Yokohama Mathematical Journal Vol. 42, 1994

SUFFICIENTLY DECOMPOSABLE SURFACES IN THE 3-SPHERE

By

KEIGO MAKINO and SHIN'ICHI SUZUKI

(Received October 20, 1993)

1. Introduction

Waldhausen [W] showed that any Heegaard surface H of the 3-dimensional sphere S^3 is decomposed into a connected sum of unknotted tori. As its generalization, Tsukui [T1] and Suzuki [Su1] formulated a prime decomposition theorem for any pair $(F \subset S^3)$ of a connected, closed (=compact, without boundary), oriented surface F in S^3 with a fixed orientation, and discuss among others that whether such prime decompositions are unique. We refer the reader to Tsukui [T2], Suzuki [Su2], [Su3], and Motto [M] for some related topics.

In this paper, we give an affirmative answer to a question raised by Tsukui [T1, Conjecture (7.2)]; that is,

Theorem. Let $(F \subset S^3)$ be a pair of a connected, closed, oriented surface F of genus g(F)=n in S^3 , and V_F and W_F be the closures of components of S^3-F . If both V_F and W_F have ∂ -prime decompositions with n factors, then $(F \subset S^3)$ is not prime.

In [T2], Tsukui gave the proof of this theorem for the case n=2. As a corollary to Theorem, we have the following by induction on n.

Corollary 1. Under the hypothesis of Theorem, $(F \subset S^s)$ has a prime decomposition with n factors.

Combining this with the knot complement theorem due to Gordon and Luecke [GL] and the uniqueness theorem of ∂ -prime decomposition for a compact, orientable 3-manifold with connected boundary ([G], [Sw]), we have the following.

Corollary 2. Under the hypothesis of Theorem, the prime decomposition for $(F \subset S^3)$ is unique, and the knot type of $(F \subset S^3)$ is determined by its complement

¹⁹⁹¹ Mathematics Subject Classification: Primary 57M99, 57M25.

Key words and phrases: surface, prime decomposition.

 $(V_{F}, W_{F}).$

Throughout the paper, we shall only concern with the combinatorial category, consisting of simplicial complexes and piecewise-linear maps.

After establishing two systems of proper disks in 3-manifolds in 1, we prove Theorem in §2.

2. Preliminaries

We will make free use of notation and definitions which were introduced in the paper [Su1].

We use a complete disk system for a compact, connected and orientable 3manifold with nonvoid connected boundary, which is a generalization of a complete disk system for a compression body (see Casson and Gordon [CG]).

Definition 1.1. Let E_1, \dots, E_k be exteriors of non-trivial knots in S^3 , and E_{k+1}, \dots, E_n be solid tori $(\cong D^2 \times S^1)$.

(1) Let M be a 3-manifold homeomorphic to the disk-sum $E_1 \not\models \cdots \not\models E_n$. A disjoint union $D = D_1 \cup \cdots \cup D_{n-1}$ of proper disks in M is said to be a *decomposition disk system* for M iff $cl(M-N(D:M))=E_1 \cup \cdots \cup E_k$, provided that $k \ge 1$. If k=0, then M is a handlebody $n(D^2 \times S^1)$ of genus n, and a disjoint union $D = D_1 \cup \cdots \cup D_n$ of proper disks in M is said to be a *decomposition disk system* iff $cl(M-N(D:M))\cong D^3$, which will be sometimes called a *complete meridian-disk system*.

(2) Let F be a connected, closed and orientable surface, and let d_1, \dots, d_n be mutually disjoint disks in one boundary component $F \times 1$ of $F \times I$. Let d_i' be a disk in ∂E_i for $i=1, \dots, n$. Now let M be a 3-manifold obtained from $F \times I$ and $E_1 \cup \dots \cup E_n$ by identifying d_i and d_i' for $i=1, \dots, n$. Then, ∂M consists of two components, and we denote one which corresponds to $F \times 0$ by ∂_-M and the other by ∂_+M . ∂_+M is a closed orientable surface of genus g(F) + n.

A disjoint union $D = D_1 \cup \cdots \cup D_n$ of *n* proper disks in *M* is said to be a *complete disk system* for *M* iff $\partial D \subset \partial_+ M$ and $cl(M - N(D; M)) = (F \times I) \cup E_1 \cup \cdots \cup E_k$. If k=0, then *M* is a compression body and *D* is a *complete disk system* for *M* in a sense of Casson and Gordon [CG].

3. Proof of Theorem

Let $V_F \cong A_1 \models \dots \models A_n$ and $W_F \cong B_1 \models \dots \models B_n$ be ∂ -prime decompositions for V_F and W_F , respectively. It will be noted that each A_i and each B_i are exteriors of knots. If both V_F and W_F are handlebodies (i. e. $A_i \cong B_i \cong D^2 \times S^1$ for i=1, \dots, n). Theorem is true by Waldhausen [W] (see also [T1] and [Su2]). Thus,

we may assume that V_F is not a handlebody and thus that $A_i \neq D^2 \times S^1$ for $i = 1, \dots, r$, and $A_j \cong D^2 \times S^1$ for $j = r+1, \dots, n$, and $r \ge 1$.

Let D_V be a decomposition disk system for V_F , and let $cl(V_F - N(D_V; V_F)) = V_1 \cup \cdots \cup V_r$ with $V_i \cong A_i$ for $i=1, \dots, r$. Now let $U=N(\partial V_1; V_1) \cup N(D_V; V_F) \cup V_2 \cup \cdots \cup V_r$. It will be noticed that D_V is a complete disk system for U and $\partial_+ U = F$. We can easily see that $W_F \cup U = (S^3 - {}^{\circ}V_1) \cup N(\partial V_1; V_1) \cong S^3 - {}^{\circ}V_1$ is a solid torus by [F] or [Ho]. (See Figure 1.)

Figure 1

We have the following claim:

Claim 1. There exists a meridian disk D for $W_F \cup U$ with $D \cap (V_2 \cup \cdots \cup V_r) = \emptyset$.

Proof. Let $W = W_F \cup U$. We may show that

(*)
$$W - {}^{\circ}(V_2 \cup \cdots \cup V_r) \cong r(D^2 \times S^1).$$

If (*) is true, then we see that the homomorphism $\pi_1(\partial W) \rightarrow \pi_1(W - {}^{\circ}(V_2 \cup \cdots \cup V_r))$ of fundamental groups induced by the inclusion is not injective, and thus that there exists a simple essential loop α in ∂W such that α bounds a disk D in $W - {}^{\circ}(V_2 \cup \cdots \cup V_r)$ by the loop theorem, and D is a desired meridian disk.

We now show (*) by induction on r. If r=1, then there is nothing to prove. So, we assume that $r \ge 2$. We know that $W - {}^{\circ}(V_2 \cup \cdots \cup V_{r-1}) \cong (r-1)$ $(D^2 \times S^1)$ by the induction hypothesis, and that V_r is contained in ${}^{\circ}(W - {}^{\circ}(V_2 \cup \cdots \cup V_{r-1}))$. Let us consider the following diagram of homomorphisms of fundamental groups induced by inclusions.

K. MAKINO AND S. SUZUKI

The map i_1 is injective because V_r is an exterior of a nontrivial knot. If i_2 is injective, then both i_3 and i_4 are injective by Van Kampen's theorem, and then we have an injection from $Z \oplus Z$ to the free group of rank r-1, which is a contradiction. Therefore, i_2 is not injective. By the loop theorem, we have a simple essential loop β in ∂V_r such that β bounds a disk E in W-° $(V_2 \cup \cdots \cup V_{r-1} \cup V_r)$. Let $S = N(\partial V_r \cup E; W - °(V_2 \cup \cdots \cup V_{r-1}))$. Then, we can easily see that S is homeomorphic to a one-punctured solid torus and so $(W - °(V_2 \cup \cdots \cup V_{r-1})) - °S$ is homeomorphic to a one-punctured (r-1) $(D^2 \times S^1)$. Now we can conclude that $W - °(V_2 \cup \cdots \cup V_r) \cong r(D^2 \times S^1)$, and completing the proof of Claim 1. \Box

By Claim 1 we can choose a meridian disk D for the solid torus $W_F \cup U$ such that $D \cap U$ consists of some disks and an annulus A. We may assume that $D \cap U$ has the minimum number of disks among all such meridian disks. It follows from the choice of D that the connected planar surface $P = D \cap W_F$ is incompressible in W_F .

The proof of Theorem is divided into two cases.

Case I. W_F is a handlebody (i.e. $B_i \cong D^2 \times S^1$ for each *i*): In this case, we have a similar result to Haken's lemma (Casson and Gordon [CG], Lemma 1.1) for $D \subset W_F \cup U$. This result enables us to construct a 2-sphere in S^3 which gives a non-trivial decomposition for $(F \subset S^3)$.

We have the following claim:

Claim 2. There exists a complete meridian-disk system D_W for W_F such that $P \cap D_W = \emptyset$.

Proof. Let $D_W = D_1 \cup \cdots \cup D_n$ be a complete meridian-disk system for W_F , and we assume that $P \cap D_W$ has the minimum number of components among all such meridian-disk systems. By incompressibility of P and the standard innermost circle argument, we may assume that $P \cap D_W$ consists of simple proper arcs in P.

We suppose that there exist arcs α_i in $P \cap D_W$ which are inessential in P, and let ∇_i be the disks on P cut off by α_i . We choose an innermost arc, say α_1 , so that ∇_1 does not contain any other α_i . We assume that $\alpha_1 \subset P \cap D_1$, and α_1 divides D_1 into two subdisks, say d_1' and d_1'' . Then, we have proper disks $D_1' = \nabla_1 \cup d_1'$ and $D_1'' = \nabla_1 \cup d_1''$ in W_F . We can deform $D_1' \cup D_1''$ into general position in W_F , so that

 $P \cap (D_1' \cup D_1'' \cup D_2 \cup \cdots \cup D_n) = P \cap \boldsymbol{D}_W - \boldsymbol{\alpha}_1,$

and

$$(D_1' \cup D_1'') \cap \boldsymbol{D}_W = \boldsymbol{\emptyset}$$
.

(In fact, $D_1' \cup D_1''$ is obtained from D_1 by a modification ∇ along ∇_1 in the sense of [Sul, Def. 3.1]. See Figure 2.) Since $D_1' \cup D_1''$ is contained in the 3-ball $B^3 = cl(W_F - N(D_W; W_F))$, both $\partial D_1'$ and $\partial D_1''$ bound disks on ∂B^3 . It is easily checked that one of $D' = D_1' \cup D_2 \cup \cdots \cup D_n$ and $D'' = D_1'' \cup D_2 \cup \cdots \cup D_n$ is a complete meridian-disk system for W_F . This contradicts to the minimality of $P \cap D_W$, and so $P \cap D_W$ does not contain inessential arcs.

Figure 2

We now suppose that each component β_1 of $\boldsymbol{\beta} = P \cap \boldsymbol{D}_W$ is an essential arc in *P*. Let $D \cap F = C_1 \cup \cdots \cup C_m$ be simple loops. Let *Q* be the planar surface obtained from *P* by cutting along the arcs $\boldsymbol{\beta}$, that is, $Q = cl(P - N(P \cap \boldsymbol{D}_W; P))$, which is properly embedded in the 3-ball $B^3 = cl(W_F - N(\boldsymbol{D}_W; W_F))$. Since *P* is incompressible in W_F , *Q* is incompressible in B^3 . Therefore we see that each component of *Q* is a disk and thus that $C_i \cap \boldsymbol{\beta} \neq \boldsymbol{\emptyset}$ for each *i*.

Now we say that an arc β_i is of type I (resp. of type II) if the two points $\partial \beta_i$ contains a single component of $D \cap F$ (resp. two distinct components of $D \cap F$). Then, from the proof of Lemmas 1 and 2 of Ochiai [Oc], there exists a disk C_i such that each arc in β which meets C_i is of type II, and some sequence of isotopies of type A at these arcs (see Jaco [J] p. 24) has been to reduce the number of disks in $D \cap U$. This contradicts to the minimality of $D \cap U$ (and $P \cap D_W$), and completing the proof of Claim 2. \Box

Since P is incompressible in W_F , by Claim 2, we conclude that P is a disk, and so $D \cap U$ consists of the annulus A. Now we have the following.

Claim 3. There exists a complete disk system D_{v}^{*} for U with $D_{v}^{*} \cap A = \emptyset$.

Proof. We remember that D_V is a complete disk system for U, and let $D_V = D_1 \cup \cdots \cup D_{n-1}$. If $D_V \cap A = \emptyset$, then D_V is a required system for U. Thus, we may suppose that $D_V \cap A \neq \emptyset$ and that each component of $D_V \cap A$ is an arc since A is incompressible in U. It will be noticed that each arc in $D_V \cap A$ is inessential in A, since its both endpoints are contained in one boundary component $\partial A \cap \partial_+ U = \partial A \cap F$ of A. Let α be an arc in $D_V \cap A$ which is innermost

on A, and let ∇ be the disk on A cut off by α . We assume that $\alpha \subset D_1 \cap A$, and α divides D_1 into two subdisks, say d_1' and d_1'' . Then, we have proper two disks $D_1' = \nabla \cup d_1'$ and $D_1'' = \nabla \cup d_1''$ in U. We can deform $D_1' \cup D_1''$ into general position in U, so that

and $(D_1' \cup D_1'' \cup D_2 \cup \cdots \cup D_{n-1}) \cap A = \mathbf{D}_V \cap A - \alpha,$ $(D_1' \cup D_1'') \cap \mathbf{D}_V = \emptyset.$

We may assume that $D_1' \cup D_1''$ is contained in one of $N(\partial V_1; V_1)$, V_2, \dots, V_r .

If $D_1' \cup D_1'' \subset N(\partial V_1; V_1)$ (resp. $D_1' \cup D_1'' \subset V_i$ for some *i*), then both D_1' and D_1'' bound disks on $\partial N(\partial V_1; V_1)$ (resp. ∂V_i) and cut off 3-balls from $N(\partial V_1; V_1)$ (resp. V_i), since both $N(\partial V_1; V_1)$ and V_i are ∂ -irreducible and irreducible. By a similar way to the proof of Claim 2, it is easily checked that one of $D_{V'} = D_1' \cup D_2 \cup \cdots \cup D_{n-1}$ and $D_{V''} = D_1'' \cup D_2 \cup \cdots \cup D_{n-1}$ is a complete disk system for U.

By the repetition of the procedure, we can get rid of all arcs in $D_{\nu} \cap A$, and we have a required complete disk system D_{ν}^* . \Box

Now let $W^* = cl(U - N(D_V^*; U))$, and let N^* be the component of W^* which corresponds to $F \times I$ in Definition 1.1(2). Then, we can see that only one component of ∂N^* contains some disks in $cl(\partial N(D_V^*; U) - \partial U)$. Now we denote this component by $\partial_+ N^*$. Since only one component of ∂A is contained in $\partial_+ N^*$ and ∂A does not separate $\partial_+ N^*$, we can take a simple loop γ in $\partial_+ N^*$ such that $\gamma \cap \partial A$ consists of one point and $\gamma \cap N(D_V^*; U) = \emptyset$. Let

$$\Delta = cl(\partial N(P \cup \gamma; W_F) - F),$$

where $P=D \cap W_F$ is a disk. Then, Δ is a proper disk in W_F , and $\partial \Delta$ bounds a disk in $\partial_+ N^*$. Hence $\partial \Delta$ bounds a proper disk, say Δ^* in N^* and thus in $U=W^* \cup N(\mathbf{D}_{V^*}; U) \subset V_F$.

Let $\sum = \Delta \cup \Delta^*$. Then \sum is a 2-sphere which gives a decomposition for $(F \subset S^3)$ into a surface of genus 1 and a surface of genus n-1. This completes the proof of Case I. \Box

Case II. W_F is not a handlebody: In this case, we may assume that $B_i \not\equiv D^2 \times S^1$ for $i=1, \dots, s, B_j \cong D^2 \times S^1$ for $j=s+1, \dots, n$ and $s \ge 1$.

If $D \cap U$ has no disks, that is $D \cap U$ is an annulus, then we can construct a 2-sphere which gives a decomposition for $(F \subset S^3)$ as in Case I. Therefore, we may suppose that $D \cap U$ has some disks. We have the following claim by similar arguments to the proofs of Claim 2 and Claim 3.

Claim 4. There exists a complete disk system D_W for W_F such that each component of $P \cap D_W$ is an essential arc in P. \Box

Let W_1, \dots, W_s be the components of $cl(W_F - N(D_W; W_F))$ with $W_i \cong B_i$ for $i=1, \dots, s$.

We suppose that $P \cap D_W \neq \emptyset$, and let d_1, \dots, d_m be the disks of $D \cap U$ and let $C_i = \partial d_i$ for $i=1, \dots, m$. Then we have the following claim.

Claim 5. There exists C_i with $C_i \cap (P \cap D_W) = \emptyset$.

Proof. We suppose that Claim 5 is false. Then for every *i*, there exists an arc in $P \cap D_W$ that meets C_i . By the technique of Ochiai [Oc], there exists C_j such that each arc in $P \cap D_W$ that meets C_j is of type II, and some sequence of isotopies of type A reduces the number of disks in $D \cap U$, and contradicting minimality of $D \cap U$. \Box

Let C_1 be a loop with $C_1 \cap (P \cap D_W) = \emptyset$, and let Q be the component of planar surface $cl(P-N(P \cap D_W; P))$ with $Q \supset C_1$. It will be noticed that Q is a planar surface properly embedded in some W_j , and Q is incompressible in W_j since P is incompressible in W_F . Hence C_1 is essential in ∂W_j and bounds the disk d_1 in $U \subset V_F$. Since C_1 does not separate ∂W_j , we can take a simple loop, say γ , on ∂W_j such that $\gamma \cap C_1$ consists of one point and $\gamma \cap N(D_W; W_F) = \emptyset$. Now let

$$\Delta = cl(\partial N(d_1 \cup \gamma; V_F) - \partial W_j).$$

Then Δ is a proper disk in V_F and $\partial \Delta$ bounds a disk in ∂W_j . Hence $\partial \Delta$ bounds a proper disk, say Δ' , in $W_j \subset W_F$.

Then the 2-sphere $\Sigma = \Delta \cup \Delta'$ gives a decomposition for $(F \subset S^3)$ into a surface of genus 1 and a surface of genus n-1.

If $P \cap D_W = \emptyset$, then we may assume that $P = D \cap W_F$ is contained in some W_j , and we have a 2-sphere which gives a decomposition for $(F \subset S^s)$ by the same argument as above (provided that P is substituted for Q).

This completes the proof of Case II, and we complete the proof of Theorem.

References

- [CG] A.J. Casson and C. McA. Gordon, *Reducing Heegaard splittings*, Topology and its Appl., 27 (1987), 275-283.
- [F] R.H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. (2), 49 (1948), 462-470.
- [GL] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc., 2 (1989), 371-415.
- [G] J.L. Gross, A unique decomposition theorem for 3-manifolds with connected boundary, Trans. Amer. Math. Soc., 142 (1969), 191-199.
- [He] J. Hempel, 3-MANIFOLDS, Ann. of Math. Studies #86, Princeton Univ. Press, 1976.

K. MAKINO AND S. SUZUKI

- [Ho] T. Homma, On the existence of unknotted polygons on 2-manifolds in E³, Osaka Math. J., 6 (1954), 129-134.
- [J] W. Jaco, LECTURES ON THREE-MANIFOLDS TOPOLOGY, CBMS Regional Conference Ser. in Math. #43, Amer. Math. Soc., 1980.
- [M] M. Motto, Maximal triads and prime decompositions of surfaces embedded in 3-manifolds, Trans. Amer. Math. Soc., 331 (1992), 851-867.
- [Oc] M. Ochiai, On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-468.
- [Su1] S. Suzuki, On surfaces in 3-sphere, prime decompositions, Hokkaido Math. J., 4 (1975), 179-195.
- [Su2] —, On surfaces in 3-sphere, stable congruence, Math. Japon., 20 (1975), 65-83.
- [Su3] —, On surfaces of genus 3 in 3-sphere, Math. Sem. Notes Kobe Univ., 9 (1981), 459-470.
- [Sw] G.A. Swarup, Some properties of 3-manifolds with boundary, Quart. J. Math. Oxford (2), 21 (1970), 1-24.
- [T1] Y. Tsukui, On surfaces in 3-space, Yokohama Math. J., 18 (1970), 93-104.
- [T2] —, On a prime surface of genus 2 and homeomorphic splitting of 3sphere, Yokohama Math. J., 23 (1975), 63-75.
- [W] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 196-203.

K. Makino

NTT Telecommunication Networks Laboratories Musashino-shi, Tokyo, 180 Japan

S. Suzuki Department of Mathematics School of Education Waseda University Shinjuku-ku, Tokyo, 169-50 Japan