed subsets $F$ of X. (Equivalent conditions
are given in Topse’s Portmanteau theorem; see [18; Theorem 8.1].)

A family A of subsets of $X$ is said to be filtering downwards (resp. upwards)

to a subset $A_{0}$ of $X$ , and we write $A\downarrow A_{0}$ (resp. $\llcorner A\uparrow A_{0}$) if for any $A_{1},$ $A_{2}\in\cup l$

we can find $A_{3}\in A$ such that $A_{3}\subset A_{1}\cap A_{2}$ (resp. $A_{s}\supset A_{1}\cup A_{2}$ ) and $A_{0}=\bigcap_{A\in d}A$

(resp. $A_{0}=\bigcup_{A\in d}A$). In this paper, the following concept of regularity for Borel
measures is useful. We say that $\mu\in\ovalbox{\tt\small REJECT}^{+}(X)$ is $\tau$-smooth if $\mu(F_{0})=\inf_{F\in\Xi}\mu(F)$

holds for any family $\mathcal{F}$ of closed subsets of $X$ which is filtering downwards to
$F_{0}$ , and this is equivalent to the condition that for any family $\mathcal{G}$ of open subsets
of $X$ with $\mathcal{G}\uparrow G_{0}$ , we have $\mu(G_{0})=\sup_{G\in 9}\mu(G)$ . Let us denote by $R_{\tau}^{+}(X)$ the
set of all $\tau$-smooth measures in $\ovalbox{\tt\small REJECT}^{+}(X)$ . For further necessary definitions and
results, we refer the reader to Kelley [12], Schwartz [14], Topse [18] and
Vakhania et al. [20].

2. A criterion for weak compactness

Given two sets $X$ and $Y,$ $\pi_{X}$ and $\pi_{Y}$ denotes the projections $X\times Y\rightarrow X$ and
$X\times Y\rightarrow Y$ , respectively. For a measure $\gamma\in m^{+}(X\times Y)$ , we define its marginals
$\pi_{X}(\gamma)$ and $\pi_{Y}(\gamma)$ by $\pi_{X}(\gamma)(A)=\gamma(\pi_{X}^{-1}(A))$ and $\pi_{Y}(\gamma)(B)=\gamma(\pi_{Y}^{-1}(B))$ for all $A\in B(X)$

and $B\in B(Y)$ . The following theorem is a main result of this paper.

Theorem 1. Let $X$ and $Y$ be regular spaces and let $l\gamma_{\alpha}$ } be a net in
$\ovalbox{\tt\small REJECT}^{+}(X\times Y)$ with $\lim\sup_{a}\gamma_{a}(X\times Y)<\infty$ . If $\pi_{X}(\gamma_{\alpha})\rightarrow w\mu\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X)$ and $\pi_{Y}(\gamma_{a})\rightarrow w\nu\in$

$\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ then every subnet of $1\gamma_{\alpha}$ } has $a$ further subnet converging weakly to a
measure $\gamma\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ such that $\pi_{X}(\gamma)=\mu$ and $\pi_{Y}(\gamma)=\nu$ .

To prove Theorem 1 we need the following

Lemma 1. Let $X$ be a regular space. Assume that a family $\mathcal{G}$ of subsets
of $X$ satisfies the following two conditions:
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(1) $\mathcal{G}$ is closed under finite unions.
(2) $\mathcal{G}$ contains an open basis for the topology of $X$ .

Then for any open subset $G$ of $X$, we can find a subfamily $\ovalbox{\tt\small REJECT}$ of $\mathcal{G}$ such that
$\ovalbox{\tt\small REJECT}\uparrow G$ .

Proof. Put $\ovalbox{\tt\small REJECT}=\{H\in \mathcal{G};H\subset\overline{H}\subset G\}$ . Then, using assumption (1), it is easy
to see that $\ovalbox{\tt\small REJECT}$ is filtering upwards. Hence we have only to show that the
equality $U_{H\in 3r}H=G$ holds. Fix $x\in G$ . Since $X$ is regular, there exists an open
subset $U$ of $X$ such that $x\in U\subset\overline{U}\subset G$ . On the other hand, we can find $H\in \mathcal{G}$

such that $x\in H\subset U$ by assumption (2). Consequently we have $x\in H\in\ovalbox{\tt\small REJECT}$ , and
this implies $\bigcup_{H\in 3r}H\supset G$ . The reverse inclusion is obvious. $\square $

Proof of Theorem 1. We first show that every subnet of $\{\gamma_{\alpha}\}$ contains
a further subnet converging weakly to a measure $\gamma\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ . To do this
by Theorem 6 of [17], we have only to show that the condition of $\tau$-smo-
othness”

$\inf_{F\in \mathcal{F}}\lim_{a}\sup\gamma_{a}(F)=0$

holds for every family 9 of closed subsets of $X\times Y$ with $\mathcal{F}\downarrow\emptyset$ . (Here we
remark that in Theorem 6 of [17] we need not assume that a net $(\mu_{\alpha})$ is in
$Si1_{+}(X; \tau)$–it is enough to consider a net in $\ovalbox{\tt\small REJECT}_{+}(X)$ ; then the conditions of the

theorem are the necessary and sufficient conditions that every subnet of $(\mu_{a})$

contains a further subnet converging to a measure in $\ovalbox{\tt\small REJECT}_{+}(X;\tau))$ .
Fix $\epsilon>0$ and let $\mathcal{F}$ be an arbitrary family of closed subsets of $X\times Y$ with

$\mathcal{F}\downarrow\emptyset$ . Put $\mathcal{E}_{X}=$ { $\pi_{X}(G)^{c}$ : $G$ is open and $G^{c}\supset F$ for some $F\in \mathcal{F}$ } and $\mathcal{E}_{Y}=$

{ $\pi_{Y}(G)^{c}$ : $G$ is open and $G^{c}\supset F$ for some $F\in \mathcal{F}$ }. Since the projections $\pi_{X}$ and
$\pi_{Y}$ are open mappings, $\mathcal{E}_{X}$ and $\mathcal{E}_{Y}$ are families of closed subsets of $X$ and $Y$ ,

respectively. Moreover we can show that $\mathcal{E}_{X}\downarrow\emptyset$ and $\mathcal{E}_{Y}\downarrow\emptyset$ as in the proof
of Lemma 1. Since $\mu$ and $v$ are $\tau$-smooth, we have

$\inf_{E\in \mathcal{E}_{X}}\mu(E)=0$ and $\inf_{E\in S_{Y}}\nu(E)=0$ ,

which imply that there exists an open subset $G_{\epsilon}$ of $X\times Y$ with $G_{\epsilon}^{c}\supset F_{\epsilon}$ for
some $F.\in \mathcal{F}$ such that

$\mu(\pi_{X}(G_{\epsilon}))>1-\frac{\epsilon}{3}$ and $\nu(\pi_{Y}(G_{\epsilon}))>1-\frac{\epsilon}{3}$ .

Now we set

$\mathcal{G}=\{\bigcup_{i=1}^{n}(U_{i}\times V_{i})$ :

the $U_{i}’ s$ are open subsets of $X$ and the $V_{i}’ s$ are open subsets of $Y\}$ ,
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then $\mathcal{G}$ satisfies conditions (1) and (2) of Lemma 1. Consequently we can find
a subfamily $\ovalbox{\tt\small REJECT}$ of $\mathcal{G}$ such that $\ovalbox{\tt\small REJECT}\uparrow G_{\text{\’{e}}}$ , and hence we have $\pi_{X}(ff)\uparrow\pi_{X}(G_{\epsilon})$ and
$\pi_{Y}(\ovalbox{\tt\small REJECT})\uparrow\pi_{Y}(G_{\epsilon})$ . Then, noting that $\pi_{X}$ and $\pi_{Y}$ are open mappings, by the $\tau-$

smoothness of $\mu$ and $\nu$ , we have

$\sup\mu(\pi_{X}(H))=\mu(\pi_{X}(G_{\epsilon}))>1-\frac{\epsilon}{3}H\in A$

and

$\sup_{H\in ff}\mu(\pi_{Y}(H))=\nu(\pi_{Y}(G_{\epsilon}))>1-\frac{\epsilon}{3}$ ,

which imply that there exists $H\text{\’{e}}\in\ovalbox{\tt\small REJECT}$ with $H_{\epsilon}\subset G_{\epsilon}$ such that

$\mu(\pi_{X}(H_{*}))>1-\frac{\epsilon}{2}$ and $\nu(\pi_{Y}(H_{\epsilon}))>1-\frac{\epsilon}{2}$ .

Since $H.\in \mathcal{G}$ , it can be expressed by the form $H_{\epsilon}=U_{i=1}^{n}(U_{i}\times V_{i})$ , where the $U_{\ell}’ s$

are non-empty open subsets of $X$ and the $V_{i}’ s$ are non-empty open subsets of
$Y$ , and thus $\pi_{X}(H_{\epsilon})=U_{i=1}^{n}U_{i}$ and $\pi_{Y}(H_{\epsilon})=U_{i=1}^{n}V_{i}$ . If we notice that $ F_{\epsilon}\subset G_{\epsilon}^{c}\subset$

$H_{\epsilon}^{c}$ and the equality

$H^{c}=\{(\bigcap_{i=1}^{n}U_{\ell}^{c})\times Y\}\cup\{X\times(\bigcap_{i=1}^{n}V_{l}^{c})\}$

holds, putting $K=\bigcap_{i=1}^{n}U_{i}^{c}=\pi_{X}(H_{\epsilon})^{c}$ and $L=\bigcap_{i=1}^{n}V_{i}^{c}=\pi_{Y}(H_{\epsilon})^{c}$ , then by the as-
sumption we have

$\lim_{\alpha}’\sup\gamma_{a}(F_{\text{{\it \’{e}}}})\leqq\lim_{\alpha}\sup\gamma_{a}(H_{\epsilon}^{c})$

$=\lim_{a}\sup\gamma_{\alpha}((K\times Y)\cup(X\times L))$

$\leqq\lim_{a}\sup\gamma_{\alpha}(K\times Y)+\lim_{\alpha}\sup\gamma_{\alpha}(X\times L)$

$=\lim_{a}\sup\pi_{X}(\gamma_{\alpha})(K)+\lim_{\alpha}\sup\pi_{Y}(\gamma_{a})(L)$

$\leqq\mu(K)+\nu(L)$

$=\mu(\pi_{X}(H_{\epsilon})^{c})+\nu(\pi_{Y}(H_{\epsilon})^{c})$

$\leqq\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ ,

and this implies that the condition of $\tau$-smoothness” holds.
It remains to prove that $\gamma$ has marginals $\mu$ and $\nu$ , that is, $\pi_{X}(\gamma)=\mu$ and

$\pi_{Y}(7)=\nu$ . Let us assume that $7^{w}a^{->}7\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y),$ $\pi_{X}(\gamma_{\alpha})\rightarrow w\mu\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X)$ and
$\pi_{Y}(\gamma_{\alpha})\rightarrow w\nu\in ffi_{\tau}^{+}(Y)$ . Then by the continuity of the projections $\pi_{X}$ and $\pi_{Y}$ , we
have $\pi_{X}(\gamma_{a})\rightarrow w\pi_{X}(7)$ and $\pi_{Y}(\gamma_{a})\rightarrow w\pi_{Y}(7)$ , and it is obvious that $\pi_{X}(\gamma)\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(X)$

and $\pi_{Y}(\gamma)\in\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ by the $\tau$-smoothness of 7 $\cdot$ Consequently from P19 of [18;
page XIV], it follows that $\pi_{X}(\gamma)=\mu$ and $\pi_{Y}(7)=\nu$ , and the proof is complete. $\square $
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Remark 1. In the case $\mu$ and $\nu$ being Radon measures, Theorem 1 is
known (see Hoffmann-Jrgensen [8], Lemma I.5.1). In this case, the limiting
measure on the product space is also Radon.

A net $\{x_{a}\}$ in a topological space $X$ is said to be compact if every subnet
of $\{x_{\alpha}\}$ has a further subnet which converges, and a subset $A$ of $X$ is said to
be net-compact if every net in $A$ has a convergent subnet. It is known that if
$X$ is regular, then a subset $A$ of $X$ is net-compact if and only if it is relatively
compact (see Bourbaki [2]; chap. 1, \S 9, ex. 22 and 23). By Theorem 1, we
have the following compactness criterion for $\tau$-smooth measures on a product
of regular spaces.

Corollary 1. Let $X$ and $Y$ be regular spaces.
(1) Let $\{\gamma_{\alpha}\}$ be a net in $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ with $\lim\sup_{\alpha}\gamma_{a}(X\times Y)<\infty$ . Then $\{\gamma_{\alpha}\}$

is compact in $R_{f}^{+}(X\times Y)$ if and only if the nets $\{\pi_{X}(\gamma_{a})\}$ and $\{\pi_{Y}(\gamma_{\alpha})\}$ are com-
pact in ..Sil;(X) and $\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ , respectively.

(2) Let $P$ be a subset of $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ with $\sup_{\gamma\in P}\gamma(X\times Y)<\infty$ . Then $P$ is
relatively compact in $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ if and only if the sets $\pi_{X}(P)$ and $\pi_{Y}(P)$ are
relatively compact in $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X)$ and $\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ , respectively.

Proof. (1) It easily follows from Theorem 1. (2) Since the weak topologies
on $\ovalbox{\tt\small REJECT}_{r}^{+}(X),$ $\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ and $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X\times Y)$ are regular (see [18; Theorem 11.2]), we can
replace “relatively compact” by “net-compact” in the statement (2). Consequently,
(2) also follows from Theorem 1. $\square $

Remark 2. We say that a subset $P$ of $\ovalbox{\tt\small REJECT}^{+}(X)$ is uniformly tight if for
each $\epsilon>0$ , there exists a compact subset $K_{\text{\’{e}}}$ of $X$ such that $\mu(X-K_{e})<\epsilon$ for all
$\mu\in P$. Then the following criterion for uniform tightness is well-known and
easily verified: A subset $P$ of $\ovalbox{\tt\small REJECT}^{+}(X\times Y)$ is uniformly tight if and only if the
marginals $\pi_{X}(P)$ and $\pi_{Y}(P)$ are uniformly tight. Moreover every uniformly
tight set is relatively compact with respect to the weak topology of measures
(see [18; Theorem 9.1]). However we know that even for a subset of mea-
sures on Suslin spaces, the relative compactness does not imply the uniform
tightness in general (see Example I.6.4 of Fernique [6]). Therefore Corollary 1
cannot be inferred directly from the above criterion for uniform tightness.

Remark 3. For a topological space $X$ , denote by $\ovalbox{\tt\small REJECT}_{t}^{+}(X)$ the set of all
Radon measures in $\ovalbox{\tt\small REJECT}^{+}(X)$ . Using Lemma I.5.1 of [8] (see also Remark 1), it
can be easily shown that a Radon version of Corollary 1 also remains valid for
arbitrary topological spaces $X$ and $Y$ if we replace $\ovalbox{\tt\small REJECT}_{\tau}^{+}(X),$ $\ovalbox{\tt\small REJECT}_{\tau}^{+}(Y)$ and $ m_{f}^{+}(x\times$

Y) by $\ovalbox{\tt\small REJECT}_{t}^{+}(X),$ $\ovalbox{\tt\small REJECT}_{t}^{+}(Y)$ and $\ovalbox{\tt\small REJECT}_{t}^{+}(X\times Y)$ respectively. However, $\tau$-smooth measures
are not Radon in general (see Varadarajan [21; page 200] and remark that the
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measure constructed there is not only $\sigma$ -smooth but also $\tau$-smooth), and thus
Corollary 1 is not contained in the above stated Radon version of Corollary 1.

3. Some applications

(I) Strassen’s theorem for $\tau$-smooth probability measures. In a celebrated
paper, Strassen [16] gave a necessary and sufficient condition for the existence
of probability measures with given marginals. Although his theorem has been
extended by many authors in more general settings (cf. Hoffmann-Jrgensen [8],
Edwards [5], Kellerer [11], Hansel and Troallic [7], Skala [15] and so on),
they all treat only Radon measures. The following theorem states that Strassen’s
theorem still holds if we replace Polish spaces by regular spaces and restrict
the possible solutions to a weakly closed, convex set of $\tau$-smooth probability
measures. Since $\tau$-smooth measures on a regular space are not Radon in general
(see Remark 3), the following Theorem 2 is not contained in any previous result
cited above. For a regular space $X$ , let us denote by $\mathcal{P}(X)$ (resp. $\mathcal{P}_{\tau}(X)$ ) the
set of all probability (resp. $\tau$-smooth probability) measures on .9?(X).

Theorem 2. Let $X$ and $Y$ be regular spaces and let $\Lambda$ be a non-empty closed
convex subset of $\mathcal{P}_{\tau}(X\times Y)$ . In order that there exists $\lambda\in\Lambda$ with given marginals
$\mu\in \mathcal{P}_{\tau}(X)$ and $\nu\in \mathcal{P}_{\tau}(Y)$ , that is, $\pi_{X}(\lambda)=\mu$ and $\pi_{Y}(\lambda)=\nu$ , it is necessary and suf-
ficient that

$\int_{X}fd\mu+\int_{Y}gd\nu\leqq\sup\{\int_{X\times Y}(f\oplus g)d_{7}$ : $\gamma\in\Lambda\}$

for all bounded, Borel measurable real-valued functions $f$ on $X$ and $g$ on Y. Here
$(f\oplus g)(x, y)\equiv f(x)+g(y)$ for all $(x, y)\in X\times Y$ .

Proof. By the argument in the proof of Theorem 1 of [15], we have only
to show that a net $\{\gamma_{a}\}$ in $\mathcal{P}(X\times Y)$ satisfying the condition that $\pi_{X}(\gamma_{\alpha})\mu\underline{w}$

and $\pi_{Y}(\gamma_{a})\rightarrow\nu w$ is compact, but tbis immediately follows from Theorem 1. $\square $

(II) Weak convergence of product probability measures. Let $X$ and $Y$ be
topological spaces and let $\mu\in \mathcal{P}(X)$ and $\nu\in \mathcal{P}_{\tau}(Y)$ . Then by the $\tau$-smoothness
of $\nu$ , for each $B\in B(X\times Y)$ , the function $x\in X-,\nu(B_{x})$ is Borel measurable (see

Lemma 4.1 of [20] or Example 1-(1) of Kawabe [9]), and hence we can define
a product measure $\mu\times\nu$ as a Borel measure on $X\times Y$ by

$(\mu\times v)(B)=\int_{X}\nu(B_{x})\mu(dx)$ for all $B\in B(X\times Y)$ .

Here for a subset $B$ of $X\times Y$ and $x\in X,$ $B_{x}$ denotes the section determined by
$x$ , that is, $B_{x}=(y\in Y:(x, y)\in B$ }. Thus it makes sense that we consider the
weak convergence of product measures, and we have the following
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Theorem 3. Let $X$ and $Y$ be completely regular spaces. Let $t\mu_{a}$ } be a net
in $\mathcal{P}(X)$ and $\{\nu_{\alpha}\}$ be a net in $\mathcal{P}_{\tau}(X)$ . If $\mu_{a}\rightarrow\mu\in \mathcal{P}_{\tau}(X)w$ and $\nu_{a}\rightarrow\nu\in \mathcal{P}_{\tau}(Y)w$ then
$\mu_{\alpha}\times\nu_{\alpha}\rightarrow w\mu\times\nu$ .

In order to prove Theorem 3, we shall make use of the following result
which establishes the relation between $\tau$-smooth measures and their characteristic
functions. For a topological space $X$ , denote by $C(X)$ (resp. $C_{b}(X)$) the set of
all continuous (resp. bounded continuous) real-valued functions defined on $X$ .
For $\mu\in \mathcal{P}(X)$ , we define its characteristic function by

$\hat{\mu}(f)=\int_{X}e^{if(x)}\mu(dx)$ , $f\in C(X)$ .

Lemma 2 (cf. Vakhania et al. [20], Theorem IV.2.2 and IV.3.1). Let $X$ be
a completely regular space. Assume that a linear subspace $\Gamma$ of $C(X)$ generates
the topology of $X$ , that is, the topology of $X$ coincides with the weakest topology
for which all the functions in $\Gamma$ are continuous. Then the following statements
hold:

(1) Let $\mu,$
$\nu\in \mathcal{P}_{\tau}(X)$ . If $\hat{\mu}(f)=\nu\wedge(f)$ for all $ f\in\Gamma$, then $\mu=\nu$ on $B(X)$ .

(2) Let $\{\mu_{a}\}$ be a net in $\mathcal{P}(X)$ . If every subnet of $t\mu_{a}$ } has $a$ further subnet
converging weakly to a $\tau$-smooth probability measure on $X$ , and for each $ f\in\Gamma$,
$\chi(f)=\lim_{a}\beta_{a}(f)$ exists, then $\{\mu_{\alpha}\}$ converges weakly to a measure $\mu\in \mathcal{P}_{\tau}(X)$ with
$\rho=x$ .

Proof. This lemma can be proved by Lemma 5 of [10] and a standard
argument (see [20], Theorem IV.3.1). $\square $

Proof of Theorem 3. Put $\gamma_{\alpha}=\mu_{\alpha}\times\nu_{a}$ . Then it is clear that $\pi_{X}(\gamma_{\alpha})\rightarrow\mu w$

and $\pi_{Y}(\gamma_{a})\rightarrow w\nu$ , and hence by Theorem 1, $\{\gamma_{a}\}$ has a further subnet converging
weakly to a $\tau$-smooth probability measure on $X\times Y$ . It is easily verified that
for each $f\in C_{b}(X)$ and $g\in C_{b}(Y),$ $\lim_{\alpha}f_{\alpha}(f\oplus g)=\lim_{\alpha}\hat{\mu}_{\alpha}(f)\nu_{a}\wedge(g)=\beta(f)\nu\wedge(g)=(\mu\times$

$\nu)^{\wedge}(f\oplus g)$ . Since $\Gamma\equiv C_{b}(X)\oplus C_{b}(Y)$ is a linear subspace of $C(X\times Y)$ generating
the topology of $X\times Y$ , by Lemma 2 we have $\mu_{\alpha}\times\nu_{\alpha^{-}}^{w}*\mu\times\nu$ , and the proof is
complete. $\square $

Remark 4. Theorem 3 was known in the case when $X$ and $Y$ are separable
metric spaces (see, e.g., Billingsley [1; Theorem 3.2]), and has been extended
by Vakhania et al. [20; Proposition I.4.1] to completely regular spaces. But
their technique is that the weak convergence $\mu_{\alpha}\rightarrow\mu w$ can be proved by showing
that $\mu_{\alpha}(A)\rightarrow\mu(A)$ for some special class of sets $A$ , and is different from ours.

(III) Weak convergence of compound probability measures. Let $X$ be a
topological space and $Y$ be a completely regular space. A (Borel) transition
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probability $\lambda$ on $X\times Y$ is defined to be a mapping from $X$ into $\mathcal{P}(Y)$ which
satisfies the condition that the function $x\in X\vdash\rightarrow\lambda(x, B)$ is Borel measurable for
every $B\in\ovalbox{\tt\small REJECT}(Y)$ . We say that a transition probability $\lambda$ is $\tau$-smooth if the pro-
bability measure $\lambda_{x}\equiv\lambda(x, )$ is $\tau$-smooth for each $x\in X$ , that is, it is a mapping
from $X$ into $\mathcal{P}_{f}(Y)$ . We also say that $\lambda$ is continuous if the mapping $x\in X-$

$\lambda_{x}\in \mathcal{P}(Y)$ is continuous. According to Proposition $1-(1)$ bf [9], for any $\mu\in \mathcal{P}(X)$

and any continuous $\tau$-smooth transition probability $\lambda$ on $X\times Y$ , we can define
a Borel probability measure $\mu\circ\lambda$ on $X\times Y$ , which is called the compound
probability measure of $\mu$ and $\lambda$ , by

$\mu\circ\lambda(D)=\int_{X}\lambda(x, D_{x})\mu(dx)$ for all $D\in\ovalbox{\tt\small REJECT}(X\times Y)$ .

Moreover if $\mu$ is $\tau$-smooth, then $\mu^{\circ}\lambda$ is also $\tau$-smootb (see Proposition 2 of [9]).

In information theory, a transition probability $\lambda$ on $X\times Y$ is called an in-
formation channel with input space $X$ and output space $Y$ , and for a probability
measure $\mu$ on $X$ (which is called the input source), the compound probability
measure $\mu\circ\lambda$ plays an important role (see, e.g., Umegaki [19]).

On the other hand, compound probability measures can be viewed as a
generalization of convolution measures. In fact, if $X=Y$ is a topological group
and $\lambda$ is a transition probability given by $\lambda(x, B)=\nu(Bx^{-1})$ for all $x\in X$ and all
Borel subsets $B$ of $Y$ , where $\nu$ is a probability measure on $X$ , then the marginal
$\pi_{Y}(\mu\circ\lambda)$ is the convolution measure $\mu*\nu$ . The weak convergence of convolution
measures has been looked into in great detail by Csisz\’ar $[3, 4]$ .

Let $X$ be a topological space and $Y$ be a uniform space with its uniformity
$cV$ . Denote by $C(X, Y)$ the set of all continuous mappings from $X$ into $Y$ .
We say that a subset $H$ of $C(X, Y)$ is equicontinuous at $x\in X$ if for each $V\in\subset V$ ,

there exists a neighborhood $U$ of $x$ such that $(f(x), f(u))\in V$ for all $u\in U$ and
all $f\in H$. $H$ is equicontinuous on $X$ if it is equicontinuous at every $x\in X$ . In
the following, we need a variant of the notion of equicontinuity. We say that a
subset $H$ of $C(X, Y)$ is equicontinuous on a set $A$ of $X$ if the set of all restrictions
of functions of $H$ to $A$ is equicontinuous on $A$ . By Proposition 1 of [9],
$C(X, \mathcal{P}_{f}(Y))$ coincides with the set of all continuous $\tau$-smooth transition proba-
bilities on $X\times Y$ . Moreover since $Y$ is completely regular, the weak topology
on $\mathcal{P}_{\tau}(Y)$ is also completely regular, and hence it is uniformizable (see [18],

Theorem 11.2). Thus we can introduce the notion of equicontinuity for a set
of transition probabilities. Then it is not too hard to prove that a subset $Q$

of $C(X, \mathcal{P}_{\tau}(Y))$ is equicontinuous on every compact subset of $X$ if and only if
for each $h\in C_{b}(Y)$ , the set of the functions

$x\in X\mapsto\int_{Y}h(y)\lambda(x, dy)$ , $\lambda\in Q$ ,

is equicontinuous on every compact subset of $X$ . Some examples of equicon-
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tinuous sets of transition probabilities are given in $[9, 10]$ . Now we state
our result about the weak convergence of compound probability measures.

Theorem 4. Let $X$ and $Y$ be completely regular spaces. Assume that a net
$\{\lambda_{\alpha}\}$ in $C(X, \mathcal{P}_{\tau}(Y))$ satisfies

$(a)$ $\{\lambda_{\alpha}\}$ is equicontinuous on every compact subset of $X$ ,
$(b)$ there exists $\lambda\in C(X, \mathcal{P}_{\tau}(Y))$ such that $\lambda_{\alpha}(x, )\rightarrow w\lambda(x, )$ for every $x\in X$ .

Then for any uniformly tight net $\{\mu_{\alpha}\}$ in $\mathcal{P}(X)$ converging weakly to $\mu\in \mathcal{P}_{\tau}(X)$ ,

we have $\mu_{\alpha^{\circ}}\lambda_{a}\rightarrow w\mu\circ\lambda$ .

In order to prove Theorem 4, we need the following

Lemma 3 ([9; Lemma 3]). Let $X$ be a completely regular space and let
$\{\mu_{\alpha}\}$ be a net in $\mathcal{P}(X)$ which is uniformly tight. Assume that a net $t\varphi_{a}$ } in
$C_{b}(X)$ satisfies

$(a)$ $\{\varphi_{\alpha}\}$ is uniformly bounded, and
$(b)$ $\{\varphi_{a}\}$ is equicontinuous on every compact subset of $X$ .

If $\mu_{\alpha}\rightarrow\mu\in \mathcal{P}_{\tau}(X)w$ and if $\varphi\in C_{b}(X)$ and $\varphi_{\alpha}(x)\rightarrow\varphi(x)$ for each $x\in X$ , then we have

$\lim_{\alpha}\int_{X}\varphi_{\alpha}(x)\mu_{a}(dx)=\int_{X}\varphi(x)\mu(dx)$ .

Proof of Theorem 4. We first show that $\pi_{Y}(\mu_{\alpha}\circ\lambda_{\alpha})\rightarrow w\pi_{Y}(\mu^{\circ}\lambda)$ . Fix $ g\in$

$C_{b}(Y)$ and define bound$ed$ continuous functions $\varphi_{\alpha}$ and $\varphi$ on $X$ by

$\varphi_{\alpha}(x)=\int_{Y}g(y)\lambda_{\alpha}(x, dx)$ and $\varphi(x)=\int_{Y}g(y)\lambda(x, dx)$ .
Then it is clear that $\{\varphi_{a}\}$ satisfies condition (a) of Lemma 3, while by assump-
tion (a), $\{\varphi_{\alpha}\}$ satisfies condition (b) of Lemma 3. On the other hand, from
assumption (b) it follows that $\varphi_{a}(x)\rightarrow\varphi(x)$ for each $x\in X$ and $\varphi\in C_{b}(X)$ . There-
fore by Lemma 3, we have

$\lim_{a}\int_{X}\varphi_{a}(x)\mu_{\alpha}(dx)=\int_{X}\varphi(x)\mu(dx)$ ,

which implies $\pi_{Y}(\mu_{\alpha^{\circ}}\lambda_{\alpha})\pi_{Y}(\mu\circ\lambda)\underline{w}$ . Thus we have $\pi_{X}(\mu_{a^{\circ}}\lambda_{\alpha})=\mu_{\alpha}\rightarrow\mu=\pi_{X}(\mu\circ\lambda)w$

$\in \mathcal{P}_{\tau}(X)$ and $\pi_{Y}(\mu_{\alpha^{\circ}}\lambda_{a})\rightarrow w\pi_{Y}(\mu^{\circ}\lambda)\in \mathcal{P}_{f}(Y)$ , and hence by Theorem 1, we can find
a subnet $\{\mu_{\alpha^{\prime}}\circ\lambda_{a^{\prime}}\}$ of $\{\mu_{a^{\circ}}\lambda_{a}\}$ converging weakly to a measure $\gamma\in \mathcal{P}_{\tau}(X\times Y)$ .

Now for each $\gamma\in \mathcal{P}(X\times Y)$ , we define its characteristic function by

$f(f)=\int_{X\times Y}e^{if(x,y)}\gamma(dx, dx)$ , $f\in C(X\times Y)$ .
Then by Lemma 2 and the fact obtained above, in order to prove that $\mu_{a}\circ\lambda_{\alpha}$

$\rightarrow w\mu\circ\lambda$ , it is sufficient to show that for each $f\in C_{b}(X)$ and $g\in C_{b}(Y)$ , we have



168 J. KAWABE

$(\mu_{\alpha}\circ\lambda_{\alpha})^{\wedge}(f\oplus g)\rightarrow(\mu^{\circ}\lambda)^{\wedge}(f\oplus g)$ , since $\Gamma\equiv C_{b}(X)\oplus C_{b}(Y)$ is a linear subspace of
$C(X\times Y)$ generating the completely regular topology of $X\times Y$ .

Fix $f\in C_{b}(X)$ and $g\in C_{b}(Y)$ , and put

$\phi_{\alpha}(x)=e^{if(x)}\int_{Y}e^{\ell g(y)}\lambda_{a}(x, dy)$ and $\psi(x)=e^{if(x)}\int_{Y}e^{\ell g(y)}\lambda(x, dy)$ .

Then by assumptions (a) and (b) of Theorem 4, it is easily verified that $\psi_{\alpha}$ and
$\psi$ satisfy conditions of Lemma 3, and hence we have

$\lim_{a}\int_{X}\psi_{\alpha}(x)\mu_{a}(dx)=\int_{X}\phi(x)\mu(dx)$ .

This implies that $\lim_{a}(\mu_{\alpha^{\circ}}\lambda_{\alpha})^{A}(f\oplus g)=(\mu\circ\lambda)^{\wedge}(f\oplus g)$ , and the proof is complete.
$\square $

Remark 5. Theorem 4 shows that the following conditions of Theorem 1
of [9] are superfluous: (1) $X$ is a k-space, and (2) $\{\lambda_{\alpha}(x, )\}$ is uniformly tight
for each $x\in X$ . In [9], an application of Theorem 3 to Gaussian transition
probabilities is also discussed.

Let $G$ be a topological group and let $\mu\in \mathcal{P}(G)$ and $\nu\in \mathcal{P}_{\tau}(G)$ . By [3] (or

Example $1-(2)$ of [9]), we can define a convolution $\mu*\nu$ by $\mu*\nu=\pi_{Y}(\mu^{\circ}\lambda)$ , where
$\lambda(x, B)=\nu(Bx^{-1})$ for all $x\in G$ and all $B\in\ovalbox{\tt\small REJECT}(G)$ . Then we have Corollary to
Theorem 1 of [3]:

Corollary 2. Let $G$ be a topological group, and let $\{\mu_{\alpha}\}$ be a net in $\mathcal{P}(G)$

and $\{\nu_{\alpha}\}$ be a net in $\mathcal{P}_{\tau}(G)$ . Assume that $\{\mu_{\alpha}\}$ is uniformly tight. If $\mu_{a}\rightarrow w\mu\in$

$\mathcal{P}_{\tau}(G)$ and $\nu_{a}\rightarrow w\nu\in \mathcal{P}_{\tau}(G)$ , then $\mu_{a}*\nu_{\alpha}\rightarrow\mu*\nu w$

Proof. Put $\lambda_{\alpha}(x, B)=\nu_{\alpha}(Bx^{-1})$ and $\lambda(x, B)=\nu(Bx^{-1})$ for all $x\in G$ and all
$B\in B(G)$ . Then $\{\lambda_{a}\}$ is equicontinuous on every compact subset of $G$ by

Example $1-(2)$ of [10], and it is clear that $\lambda_{\alpha}(x, )\rightarrow w\lambda(x, )$ for each $x\in G$ .
Therefore by Theorem 4, we have $\mu_{a}\circ\lambda_{a}\rightarrow\mu^{\circ}\lambda w$ which implies $\mu_{\alpha}*\nu_{\alpha}\rightarrow w\mu*\nu$ . $\square $
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