SUFFICIENTLY DECOMPOSABLE SURFACES IN THE 3-SPHERE

By
Keigo Makino and Shin’ichi Suzuki

(Received October 20, 1993)

1. Introduction

Waldhausen [W] showed that any Heegaard surface H of the 3-dimensional sphere S^{3} is decomposed into a connected sum of unknotted tori. As its generalization, Tsukui [T1] and Suzuki [Su1] formulated a prime decomposition theorem for any pair $\left(F \subset S^{3}\right)$ of a connected, closed (=compact, without boundary), oriented surface F in S^{3} with a fixed orientation, and discuss among others that whether such prime decompositions are unique. We refer the reader to Tsukui [T2], Suzuki [Su2], [Su3], and Motto [M] for some related topics.

In this paper, we give an affirmative answer to a question raised by Tsukui [T1, Conjecture (7.2)]; that is,

Theorem. Let $\left(F \subset S^{3}\right)$ be a pair of a connected, closed, oriented surface F of genus $g(F)=n$ in S^{3}, and V_{F} and W_{F} be the closures of components of $S^{3}-F$. If both V_{F} and W_{F} have ∂-prime decompositions with n factors, then $\left(F \subset S^{s}\right)$ is not prime.

In [T2], Tsukui gave the proof of this theorem for the case $n=2$. As a corollary to Theorem, we have the following by induction on n.

Corollary 1. Under the hypothesis of Theorem, $\left(F \subset S^{3}\right)$ has a prime decomposition with n factors.

Combining this with the knot complement theorem due to Gordon and Luecke [GL] and the uniqueness theorem of ∂-prime decomposition for a compact, orientable 3 -manifold with connected boundary ([G], [Sw]), we have the following.

Corollary 2. Under the hypothesis of Theorem, the prime decomposition for $\left(F \subset S^{3}\right)$ is unique, and the knot type of $\left(F \subset S^{3}\right)$ is determined by its complement

[^0]Key words and phrases: surface, prime decomposition.
$\left(V_{F}, W_{F}\right)$.
Throughout the paper, we shall only concern with the combinatorial category, consisting of simplicial complexes and piecewise-linear maps.

After establishing two systems of proper disks in 3 -manifolds in $\S 1$, we prove Theorem in §2.

2. Preliminaries

We will make free use of notation and definitions which were introduced in the paper [Sul].

We use a complete disk system for a compact, connected and orientable 3manifold with nonvoid connected boundary, which is a generalization of a complete disk system for a compression body (see Casson and Gordon [CG]).

Definition 1.1. Let E_{1}, \cdots, E_{k} be exteriors of non-trivial knots in S^{3}, and E_{k+1}, \cdots, E_{n} be solid tori ($\cong D^{2} \times S^{1}$).
(1) Let M be a 3 -manifold homeomorphic to the disk-sum $E_{1} q \ldots \not E_{n}$. A disjoint union $\boldsymbol{D}=D_{1} \cup \cdots \cup D_{n-1}$ of proper disks in M is said to be a decomposition disk system for M iff $c l(M-N(\boldsymbol{D}: M))=E_{1} \cup \cdots \cup_{k}$, provided that $k \geqq 1$. If $k=0$, then M is a handlebody $n\left(D^{2} \times S^{1}\right)$ of genus n, and a disjoint union $\boldsymbol{D}=D_{1} \cup \cdots \cup D_{n}$ of proper disks in M is said to be a decomposition disk system iff $c l(M-N(\boldsymbol{D} ; M)) \cong D^{3}$, which will be sometimes called a complete meridiandisk system.
(2) Let F be a connected, closed and orientable surface, and let d_{1}, \cdots, d_{n} be mutually disjoint disks in one boundary component $F \times 1$ of $F \times I$. Let $d_{i}{ }^{\prime}$ be a disk in ∂E_{i} for $i=1, \cdots, n$. Now let M be a 3-manifold obtained from $F \times I$ and $E_{1} \cup \cdots \cup E_{n}$ by identifying d_{i} and $d_{i}{ }^{\prime}$ for $i=1, \cdots, n$. Then, ∂M consists of two components, and we denote one which corresponds to $F \times 0$ by $\partial_{-} M$ and the other by $\partial_{+} M . \quad \partial_{+} M$ is a closed orientable surface of genus $g(F)$ $+n$.

A disjoint union $\boldsymbol{D}=D_{1} \backslash \cdots \cup D_{n}$ of n proper disks in M is said to be a complete disk system for M iff $\partial \boldsymbol{D} \subset \partial_{+} M$ and $c l(M-N(\boldsymbol{D} ; M))=(F \times I) \cup E_{1} \cup \cdots$ $\cup E_{k}$. If $k=0$, then M is a compression body and \boldsymbol{D} is a complete disk system for M in a sense of Casson and Gordon [CG].

3. Proof of Theorem

Let $V_{F} \cong A_{1} \notin \notin A_{n}$ and $W_{F} \cong B_{1} \natural \cdots \not B_{n}$ be ∂-prime decompositions for V_{F} and W_{F}, respectively. It will be noted that each A_{i} and each B_{i} are exteriors of knots. If both V_{F} and W_{F} are handlebodies (i. e. $A_{i} \cong B_{i} \cong D^{2} \times S^{1}$ for $i=1$, \cdots, n), Theorem is true by Waldhausen [W] (see also [T1] and [Su2]). Thus,
we may assume that V_{F} is not a handlebody and thus that $A_{i} \not \equiv D^{2} \times S^{1}$ for $i=$ $1, \cdots, r$, and $A_{j} \cong D^{2} \times S^{1}$ for $j=r+1, \cdots, n$, and $r \geqq 1$.

Let \boldsymbol{D}_{V} be a decomposition disk system for V_{F}, and let $\operatorname{cl}\left(V_{F}-N\left(\boldsymbol{D}_{V} ; V_{F}\right)\right)$ $=V_{1} \cup \cdots \cup V_{r}$ with $V_{i} \cong A_{i}$ for $i=1, \cdots, r$. Now let $U=N\left(\partial V_{1} ; V_{1}\right) \cup N\left(\boldsymbol{D}_{V} ; V_{F}\right)$ $\cup V_{2} \cup \cdots \cup V_{r}$. It will be noticed that \boldsymbol{D}_{V} is a complete disk system for U and $\partial_{+} U=F$. We can easily see that $W_{F} \cup U=\left(S^{3}-{ }^{\circ} V_{1}\right) \cup N\left(\partial V_{1} ; V_{1}\right) \cong S^{3}-{ }^{\circ} V_{1}$ is a solid torus by [F] or [Ho]. (See Figure 1.)

Figure ${ }^{\mathbf{\Sigma}} 1$
We have the following claim:
Claim 1. There exists a meridian disk D for $W_{F} \cup U$ with $D \cap\left(V_{2} \cup \cdots \cup V_{r}\right)$ $=\varnothing$.

Proof. Let $W=W_{F} \cup U$. We may show that

$$
\begin{equation*}
W-{ }^{\circ}\left(V_{2} \cup \cdots \cup V_{r}\right) \cong r\left(D^{2} \times S^{1}\right) . \tag{*}
\end{equation*}
$$

If $(*)$ is true, then we see that the homomorphism $\pi_{1}(\partial W) \rightarrow \pi_{1}\left(W-{ }^{\circ}\left(V_{2} \cup \cdots\right.\right.$ $\cup V_{r}$)) of fundamental groups induced by the inclusion is not injective, and thus that there exists a simple essential loop α in ∂W such that α bounds a disk D in $W-^{\circ}\left(V_{2} \cup \cdots \cup V_{r}\right)$ by the loop theorem, and D is a desired meridian disk.

We now show (*) by induction on r. If $r=1$, then there is nothing to prove. So, we assume that $r \geqq 2$. We know that $W-{ }^{\circ}\left(V_{2} \cup \cdots \cup V_{r-1}\right) \cong(r-1)$ ($D^{2} \times S^{1}$) by the induction hypothesis, and that V_{r} is contained in ${ }^{\circ}\left(W-{ }^{\circ}\left(V_{2} \cup \cdots\right.\right.$ $\left.\cup V_{r-1}\right)$). Let us consider the following diagram of homomorphisms of fundamental groups induced by inclusions.

The map i_{1} is injective because V_{r} is an exterior of a nontrivial knot. If i_{2} is injective, then both i_{3} and i_{4} are injective by Van Kampen's theorem, and then we have an injection from $Z \oplus Z$ to the free group of rank $r-1$, which is a contradiction. Therefore, i_{2} is not injective. By the loop theorem, we have a simple essential loop β in ∂V_{r} such that β bounds a disk E in W ${ }^{\circ}\left(V_{2} \cup \cdots \cup V_{r-1} \cup V_{r}\right)$. Let $S=N\left(\partial V_{r} \cup E ; W-{ }^{\circ}\left(V_{2} \cup \cdots \cup V_{r-1}\right)\right)$. Then, we can easily see that S is homeomorphic to a one-punctured solid torus and so (W $\left.{ }^{\circ}\left(V_{2} \cup \cdots \cup V_{r-1}\right)\right)-{ }^{\circ} S$ is homeomorphic to a one-punctured ($r-1$) $\left(D^{2} \times S^{1}\right)$. Now we can conclude that $W-^{\circ}\left(V_{2} \cup \cdots \cup V_{r}\right) \cong r\left(D^{2} \times S^{1}\right)$, and completing the proof of Claim 1.

By Claim 1 we can choose a meridian disk D for the solid torus $W_{F} \cup U$ such that $D \cap U$ consists of some disks and an annulus A. We may assume that $D \cap U$ has the minimum number of disks among all such meridian disks. It follows from the choice of D that the connected planar surface $P=D \cap W_{F}$ is incompressible in W_{F}.

The proof of Theorem is divided into two cases.
Case I. W_{F} is a handlebody (i.e. $B_{i} \cong D^{2} \times S^{1}$ for each i): In this case, we have a similar result to Haken's lemma (Casson and Gordon [CG], Lemma 1.1) for $D \subset W_{F} \cup U$. This result enables us to construct a 2 -sphere in S^{3} which gives a non-trivial decomposition for ($F \subset S^{3}$).

We have the following claim:
Claim 2. There exists a complete meridian-disk system \boldsymbol{D}_{W} for W_{F} such that $P \cap \boldsymbol{D}_{W}=\varnothing$.

Proof. Let $\boldsymbol{D}_{W}=D_{1} \cup \cdots \cup D_{n}$ be a complete meridian-disk system for W_{F}, and we assume that $P \cap \boldsymbol{D}_{\boldsymbol{W}}$ has the minimum number of components among all such meridian-disk systems. By incompressibility of P and the standard innermost circle argument, we may assume that $P \cap \boldsymbol{D}_{W}$ consists of simple proper arcs in P.

We suppose that there exist arcs α_{i} in $P \cap \boldsymbol{D}_{W}$ which are inessential in P, and let ∇_{i} be the disks on P cut off by α_{i}. We choose an innermost arc, say α_{1}, so that ∇_{1} does not contain any other α_{i}. We assume that $\alpha_{1} \subset P \cap D_{1}$, and α_{1} divides D_{1} into two subdisks, say $d_{1}{ }^{\prime}$ and $d_{1}{ }^{\prime \prime}$. Then, we have proper disks $D_{1}{ }^{\prime}=\nabla_{1} \cup d_{1}{ }^{\prime}$ and $D_{1}{ }^{\prime \prime}=\nabla_{1} \cup d_{1}{ }^{\prime \prime}$ in W_{F}. We can deform $D_{1}{ }^{\prime} \cup D_{1}{ }^{\prime \prime}$ into general position in W_{F}, so that

$$
P \cap\left(D_{1} \cup D_{1}^{\prime \prime} \cup D_{2} \cup \cdots \cup D_{n}\right)=P \cap D_{W}-\alpha_{1},
$$

and

$$
\left(D_{1}^{\prime} \cup D_{1}^{\prime \prime}\right) \cap \boldsymbol{D}_{W}=\varnothing .
$$

(In fact, $D_{1} \cup D_{1}^{\prime \prime}$ is obtained from D_{1} by a modification ∇ along ∇_{1} in the sense of [Sul, Def. 3.1]. See Figure 2.) Since $D_{1}{ }^{\prime} \cup D_{1}{ }^{\prime \prime}$ is contained in the 3ball $B^{3}=c l\left(W_{F}-N\left(\boldsymbol{D}_{W} ; W_{F}\right)\right)$, both $\partial D_{1}{ }^{\prime}$ and $\partial D_{1}^{\prime \prime}$ bound disks on ∂B^{3}. It is easily checked that one of $\boldsymbol{D}^{\prime}=D_{1} \cup D_{2} \cup \cdots \cup D_{n}$ and $D^{\prime \prime}=D_{1}^{\prime \prime} \cup D_{2} \cup \cdots \cup D_{n}$ is a complete meridian-disk system for W_{F}. This contradicts to the minimality of $P \cap \boldsymbol{D}_{W}$, and so $P \cap \boldsymbol{D}_{W}$ does not contain inessential arcs.

Figure 2
We now suppose that each component β_{1} of $\beta=P \cap \boldsymbol{D}_{\boldsymbol{W}}$ is an essential arc in P. Let $D \cap F=C_{1} \cup \cdots \cup C_{m}$ be simple loops. Let Q be the planar surface obtained from P by cutting along the arcs $\boldsymbol{\beta}$, that is, $Q=c l\left(P-N\left(P \cap \boldsymbol{D}_{\boldsymbol{W}} ; P\right)\right)$, which is properly embedded in the 3-ball $B^{3}=\operatorname{cl}\left(W_{F}-N\left(\boldsymbol{D}_{W} ; W_{F}\right)\right)$. Since P is incompressible in W_{F}, Q is incompressible in B^{3}. Therefore we see that each component of Q is a disk and thus that $C_{i} \cap \beta \neq \varnothing$ for each i.

Now we say that an arc β_{i} is of type I (resp. of type II) if the two points $\partial \beta_{i}$ contains a single component of $D \cap F$ (resp. two distinct components of $D \cap F)$. Then, from the proof of Lemmas 1 and 2 of Ochiai [Oc], there exists a disk C_{i} such that each arc in β which meets C_{i} is of type II, and some sequence of isotopies of type A at these arcs (see Jaco [J] p. 24) has been to reduce the number of disks in $D \cap U$. This contradicts to the minimality of $D \cap U$ (and $P \cap \boldsymbol{D}_{W}$), and completing the proof of Claim 2.

Since P is incompressible in W_{F}, by Claim 2, we conclude that P is a disk, and so $D \cap U$ consists of the annulus A. Now we have the following.

Claim 3. There exists a complete disk system $\boldsymbol{D}_{V}{ }^{*}$ for U with $\boldsymbol{D}_{V}{ }^{*} \cap A=\varnothing$.
Proof. We remember that \boldsymbol{D}_{V} is a complete disk system for U, and let $\boldsymbol{D}_{V}=D_{1} \cup \cdots \cup D_{n-1}$. If $\boldsymbol{D}_{V} \cap A=\varnothing$, then \boldsymbol{D}_{V} is a required system for U. Thus, we may suppose that $\boldsymbol{D}_{V} \cap A \neq \varnothing$ and that each component of $\boldsymbol{D}_{V} \cap A$ is an arc since A is incompressible in U. It will be noticed that each arc in $\boldsymbol{D}_{V} \cap A$ is inessential in A, since its both endpoints are contained in one boundary component $\partial A \cap \partial_{+} U=\partial A \cap F$ of A. Let α be an arc in $\boldsymbol{D}_{\boldsymbol{V}} \cap A$ which is innermost
on A, and let ∇ be the disk on A cut off by α. We assume that $\alpha \subset D_{1} \cap A$, and α divides D_{1} into two subdisks, say $d_{1}{ }^{\prime}$ and $d_{1}{ }^{\prime \prime}$. Then, we have proper two disks $D_{1}{ }^{\prime}=\nabla \cup d_{1}{ }^{\prime}$ and $D_{1}{ }^{\prime \prime}=\nabla \cup d_{1}{ }^{\prime \prime}$ in U. We can deform $D_{1}{ }^{\prime} \cup D_{1}{ }^{\prime \prime}$ into general position in U, so that

$$
\left(D_{1}^{\prime} \cup D_{1}^{\prime \prime} \cup D_{2} \cup \cdots \cup D_{n-1}\right) \cap A=\boldsymbol{D}_{V} \cap A-\alpha,
$$

and

$$
\left(D_{1}^{\prime} \cup D_{1}^{\prime \prime}\right) \cap \boldsymbol{D}_{V}=\varnothing .
$$

We may assume that $D_{1}{ }^{\prime} \cup D_{1}{ }^{\prime \prime}$ is contained in one of $N\left(\partial V_{1} ; V_{1}\right), V_{2}, \cdots, V_{r}$.
If $D_{1}^{\prime} \cup D_{1}^{\prime \prime} \subset N\left(\partial V_{1} ; V_{1}\right)\left(\right.$ resp. $D_{1}{ }^{\prime} \cup D_{1}^{\prime \prime} \subset V_{i}$ for some i), then both $D_{1}{ }^{\prime}$ and $D_{1}^{\prime \prime}$ bound disks on $\partial N\left(\partial V_{1} ; V_{1}\right)$ (resp. $\left.\partial V_{i}\right)$ and cut off 3-balls from $N\left(\partial V_{1} ; V_{1}\right)$ (resp. V_{i}), since both $N\left(\partial V_{1} ; V_{1}\right)$ and V_{i} are ∂-irreducible and irreducible. By a similar way to the proof of Claim 2, it is easily checked that one of $\boldsymbol{D}_{V}{ }^{\prime}=$ $D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}$ and $D_{V^{\prime \prime}}=D_{1}{ }^{\prime \prime} \cup D_{2} \cup \cdots \cup D_{n-1}$ is a complete disk system for U.

By the repetition of the procedure, we can get rid of all arcs in $\boldsymbol{D}_{V} \cap A$, and we have a required complete disk system $\boldsymbol{D}_{V}{ }^{*}$.

Now let $W^{*}=\operatorname{cl}\left(U-N\left(\boldsymbol{D}_{V}{ }^{*} ; U\right)\right)$, and let N^{*} be the component of W^{*} which corresponds to $F \times I$ in Definition 1.1 (2). Then, we can see that only one component of ∂N^{*} contains some disks in $\operatorname{cl}\left(\partial N\left(\boldsymbol{D}_{V}{ }^{*} ; U\right)-\partial U\right)$. Now we denote this component by $\partial_{+} N^{*}$. Since only one component of ∂A is contained in $\partial_{+} N^{*}$ and ∂A does not separate $\partial_{+} N^{*}$, we can take a simple loop γ in $\partial_{+} N^{*}$ such that $\gamma \cap \partial A$ consists of one point and $\gamma \cap N\left(\boldsymbol{D}_{V}{ }^{*} ; U\right)=\varnothing$. Let

$$
\Delta=c l\left(\partial N\left(P \cup_{\gamma} ; W_{F}\right)-F\right),
$$

where $P=D \cap W_{F}$ is a disk. Then, Δ is a proper disk in W_{F}, and $\partial \Delta$ bounds a disk in $\partial_{+} N^{*}$. Hence $\partial \Delta$ bounds a proper disk, say Δ^{*} in N^{*} and thus in $U=W^{*} \cup N\left(\boldsymbol{D}_{V}{ }^{*} ; U\right) \subset V_{F}$.

Let $\Sigma=\Delta \cup \Delta^{*}$. Then Σ is a 2 -sphere which gives a decomposition for ($F \subset S^{3}$) into a surface of genus 1 and a surface of genus $n-1$. This completes the proof of Case I.

Case II. W_{F} is not a handlebody: In this case, we may assume that $B_{i} \neq$ $D^{2} \times S^{1}$ for $i=1, \cdots, s, B_{j} \cong D^{2} \times S^{1}$ for $j=s+1, \cdots, n$ and $s \geqq 1$.

If $D \cap U$ has no disks, that is $D \cap U$ is an annulus, then we can construct a 2 -sphere which gives a decomposition for $\left(F \subset S^{3}\right)$ as in Case I. Therefore, we may suppose that $D \cap U$ has some disks. We have the following claim by similar arguments to the proofs of Claim 2 and Claim 3.

Claim 4. There exists a complete disk system \boldsymbol{D}_{W} for W_{F} such that each component of $P \cap \boldsymbol{D}_{W}$ is an essential arc in P.

Let W_{1}, \cdots, W_{s} be the components of $c l\left(W_{F}-N\left(\boldsymbol{D}_{W} ; W_{F}\right)\right)$ with $W_{i} \cong B_{i}$ for $i=1, \cdots, s$.

We suppose that $P \cap \boldsymbol{D}_{W} \neq \varnothing$, and let d_{1}, \cdots, d_{m} be the disks of $D \cap U$ and let $C_{i}=\partial d_{i}$ for $i=1, \cdots, m$. Then we have the following claim.

Claim 5. There exists C_{i} with $C_{i} \cap\left(P \cap \boldsymbol{D}_{\boldsymbol{W}}\right)=\varnothing$.
Proof. We suppose that Claim 5 is false. Then for every i, there exists an arc in $P \cap \boldsymbol{D}_{W}$ that meets C_{i}. By the technique of Ochiai [Oc], there exists C_{j} such that each arc in $P \cap \boldsymbol{D}_{W}$ that meets C_{j} is of type II, and some sequence of isotopies of type A reduces the number of disks in $D \cap U$, and contradicting minimality of $D \cap U$.

Let C_{1} be a loop with $C_{1} \cap\left(P \cap D_{W}\right)=\varnothing$, and let Q be the component of planar surface $\operatorname{cl}\left(P-N\left(P \cap \boldsymbol{D}_{W} ; P\right)\right)$ with $Q \supset C_{1}$. It will be noticed that Q is a planar surface properly embedded in some W_{j}, and Q is incompressible in W_{j} since P is incompressible in W_{F}. Hence C_{1} is essential in ∂W_{j} and bounds the disk d_{1} in $U \subset V_{F}$. Since C_{1} does not separate ∂W_{j}, we can take a simple loop, say γ, on ∂W_{j} such that $\gamma \cap C_{1}$ consists of one point and $\gamma \cap N\left(\boldsymbol{D}_{W} ; W_{F}\right)=\varnothing$. Now let

$$
\Delta=c l\left(\partial N\left(d_{1} \cup \gamma ; V_{F}\right)-\partial W_{j}\right) .
$$

Then Δ is a proper disk in V_{F} and $\partial \Delta$ bounds a disk in ∂W_{j}. Hence $\partial \Delta$ bounds a proper disk, say Δ^{\prime}, in $W_{j} \subset W_{F}$.

Then the 2 -sphere $\Sigma=\Delta \cup \Delta^{\prime}$ gives a decomposition for ($F \subset S^{3}$) into a surface of genus 1 and a surface of genus $n-1$.

If $P \cap \boldsymbol{D}_{W}=\varnothing$, then we may assume that $P=D \cap W_{F}$ is contained in some W_{j}, and we have a 2 -sphere which gives a decomposition for ($F \subset S^{3}$) by the same argument as above (provided that P is substituted for Q).

This completes the proof of Case II, and we complete the proof of Theorem.

References

[CG] A.J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology and its Appl., 27 (1987), 275-283.
[F] R.H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. (2), 49 (1948), 462-470.
[GL] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc., 2 (1989), 371-415.
[G] J.L. Gross, A unique decomposition theorem for 3-manifolds with connected boundary, Trans. Amer. Math. Soc., 142 (1969), 191-199.
[He] J. Hempel, 3-MANIFOLDS, Ann. of Math. Studies \#86, Princeton Univ. Press, 1976.
[Ho] T. Homma, On the existence of unknotted polygons on 2-manifolds in E^{3}, Osaka Math. J., 6 (1954), 129-134.
[J] W. Jaco, LECTURES ON THREE-MANIFOLDS TOPOLOGY, CBMS Regional Conference Ser. in Math. \#43, Amer. Math. Soc., 1980.
[M] M. Motto, Maximal triads and prime decompositions of surfaces embedded in 3-manifolds, Trans. Amer. Math. Soc., 331 (1992), 851-867.
[Oc] M. Ochiai, On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-468.
[Su1] S. Suzuki, On surfaces in 3-sphere, prime decompositions, Hokkaido Math. J., 4 (1975), 179-195.
[Su2] ——, On surfaces in 3-sphere, stable congruence, Math. Japon., 20 (1975), 65-83.
[Su3] , On surfaces of genus 3 in 3-sphere, Math. Sem. Notes Kobe Univ., 9 (1981), 459-470.
[Sw] G.A. Swarup, Some properties of 3-manifolds with boundary, Quart. J. Math. Oxford (2), 21 (1970), 1-24.
[T1] Y. Tsukui, On surfaces in 3-space, Yokohama Math. J., 18 (1970), 93-104.
[T2] —— On a prime surface of genus 2 and homeomorphic splitting of 3. sphere, Yokohama Math. J., 23 (1975), 63-75.
[W] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 196203.

K. Makino

NTT Telecommunication Networks Laboratories
Musashino-shi, Tokyo, 180
Japan
S. Suzuki

Department of Mathematics
School of Education
Waseda University
Shinjuku-ku, Tokyo, 169-50
Japan

[^0]: 1991 Mathematics Subject Classification: Primary 57M99, 57M25.

