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Abstract. We prove the existence of two new special lagrangian surfaces
which are conical varieties over certain representations of the homogeneous
spaces $E_{6}/F_{4}$ and $SU(6)/SP(3)$ .

1. Introduction

Lagrangian surfaces are of great interest not only to those working on
dynamical systems, but also to the minimal surface specialists. In particular,
it is well known that a special Lagrangian (SLAG) cone is an absolutely area-
minimizing surface everywhere smooth except for a singular point at the origin
[3]. In [1], the author mentioned the idea of looking into the various repre-
sentations of the group $SU(n)$ to aid in the search for new SLAG cones. This
has resulted in the discovery of the following SLAG cones: $SU(n)/O(n)[1]$ ,
$S(U(n)\times\cdots\times U(n))[1][2]$ . In this article, the search for the classification of
SLAG cones continues with the addition of two new cones.

2. The homogeneous space $E_{6}/F_{4}$

Let $O$ denote the Cayley algebra (octonions) over the reals, and denote by
$M(3, O)$ the set of all $3\times 3$ matrices with entries in $O$ . Let $9(3, O)$ be the
subset of $M(3, O)$ consisting of all $3\times 3$ Hermitian matrices. By Theorem 2 of
[4], the tangent space at the identity point of the compact symmetric space
$E_{\epsilon}/F_{4}$ is isomorphic to

$\sigma=\{T\in J(3, O)|tr(T)=0\}$ .
Let $M(3, O)^{C}$ denote the complexification of the space $M(O, O)$ . This induces a
natural embedding of $E_{6}/F_{4}$ into the space $J(3, O)^{C}\cong C^{27}(cf$([4] Theorem 6).
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Theorem 1. The cone over $E_{6}/F_{4}$ in $C^{27}$ is SLAG.

Proof. It is clear that for any pair of matrices $X,$ $Y\in q\oplus iRl(I=3\times 3$

identity matrix),

${\rm Re}\langle iX, Y\rangle=\omega(X, Y)=0$ ,

where $i$ is the complex structure induced by the complexification, ${\rm Re}(z)$ denotes
the real part of the complex number $z$ , and $\omega$ is the standard K\"ahler 2-form on
$C^{27}$ . Thus the 27-dimensional space $\sigma r\oplus iRI$ is a Lagrangian plane. Observe
that $E_{6}/F_{4}$ in $C^{27}\cong X(3, O)^{C}$ is an orbit of $E_{6}$ through the point $iI$ and the cor-
responding action of the Lie algebra $\mathcal{E}_{6}$ of $E_{6}$ on $iI$ gives

$\mathcal{E}_{6}\cdot iI=\{X\cdot iI|X\in \mathcal{E}_{6}\}=\sigma$ .
Furthermore, $E_{6}$ is an isometry of $C^{27}$ , being a subgroup of $SU(27)[4]$ . The-
refore, the cone is calibrated by the standard SLAG form on $C^{27}$ , and this
completes the proof. $\square $

3. The homogeneous space $SU(6)/Sp(3)$

In this case, we replace the Cayley algebra in section 1 with the quaternion
algebra $H[4]$ . We note that here, the symmetric space $SU(6)/Sp(3)$ is now
embedded in the space $\mathfrak{T}(3, H)^{C}\cong C^{15}$ . APplying Proposition 15 in [4], the
tangent space at the identity point of $SU(6)/Sp(3)$ is given by

$x=\{T\in\ovalbox{\tt\small REJECT}(3, H)|tr(T)=0\}$ .
Theorem 2. The cone over $SU(6)/Sp(3)$ in $C^{15}$ is SLAG.

Proof. In this case $q\oplus iRI$ is a 15-dimensional vector space over the reals.
The arguments are similar as in the proof of Theorem 1, and hence omitted. $\square $

Remarks. As seen above, complexifying a linear space results in the
original linear space being a Lagrangian plane with respect to the induced
complex structure. If it also happens that the linear space is the tangent space
of some manifold invariant under an isometry subgroup of the complexified
space, then the manifold is SLAG. It would be interesting to know if there
any other SLAG cones which can be produced in this manner.
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