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Abstract. A relation between the trimming size of trimmed L-statistics and
their limit distributions is considered for strictly stationary sequence of random
variables satisfying the ¢-mixing condition or the strong mixing condition.

1. Introduction and results

Let &,.56,.<--<&,.. be the order statistics corresponding to some sta-
tionary sequence of random variables {&,, &, ---, &,} with the uniform distribu-
tion over (0, 1). An L-statistic is defined by

1=
T ::"; 2 cni8nie)

i=1

where, {c.;, 1<i<n} is a triangular array of positive constants and g is a left
continuous and nondecreasing function on (0, 1). L-statistics play an important
role in the theory of statistical inference. (See Chapter 7 in for more
details.) Besides it is well known that the rate of convergence in the central
limit theorem can be improved by trimming extreme random variables (see e.g.
[1] and [4]). Furthermore the trimming method gives some advantages to the
central limit theorem in addition to the rate of convergence. However the
limit distribution differs from the original normal distribution or the central
limit theorem does not hold while the trimming size is so large. In this paper,
according to [3], we consider a weak convergence of some trimmed L-statistics
for weakly dependent random variables, here three types of trimming size are
treated ; trimming fixed numbers, trimming fixed fractions and trimming vanish-
ing fractions.

Let {&;, 7=1} be a strictly stationary sequence of random variables with
uniform distribution over (0, 1) satisfying some mixing condition as follows.
Denote #5 the o-algebra generated by &,, -, &, 1Sa<b<co. We say that
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{&;} is ¢-mixing if as n—oo

._ P(AB)— P(A)P(B)
(1) PO =sup b PA) |10,

Furthermore {&;} is said to be strong mixing if as n—oo

(2) a(n):= sup sup |PAB)—P(AP(B)|]|O0.

& oo
kzlAEJMl. BG.‘M)H_“

It is easy to see that a(n)<¢(n) for each n (e.g. [6]).
Consider the trimmed L-statistic defined by

1 mn
Thi=— 32 cnigni),

N i=kp+1

where k, and m, are nonnegative integers with 0<k,<m,<n. As for {cn:
we suppose that there exists a nonnegative and continuous function J on (0, 1)
such that for each 1=:<n

cni=nSim J@)dt.

(t-1)/n

Specifically we assume that / is Lipschitz continuous on any interval [§, 1—4]
with 0<0<1/2 and for some real p,, p,

J®=tPoy(t) and J(A—t)=tP1,(t) for 0<t<9d,
where vy, and v, are slowly varying at =0 and
vo@)=t""wo(t)eo(t) and vi()=t"'v,(t)e,(t)

for some continuous functions &, and &, with &,(¢), £,(t) =0 as t—0. Moreover
define a key function K on (0, 1) by

0 for 0<it<ec

K(@):= S:](t)dg(t)_ for =<1,

here ¢ is a fixed continuity point of g with 0<c<1. We also assume that K
is not the trivial zero function. Since K is nondecreasing and K (e)=0 for
some £¢>0, K is the left continuous inverse of some distribution function H.
For some uniformly distributed random variables {&;} define Y ,;(§,) by

Y a6 i=Kao€)— EKas&)=—{ L00dKQ),

where
@) :=1{§;<t}—t, 0<ikl,

K(a) for 0<t<a
Kq(t):=3 K(t) for a<t<s.
K(b) for b<t<1
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We investigate the asymptotic normality of 7', under the next three conditions
for trimming sizes k, and m,.
Condition I. (Trimming fixed numbers).

k.,=k and m,=m for all n, where 2 and m are fixed numbers.

Condition II. (Trimming fixed fractions).

For 0<a<b<l1, limx/ﬁ_(i;i—a)zo and limx/n—( Mr _p)=0.

N-o0 n-ro0 n

Condition I1I. (Trimming vanishing fractions).

limk,=co and lim~™=0, lim(n—m,)=co and lim-"">=1.

n-»00 n->00 N o nse N

In the case where {£,} is a sequence of i.i.d. random variables [1] suc-
ceeded to characterize the possible limiting behavior of trimmed sum T,. Fur-
thermore obtained necessary and sufficient conditions of asymptotic normality
of T,. In this note we shall extend their results to the case where {£;} are
weakly dependent random variables satisfying mixing conditions.

Theorem 1. (Trimming a fixed number). Suppose that Condition I 1s satisfied.
Furthermore assume that {§;} is a strictly stationary sequence of random variables
with zero mean and E(|g(£,)|**%)<co for some 6>0. Assume that {£,;} satisfies
either the ¢-mixing condition (1) with

(3) S RPN <o and  G(R)=0(k0-0r),

k=1

or the strong mixing condition (2) with

(4) St ath) <o and a(k)=0(ka+ssT),
=1

here pZ* and q, r<1/4 are some positive constants. Then

.1 2
ohi=lim—E( 3}V u())

n—>or

exists. If a§,>0, then we can redefine {T,} and a sequence of independent copies
of Gaussian process {B,(t), 0<t<1} with covariance

(5) I'(s, )=EGOLO+ B EGO )+ 3 B

on a common probability space such that

(6) imP{| v (Ta—pn)+| BadK®)|>e}=0,

1
n-oco 0

for any £>0, where pnzzgr"/"j(t)g(t)dt. Furthermore

n/m
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d
(7) V1 (T = ptn)/ 891 —> N(O, 1)

as n—oo, where “—>"” means convergence in law.

Theorem 2. (Trimming a fixed fraction). Assume that Condition 11 is satisfied.
Then, for any 0<a<b<l,

T 1 n 2
i, .—LIR%—E(E Yab(&))

exists. Suppose that | is Lipschitz continuous on a neighborhood containing [a, b]
with J(a+t)=tPouy(t) and J(b—1t)=tP1y,(t) for 0<t<d and 0%,>0. Under the same
assumptions as in Theorem 1, if

K(a+)—K(a—)=K(b+)—K(b—)=0,

then we can redefine {T,} and {B,{t)} on a common probability space such that

(8) limP{

n-—>00

Vi (Ta—pa)+ | Ba®AK®)|>e}=0

for any €>0. Furthermore, as n—oo

L d
(9) . '\/n (Tn_#n)/aab _> N(O: 1) .

Theorem 3. (Trimming a vanishing fraction). Assume that Conditions III is
satisfied. Under the same assumptions in Theorem 1, if ¥ ,,(c)—0 as n—oo holds
for all real ¢ and i=0, 1, then we can redefine {T,} and {B.,(t)} on a common
probability space such that (6) and (7) hold, where W,, is some nondecreasing
and left continuous function with ¥,,(0)=0 for i=0, 1 defined by

Vo /n{K((3kA)/2n)—K(ka|n)}, x>~ka/2
Uon(x):={ VR /n{K(kn/n)+xVEo/n)—K(ko/n)}, |x|<VEa/2
VEa/n{K(na/@n)—K(ka/n)}, x<—~'kn/2
V(n—mp)/n{K(ma/n)+(n—my)/@2n)—K(ma/n)}, x>vn—mn/2
T.a(x):={ V(n—m)/n{K(ma./n)+xvn—ma/n)—K(m,/n)}, |x|<vn—m,/2.
V(n—ma)/n{K(ma/n)—(n—my)/2n)—K(ma/n)}, x<—~n—mg/2

2. Proof of Theorem 2

We first treat the ¢-mixing case with (3). The strong mixing case can be
considered similarly. Before proving we prepare the following lemma due to [2].

Lemma 1. Put U,.(t)::n‘”?tﬁlci(t) for 0<t<1. Under the assumptions in
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Theorem 1, on a common probability space, we can construct {Un(t)} and in-
dependent copies of Gaussian process {B,(t)} with the covariance I'(s, t) defined
by (5) such that

10 P{tesgpl) |Un(t)— Ba(t)| 2Cn~F(logn)'/2} < Cn=A(logn)'2,
here B is some positive constant dependent on {a(k)} or {p(R)}.

Now we show that a.%,,:——-lim(l/n)E(jél Yab(Ej))Z exists for any 0<a<b<l.
Using Theorem 1.2.2 in [6] and (3),

a  B(Evuwe) =3 (.0 ndke)

=1 Sbgi[E(l{$‘<s}I{$J<t})—8t]dK(s)dK(t)

1sit.jsn Ja
b(o
= 3 20(i—jD| | dK©)dK®=0(m),

as n—oo. Hence the limit exists clearly.
We next prove (8). According to [3], p. 127, we have
12 VA (Ta— g+ Ba®dK®)

My

=va{l, .~ FOTNEORN " garo}+| Badkw

n

*

= (""" (T fdsago— ™" we( T Js)dsdgt

$nik, $nik, kp/in
b

mauln G ()
+S n-wg j(s)dsdg(t)—i—g B.()dK(®

en:mn mapl/n a

=["""Bawar+{  Buwak®-{" U0~ Bat)dK)
"o~ U ko3 U e
knin 2 kp/n

*

e rdsdge+ (" (T psdsdg
—S n Sk”,n](s) s g()+gem n S:. . J(S)dsdg

en:hn Mma n

= 11+12+13+14+15+16+I7)

where

3|~

AT(®):=]@dt, Golt) : = 2 1ESD, US®):=+n (GKO—t},
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1/n, 0<t<éna
G;':(t) = Gn(t), E‘n:lét<én:n »
1-1/n, Enn=t<l1

for t=(0, 1) and t¥ lies between G¥() and t. Since k,/n — a, m,/n — b and
K(a+)—K(a—)=K(b+)—K(b—)=0, it is easy to see that

(13) lnimP{Ill/aa.bl>5}=1nimP{l12/0'abl>5}:0-
We next show that I, converges to zero in probability. Put
A:={ sup |Ua(t)—Bx(t)| 2Cn f(logn)"'?}.
te(0,1)

Using Lemma 1, we can construct {U,(t)} and {B,(t)} on a common probability
space such that for any >0

(14)  P{|1:/00p] >e} < P{| 1,/ 005 >¢, A} +P{A}

myln

<P{["""|Us0)— Ba®| 4K/ 3 00>¢, 5D |Un0)—Ba(D] < Cn-(logn) )
+P{A}

éP{Cn‘ﬁ(logn)”’S

+P{A}

mpln
dK(®)/0ar>¢, sup |Un(t)—Ba®)l <Cn-(logn)'z}
kp/n ts(0,1)

§P{Cn‘ﬂ(logn)”zs:L"//ndK(t)/aab>s}—}— Cn=P(logn)/? —> 0 as n— .

Furthermore we can also treat I,~I, similarly and conclude the proof of (8)
from (12)~(14). Finally we see easily that San(t)dK(t)/aab obeys the standard

normal distribution which implies (9) from (8).

2. Proofs of Theorems 1 and 3

According to we can show these theorems similarly to [Theorem 2.
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