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Abstract. In this paper we study optimization problems for systems monitored
by parametric nonlinear controlled evolution equations. First we solve a
min-max problem and then we prove the wellposedness (variational stability)
of a parametric optimal control problem. Three examples of parabolic control
systems are presented in detail.

1. Introduction.

In this paper we study optimization problems involving parametric con-
trolled nonlinear evolution equations.

So let T=[0, b] and let (X, H, X*) be an evolution triple of spaces (see
section 2). We consider the following parametric nonlinear control system:

{ i)+ AQ@, x@t), H=f(, x(@), Hu(®) a.e. on T }
x(0)=2x,R), u@®)eU(t) a.e. on T.

(1)

Here E is a complete metric space and A€ E models noise, disturbances and
inaccuracy of measurement, which interfere with the control of the system.
The control space is a separable reflexive Banach space ¥ and A: TXXXE—
X*, f: TXHXE—.L(Y, H), U: T—2Y\{@} (the control constraint set). Precise
hypotheses on these items will be provided in the sequel. A control function
u: T—Y is said to be admissible, if it is measurable and u()eU(t) a.e. We
will denote the set of admissible controls by Sy. Given [4, u]€E XSy under
reasonable hypotheses on the data, we can guarantee the existence of a unique
solution x(&, u)(-)eC(T, H) of (1). Then for this triple [&, u, x(4, u)], the
performance of the system is measured by the integral cost functional

@ wy = L, %@, o), 2, ue)dt.
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Since it is not known a priori which disturbance element A E is in force,
the best that the system analyst can do is to minimize the maximum cost.
Thus our optimization problem is the following “min-max” problem:

inf sup J(4, u)=8. (Py)

ueSyAcE

Let m(u)= sup J(4, u) (the maximum cost associated with a given admissible
icE

control neSy). Our goal is to find #& Sy such that

B=m(#).
Such an admissible control will be called “optimal”.
In addition to (P,), we also examine the parametric objective functional
m,(A)= inf J(4, u) (P:)

ueSy

and determine verifiable conditions on the data that guarantee the solvability
of (P,)(i.e. the existence for every AcE of a a=Sy such that m,(A)=J(4, #))
and the continuity of A—m,(4).

In the last section, we present three examples of parabolic distributed
parameter systems which illustrate the applicability of our abstract results.

2. Preliminaries

Let H be a separable Hilbert space with norm |-|. Let X be a separable,
reflexive Banach space, which embeds into H continuously and densely. Iden-
tifying H with its dual (pivot space), we have X—H—X*, with all embeddings
being continuous and dense. Such a triple of spaces (X, H, X*) is said to be
an “evolution triple”. Here we will also assume that the embeddings are also
compact. The norms of X and X* will be denoted by ||| and || ||« respectively.
By (-, -) we will denote the inner product in H and by <., -> the duality
brackets for the pair (X, X*). The two are compatible in the sense that
oy Dlxxa=(, ). Let T=1[0,5b] and 1<p, g<oo, (1/p)+(1/g) =1 and define
WooT) = {x € L>(T, X): 2 € LYT, X*)}. In this definition the derivative is
understood in the sense of vector valued distributions. Furnished with the
norm || xlw, ;e =(1%127cx. xr+ 1 £ 2cx, xu)'%, W 3o(T) becomes a separable reflexive
Banach space, which embeds continuously into C(7T', H). Furthermore since we
have assumed that X embeds compactly into H, we have- that W,(T) embeds
compactly into L?(T, H). For details we refer to Zeidler to Zeidler [12], pro-
position 23.23, p. 422 and p. 450. When p=¢=2, we write W,(T)=W(T) and
in this case W(T) is a separable Hilbert space with inner product (x, y)war =
(x, Vier. v+ (%, Ve, x'. We model the control space by a separable reflexive
Banach space Y. By P;.(Y) we will denote the family of all nonempty closed
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and convex subsets of Y. A multifunction (set-valued function) U: T—P,(Y)
is said to be measurable, if for all yeY the R,-valued function t—d(y, F(t))=
inf{|y—v|y: veF(t)} is measurable. Other equivalent definitions of measura-
bility can be found in Wagner [10], theorem 4.2.

Following Kolpakov [6], we say that a sequence of operators A,: X—X¥*,
G-converges to an operator A: X—X*, if for all n=1, A7', A™': X*—X are
defined and for every x*eX* Az'x*—A-'x* in X (hence strongly in H). We
will use the symbol G to indicate G-convergence. This is a nonlinear abstract
extension of a notion first introduced by Spagnolo for linear parabolic and
elliptic equations and extended to abstract linear evolution equations by Zhikov-
Kozlov-Oleinik-Ngoan [13]. Also this notion is closely connected to the se-
quential I'-convergence of certain related integral functionals. For details we
refer to the well-written monograph of DalMaso [3].

3. Main results

We will need the following hypotheses on the data of (1):

H(A): A: TxXxXXE—X* is an operator such that
1) JJAG+7, x, HD—AE, x, D|«=O0(@)A+| x||?Y) for all ¢, t+reT, xeX, e
E and with O(z) being independent of 4 and x,
(2) x—A(t, x, ) is hemicontinuous (i.e. r—<A(t, x+ry, 2), z> is continuous
from [0, 1] to R, for every x, y, z€X),
(3) <A@, x, H)—A@, v, ), x—yd>=cislx—y|? for all teT, x, yeX, AeBSE
compact and with ¢;3>0 and 2<p<o (i.e. A(t, -, A) is strongly mono-
tone, uniformly for A= B),
4 AG, x, Dls+=Zc.s(1+|x||?"Y) for all teT, xX, Ae BSE compact and
with ¢;5>0, .
(5) if A,—4, then for all teTA(@, -, 1,) — A, -, A).
H(f): f: TXHXE—-.L(Y, H) is a map such that
(1) t—f(, x, ) is measurable,
@) If@, x, Dlle=ast)+bglx|?? a.e. for all AcB<E compact and with
ag(-)e LYT),
3) If@, x, D—fG, vy, Dlle<kplt)|x—y| a.e. for all AeBSE compact and
with kz(-)eL¥T),
(4) A2—f({, x, H)u and 2 — f(¢, x, A)*u are both continuous (here ucY, u*
ey,
HU): U: T—P;(Y) is a measurable multifunction such that |U(#)|=sup{|ju| :
ueU®)} =M with M>0.
H,: A—x,(4) is continuous from E into H.
Also our hypothesis on the cost integrand L(¢, x, 4, u) is the following:
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H(L): L: TXHXEXY—R:=R\U{+x} is an integrand such that

(1) @, x, A, u)—L(t, x, 4, u) is measurable,

(2) (x, A, u)—L(@, x, 4, u) is lower semicontinuous (/.s.c.),

3) ¢st)—css(| x| +lully)S L, x, 4, u) for all A& BSE compact, with ¢5(-)

e LY(T) and ¢s5>0.

Given [4, u]J€E XSy (recall Sy={u: T—Y measurable such that u(t)cU(t)
a.e.}), under hypotheses H(A), H(f) and H,, we know (cf. Papageorgiou [8],
theorem 3.1), that problem (1) admits a solution x(2, u)(:)EW (T)S C(T, H).
Furthermore using the monotonicity of A(t, -, ) (hypothesis H(A)(3)) and the
Lipschitzness of f(¢, -, A) (hypothesis H(f)(3)), we can easily check that x(4, u)
(-) is unique. So we can defin: the map p: EXSy—L?(T, H) by pQ, u)(-)=
x(A, u)(+) (the solution map). In what follows on Sy S L=(T, Y) we consider the
relative w*-topology. Since LT, Y)=LYT,Y** and LYT,Y*) is separable
(recall that Y is separable reflexive), it is well known that Sy topologized as
above is compact and metrizable.

Our first result establishes the continuity properties of p(-, +):

Proposition 1. If hypotheses H(A), H(f(, HU) and H, hold, then p: EX
Sy— L?(T, H) is continuous.

Proof. Let [Z,, u,]—[4, u] in EXSy and let x,(:)=p(4,, u,)(+) and x(:)=
p(4, u)(-). First we establish some a priori bounds for the states {x,},.;. To
this end, with B={4,, 4} ,::SE we have:

Ea)+ AR, xa(8), 2a)=f(, xa(t), An)ua(t) a.e.

# <xn(t)y x(t)>+<A(t’ xn(t)) 27!): xn(t)>=(f(t: xn(t)’ Zn)un(t), xn(t)) a.e.

5o a1+ casll OIS 1, 50®), 2)ad] -1 50O+ a5 a.e.

(for some c,p, cs5>0; cf. hypotheses H(A)(3) and (4)),

=5
1d . o '
=>3—c—it—lxn(t)l +calxaMIPS| (R, x20), Adun®) 7l 2@l +ce5 a.e.
(for some >0 such that |-|<7|-|; recall X embeds into H continuously),
d
=7 | Xa@) 242048l xOIPS2] f, x2(), Adun®Iyl| xa()]+2¢58 a.e.

Using the elementary inequality ab=(e?/q)a?+(1/e?p)b?, a, b, e>0 (Young’s
inequality), we get

1

e?p

Sr 01+ 2ol @152 (S £ 240), 220015 5 | 201) + 2cus

a.e.
Choose >0 so that 2y/ePp=2c=e=(y/cp)''?, to get
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| a1 S cunl £, 2a(8), 2hea®)| -+ 2658

(with Con= 277( c:;p )P—1>0),

t
= 12a®1"S [ 2oln) |+ | M2cas(as(s)+bs| 24(s)| *9d s+ 2bces

< M3I4+20-1 Mg ) agllg+2‘1‘1chwb'}3S: | %n(s)|2d s+2bsCss
(with M,>0 such that srggl)lxo(ln)lng).

Invoking Gronwall’s inequality, we deduce that there exists M,>0 such
that for all =1 and all teT, we have

| x2(t)| EM,.
So we can write

d
<7 | BRI 20l 2a®1PS2 £, £a(t), 2a)ualt)| My+2605 a.c.
= e Ixa®Pdt < MI+2MM,]1 72, 2a(0), )l edt+ 20005

gM%+2MM2§:<aB<t>+bBM§N>dt+2bcw.

From this inequality, we deduce that there exists M;>0 such that for all
n=1, we have
[ %2l x) = Ms.

Finally recall that %,(t)+A(t, xa(t), A.)=Ff(, x4(2), An)us(t) a.e. Combining
the above bounds with the growth hypotheses H(A)4) and H(f)(2), we get that
there exists M,>0 such that for all n=>1

||-’3n”1,‘1(r, X*)§M4 .

Therefore we have shown that the sequence {x,(:)}.,; is bounded in
WooT) and since the latter is reflexive, by the Eberlein-Smulian theorem (cf.
Lakshmikantham-Leela [7], theorem 1.1.12, p. 7), we have that {x,(-)},., is
relatively sequentially weakly compact. So by passing to a subsequence if

necessary, we may assume that x, Z % in W oo T). Since Wpo(T) embeds com-
pactly in L?(T, H), we have x, — % in LT, H).
Next consider the following evolution equation:

{ IaO)+AE, ya®), 2)=f@, 2@), Du(t) a.e. }
Ya(0)=xo(4).
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From theorem 1 of Kolpakov (see also Lemma 5 of that paper), we
have that y,—y in L?(T, H), with yeW,(T, H)S L?(T, H) being the unique
solution of the evolution equation

{ ID+AE, y@), H=1f(t, £@), Hu®) a.e. }
¥(0)=2x44).

Let ga(-)=F(%n, A)()=F(, 2a(+), 2)ua(-) and g(-) = f(%, D) = f(-, 2(-),
ADu(+). Our claim is that g.(-)— g(+) in L?(T, H). Indeed let heL?(T, H).
Then we have:

((8nr Wpe={,(F(t, 5a(8), ZuJua(®), H(E)dE

={ a0, £, 220), 2YRE)rredt.
From hypothesis H(f)(4) and the dominated convergence theorem, we get
[, £, 240), 2R OYradt=] uit), £2, 2(0), 2 RDIrract

= (&ny h))pq —> (&, h))pq.

Now note that
<xn(t)—5'n(t)s xn(t)_yn(t)>+<A(t: xa(t), 2n)“A(t, Ya(d), 111): Xa(t)— ya)

+(ga)— &), x2(t)—ya()) a.e.

1d
S5 dr [ X2()— ¥ 12 =(gr(t)—g®), xa(t)—x(1)) a.e.
(since by hypothesis H(A), A(t, -, A,) is monotone for all n=>1)

=

1 1
#E lxn(t)—yn(t)‘zé'z" ‘xo(zn)—xu(z)12+((gn—g: xn_yn))pq-
But since gnig in LT, H), we have ((g»—&, Xn—Y2))pq—0 as n—oo,
So for all t=T, we have ,
| x2()—ya@®)|2—>0 as n— oo,

On the other hand, we know that x,—Z% and y,—y in L?(T, H). Therefore
we conclude that 2=y. So we have

{ 2O+ AR, 20), D=1, 2@), Du®) a.e. }
x(0)=x44), u@t)eU®) a.e.

Hence x(-)=p(4, u)(-)=x(+) =3 x4(-)=p(An, a)+) = p(4, u)(-)=x(-) in L*(T,
H)= p(-, -) is continuous as claimed. Q.E.D.




OPTIMIZATION OF PARAMETRIC CONTROLLED 113

Next we examine the cost functional [4, u]—J(4, u):

Proposition 2. If hypotheses H(A), H(f), HU), H, and H(L) hold, then
[4, ul—=J@A, u) is l.s.c. from EXSy into R=R\ {4 o}.

Proof. We need to show that for every =R, the level set
Ko={[A, uleEX: J(A, u)<60}

is closed. To this end let [1,, u,]=Ks n=1 and assume that [4,, u,]—[4, u]
in EXSy. If we set x,(-)=p(A,, u,)(-) and x(-)=p(4, u)(+), from proposition 1
we have that x,—x in L?(T, H). Recall that E being a complete metric space
is isometrically isomorphic to a closed subset of a Banach space V. Let B=
{2, A} n21SE compact and let Vp be the closed subspace of V generated by
the isometric image of B. Then V is separable (in fact, compactly generated).
Hence due to hypothesis H(L), we can apply theorem 2.1 of Balder [1] and get
that

n—00,

[ 2a, 20, 2, wepdrsim(’ L, %), 20, uatat

= /2, WELm (R, u)<0
=[4, uleK,.

So indeed K, is closed in EXSy and so J(-, ) is L s.c. Q.E.D.

Now we are ready to establish the existence of an optimal control for
problem (P,). Since our cost functional is R-valued, we will also need the fol-
lowing hypothesis:

H,: there exists at least one u=Sy such that for all 2€E, J(A, u)<M, with
M>0.

This hypothesis, together with H(L), guarantees that the value B of the
problem is finite. Using the a priori bounds obtained in the process of the
proof of proposition 1, we can easily see that hypothesis H, is satisfied if for
example E is compact and for all A€E, xe€H with |x|<r and u€Y with
luly<M, we have L(t, x, 2, W)<¢,(¢) a.e. with ¢.(-)e L¥(T).

Theorem 3. If hypothesis H(A), H(f), HU), H,, H(L) and H, hold, then
problem (P,) admits an optimal control.

Proof. Since by proposition 2, J(-, -) is l.s.c., from theorem 4, p. 122 of
Berge [2], we know that u — m(u)=sup J(4, u) is l.s.c. from Sy into R. So
AcE

insf m(u) admits a solution, i.e. there exists #&Sy such that f=m(#). Q.E.D.
ue U
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Now we turn our attention to the parametric optimal control problem (/7).
To analyze this problem and establish the continuity of the value i— m,(R)
=inf[ J(4, u): ueSy] (robustness or well-posedness of the optimization problem),
we will need the following stronger hypothesis on the cost integrand L(¢, x4, u):

H(L),: L: TXHXEXY—R is an integrand such that

(1) @, u)— L(t, x, 4, u) is measurable,

2) (x,A u)— L, x, A, u) is l.s.c.,

38) (x, A)— L(t, x, &, u) is continuous,

4) L, x, A, -) is convex,

(5) for every BSE compact and >0, there exists ¢,5(-) L*(T) such that
|L(t, x, A, u)| <¢.p(t) a.e. for all AeB, all xeH with |x|<r and all
ueY with u|z<M.

Then we have the following existence and stability result concerning pro-
blem (B):

Theorem 4. If hypotheses H(A), H(f), HU), H, and H(L), hold, then for
every A€ E, (P,) has a solution and 2—m,(4) is continuous.

Proof. The existence part of the theorem is an immediate consequence
of propositions 1 and 2. So we need to prove the stability part.

Let 4,—A4 in E. For each n=1, let u,&Sy such that m,(A,)=J(u,, 4A.).
By passing to a subsequence if necessary, we may assume that u,—u in Sy
(recall on Sy we consider the relative w*—L>(T, Y) topology). Hence proposi-
tion 1 tells us that x,(-)=p(An, u)(-)—x(-)=p(4, u)(-) in L?(T, H). Then as
in the proof of proposition 2, via theorem 2.1 of Balder [1], we get that

my (D)< J(A, w)=lim J(4n, un)=lmmi(4,). 2

Next let u=Sy such that m,(A)=J(4, u). Let x,(:)=p(d,, u)X-). Then from
proposition 1, we have x,(:) = p(4An, u)(-)—x(-) = p(&, u)(+) in L?(T, H). Also
because of hypotheses H(L), (3) and (5) and the dominated convergence theorem,
we get that

J(An, u) —> J(4, u)=my(4)
= lImmy(2,)=my(2). 3)

From (2) and (3) we conclude that m,(4,)—m,(4); i.e. m,(-) is continuous.
Q.E.D.

4. Applications

In this section we present three examples of distributed parameter systems,
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which illustrate the applicability of this work.
(A) Let ZSR" be a bounded domain with smooth boundary I"'=9Z. We
consider the following nonlinear parabolic control system:

ax

o —diwv a(z, Dx(2), )=f(t, z, x(t, 2), A+ B, z, Du(t, z) a.e. on TXZ

x(oy Z)ZXO(Z, 2) a.e. on Z) x|Txr:0’ ”u(t’ ')"L“Z)ér(t) ae.

4

The cost criterion is given by
7@, u)=S:§Z L, z, x(t, 2), 4, u(t, z))dzdt.
Let Sy={usLXTXZ): |u(t, )|rez=<r(t) a.e.}. As before our problem is:

- inf sup J(4, u)=4. (Ps)

ueSy A€E

We will need the following hypotheses on the data:

H(a): a(z, § 2)=0¢0(z, & A) with ¢: ZXR*"XE—R is a function such that

(1) z—¢(z, & A) is measurable,

(2) ¢(z, -, A) is strongly convex (cf. Zeidler [12], p. 264) and positivively
homogeneous of degree p&[2, o) (hence d;¢(z, &, A) denotes the Frechet
derivative of ¢(z, -, 1)),

(B cisl§lP—con=¢(2, &, D)< cop(14]1§|7) for all (z, )eZXRY, all AeBSE
compact and with ¢,p, .5, c35<0,

(4) if ,—4 in E, then ¢(z, &, Aa)—¢(z, &, ) a.e. on Z,

H(f),: f: TXZXRXE—R is a function such that

1) ¢, 29—f(@, z, x, ) is measurable,

@) 1f@ 2, %, )—f(t, 2, 3, D|<kg(t, 2)|x—y| a.e. for all A& BSE compact
and with kze L=(T X 2),

(3) 2—f(t, z, x, A) is continuous,

4) 1f 2,0, ) <as(t, 2) a.e. for all ;=&BSE compact and with ax(-, -)
e LT, L¥2)).

H(B): B: TXZXE—R is a function such that

(1) (¢, 2—B(t, z, 2) is measurable,

(2) A-B(t, z, 2) is continuous,

(3) B(t, -, HeL=(Z) and t—||B(, -, D|1>z < LYT).

H(r): reL>(T).
Hg: 2—x,(4)(-) is continuous from E into L% Z).
H(L),: L: TXZXRXEXR—R=RU/{+} is an integrand such that

1) @,z x,2 u)—-L(t, z, x, A, u) is measurable,

(@) (x,A, u)y—»L(t, z x,4, u)is Ls.c.,

(3) L, 2z, x, &, -) is convex,
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4) ¢ut, 2)—cp@)(Ix|+1u)SLE, 2z, x, u) a.e. for all A& B&FE compact and
with ¢pe LN(T X Z) and czE€ L*(Z).

Theorem 5. If hypotheses H(a), H(f),, H(B), H(r), H',, H(L) and H, hold,
then problem (P;) admits an optimal control.
Proof. From hypothesis H(a), we have that

z —> a(z, &, A) is measurable

and £—a(z, & 2) is strongly monotone (cf. Zeidler [12], p. 264).

Let X=W}?(Z), H=L*Z), X*=W%Z) and Y=L*Z). From the Sobolev
embedding theorem, we know that (X, H, X*) is an evolution triple with all
embeddings being compact. Let a: W§?(Z)XW§?(Z)XE — R be the Dirichlet
form defined by

a(x, 3, z>=§za<z, Dx(2), )Dy(2)dz.

Then using the properties of a(z, & 2) (derived easily from those of
¢(z, &, 4); cf. hypothesis H(a)), we have for all A&eBSE compact

la(x, y, DI Zésllx|P vl
and
a(x, x—y, AH—a(y, x—y, AZ&Cpllx—y|77!
with &5, 6.5>0. Then define A: Wi ?(Z)X E-W~4Z) by
(Alx, 2), y>=a(x, y, A).

Clearly then A(-, A) satisfies hypotheses H(A)(1)—(4). Furthermore, if we
set

0x, D= ¢z, Dx(2), Ddz  [x, DeWE2)XE,

from hypothesis H(a)(4) and theorem 5.14, p. 51 of DalMaso [3], for 4, — 4 in
E we have
F“q(lU—'Wép(Z))@(, 'zn)::@(, 2)

So invoking theorems 3.3 and 2.17 of Defranceschi [4], we get

G
A(-, 4n) — A(, 4).

Thus we have satisfied hypothesis H(A).
Also set F(t, x, D(-)=f, -, x(-), A), B, A)()=B(, -, ) and L(, x, A, u)=

SZL(t, z, x(2), 4, u(z))dz and using hypotheses H(f),, H(B) and H(L),, we can
easily see that H(f) and H(L) hold.
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Now rewrite (4) in the following equivalent abstract form
)+ Ax@), D=F(t, x@), D+ B, Du®) a.e.
{ x(0)=2%,4), u®)eU(t) a.e. }
where 24(A)(-)=x4(+, DL Z)and U@t)={ucs L Z)=Y : ||u|<r()}. Also rewrite
the cost functional as J(4, u):S:f,(t, x(t), A, u®)dt. Thus problem (P;) is a

particular case of problem (P,). Applying theorem 3, we get the desired optimal
control. Q.E.D.

This example incorporates the generalized nonlinear heat equation. More
precisely, consider the following system:

9% _ % Di(a(z, D Dax(D] **Dyx(@)=1(, 2, x(t, 2), D)

+B(t, z, Hu(t, z) ae. on TXZ (5)
x(0, 2)=x4(2, ) a.e. on Z, x|p,r=0, |u(t, )l|.<r() a.e.
This system is a particular instant of (4). Indeed in this case
a(zx Ey l)zaeSD(Z, 57 Z)
. 1 X
with SD(Z’ E: 2)=})—k§1 a(z, Z)'Ek'p'
G
So if we assume, for example, that a(z, 4,) — a(z, ) r.e. on Z, then we
have A(-, 4,) — A(-, 2) (in this case A(-, 1), A&E is the pseudo-Laplacian) and
so theorem 5 holds.
(B) Again let ZSR" be a bounded domain with smooth boundary I"=dZ.

We consider the following semilinear parabolic control system, parametrized by
A€E:

—a—t——i‘ngj(aU(z, AD;x(t, 2)=f(@, z, x(t, z), A)
+B(t, z, Hu(t, z) a.e. on TXZ (6)
x(0, 2)=x4(2, A) a.e. on Z, x|7,r=0 and |u(t, )| =r(t) a.e.
In this case the cost functional is the following quadratic criterion:
b g
n hd

JQ, u)=—é—g gzﬁl(z, DI, 2= 2, 2)|*dzdt+ S:Sz 0.(z, Dl u(t, z)|*dzdt

with ¢>0. As before we consider the problem

inf sup J(2, u)=48. (P.)

usSy A€k

We will need the following hypotheses on the data:



118 N. S. PAPAGEORGIOU

H(a),: foreachi, j=1, -, N, (t, z2)—a;,(t, z) is measurable, 7},]|5]|2§i§]ila“(t, z,A)
<7r3|€|? for all (t, z2)&€T X Z and all A& BSE compact and with 7z, 73>0,
ay;=ay;; and finally |a;it, z, A—au(t', z, A <ka(2)|t—t'| a.e. with ks(-)e
L=(Z) and Ae BSE compact. '

H(): 0<d,z< 0.(z, 2), 0:(2, 2) < d,p for all (z, H)=ZXB, BE&E compact, z —
0.(a, A), 0(z, A) are measurable and A—6,(z, 4), 0:(z, A) are continuous.

H,: If 2,—A4 in E, then au(, -, As) — ay(t, -, A) in LXZ) and Dyat, -, i) —
Diat, -, A) in H™Y(Z) for every j=1, 2, ---, N.

Remark. If N=1, then the above hypothesis is equivalent to saying that
a@t, -, A,)—a(, -, A) in L*Z). In this case hypothesis H, takes the following
more general form: 1/a(t, -, 2,,)1 1/a(t, -, A) in L¥Z) for all teT (see Zhikov
et al. [13]).

Note that in this case, hypothesis H, is automatically satisfied.

Theorem 6. If hypothese H(a),, H(8), H(f),, H(B), H(r) and H, hold, then
problem (P,) admits an optimal control.

Proof. In this case the evolution triple is (H¥Z), L¥Z), H Y(Z)). So if
we define A: TXHYZ)XE—HYZ) by

N
A, %, 2, )=|_ 2 ault, 7, DDix(@Dy()dz,
then clearly this operator satisfies hypotheses H(A)(1)—(4). Furthermore if we

set

o, x, »=| >i§= at, z, VD,x(2)D;x(z)dz

Zi 1
then from hypothesis H,, we have that if 2,—4 in E, then
Frogw—HYZ)—D(t, +, 2)=0(, -, A) (cf. DalMaso [3]
G
= A(t, -, An) —> A(t, -, 2) (cf. Defranceschi [4]).

So we can apply theorem 3 and get an optimal control for (P,). Q.E.D.

(C) The abstract framework of this paper allows us to consider also ho-
mogenization problems. As before let Z<RY be a bounded domain with smooth
boundary I'=0Z. Let E=[0,1]. For 2=(0, 1], we consider
0x . z
o —di 0(7, Dx(t, 2))=f(t, 2, x(t, 2), 2)

B, z, Hult, 2) a.e. on TXZ (6):

x(0, 2)=x(2, ) a.e. on Z, x|r.r=0 and [lu(t, -)[|.=r() a.e.
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For 2=0, we consider the homogenized system

ax
ot
x(0, 2)=x4(2, 2) a.e. on Z, x|7,r=0 and |ju(t, -)|.Zr(t) a.e.

—div 4(Dx(t, 2))=f(, z, x(t, z), A)+B(, 2)u(t, z) a.e. on TXZ (6)

Our cost functional is the quadratic cost functional of example (B). In this
case we examine the following parametric optimal control problem:

inf{ J(u, 2): ueSyl=m,(4). (Ps)

In what follows, K denotes the unit cube in RY.
H(a),: Hypothesis H(a) holds and in addition a(-, &, A) is K-periodic and satisfies

la(z, &, D—a(z, &, DI <E(&Ml+1&:1)P21€6:—Ell.

Then from Fusco-Moscariello [5], we know that 4(&) in the homogenized
state equation is given by

a(g):SK a(6, Dv(6))d8

with v(-) being the unique solution of

SKa(0, Du(6))D7(6)d6=0  for all peWia(K)
(O O+ WEEK)

where W3 A(K)={veW*?(K): u(-) has the same trace on opposite faces of K}.
Then combining corollary 3.3 of Fusco-Moscariello [5], with theorem 4 of this
paper we get:

Theorem 7. If hypotheses H(a),, H(f),, H(B), H(r), H(8) and H, hold, then
for every AcE, problem (Ps) has a solution and if A,—0 in E then my(A,)—m,(0)
(i.e. my(+) is continuous at A1=0).

Homogenization allows us to analyze the properties of inhomogeneous ma-
terials with periodic structure by considering a homogeneous (limit) material
whose overall response is close to that of the original periodic material.
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