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1. Introduction

Waldhausen showed that any Heegaard surface H of the 3-dimensional
sphere S*® is decomposed into a connected sum of unknotted tori. As its gene-
ralization, Tsukui and Suzuki formulated a prime decomposition
theorem for any pair (FCS®) of a connected, closed (=compact, without bound-
ary), oriented surface F in S*® with a fixed orientation, and discuss among others
that whether such prime decompositions are unique. We refer the reader to
Tsukui [T2], Suzuki [Su2], [Su3], and Motto [M] for some related topics.

In this paper, we give an affirmative answer to a question raised by Tsukui
[T1, Conjecture (7.2)]; that is,

Theorem. Let (FCS®) be a pair of a connected, closed, oriented surface F
of genus g(F)=n in S*%, and Vyp and Wy be the closures of components of S*—F.
If both Vg and Wr have 0-prime decompositions with n factors, then (FCS?®) is
not prime.

In [T2], Tsukui gave the proof of this theorem for the case n=2. As a
corollary to [Theorem, we have the following by induction on .

Corollary 1. Under the hypothesis of Theorem, (FCS® has a prime de-
composition with n factors.

Combining this with the knot complement theorem due to Gordon and Luecke
and the uniqueness theorem of d-prime decomposition for a compact, orien-
table 3-manifold with connected boundary [G], [Sw]), we have the following.

Corollary 2. Under the hypothesis of Theorem, the prime decomposition for
(FCS®) is unique, and the knot type of (FCS®) is determined by its complement
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(VF; WF)'

Throughout the paper, we shall only concern with the combinatorial cate-
gory, consisting of simplicial complexes and. piecewise-linear maps.

After establishing two systems of proper disks in 3-manifolds in §1, we
prove in §2.

2. Preliminaries

We will make free use of notation and definitions which were introduced in
the paper [Sul]

We use a complete disk system for a compact, connected and orientable 3-
manifold with nonvoid connected boundary, which is a generalization of a com-
plete disk system for a compression body (see Casson and Gordon [CGD.

Definition 1.1. Let E,, ---, E, be exteriors of non-trivial knots in S° and
E..., -+, E, be solid tori (=2D?*XS").

(1) Let M be a 3-manifold homeomorphic to the disk-sum E.§ - §E,. A
disjoint union D=D,\U---\UD,_, of proper disks in M is said to be a decomposi-
tion disk system for M iff cl(M—N(D: M))=E,\U---UE,, provided that k=1.
If k=0, then M is a handlebody n(D*xS') of genus =z, and a disjoint union
D=D,J---UD, of proper disks in M is said to be a decomposition disk system
iff c(M—N(D; M))=D? which will be sometimes called a complete meridian-
disk system.

(2) Let F be a connected, closed and orientable surface, and let di, -, da
be mutually disjoint disks in one boundary component F X1 of FXI. Let d/
be a disk in 0E; for i=1, ---, n. Now let M be a 3-manifold obtained from
FxI and E,J--UE, by identifying d; and d,/ for ;=1, ---, n. Then, oM con-
sists of two components, and we denote one which corresponds to F X0 by
9_M and the other by .M. 9.M is a closed orientable surface of genus g(F)
+n.

A disjoint union D=D\J---\UD, of n proper disks in M is said to be a
complete disk system for M iff aDC0. M and c/(M—N(D; M)=FXI)JE,\J--
UE,. If k=0, then M is a compression body and D is a complete disk system
for M in a sense of Casson and Gordon [CG].

3. Prbof of Theorem

Let Vp=2A,b - 4A, and Wr=B,} --- § B, be d-prime decompositions for Vg
and W, respectively. It will be noted that each A; and each B, are exteriors
of knots. If both V» and Wy are handlebodies (i.e. A;=B;=D*XS' for i=1,
e, ), is true by Waldhausen [W] (see also [T1] and [Su2]). Thus,
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we may assume that V is not a handlebody and thus that A;#D?*XS! for i=
1, -+, r, and A;=D?*XS* for j=r+1, ---, n, and r=1.

Let Dy be a decomposition disk system for Vg, and let c/(Vy—N(Dy; V)
=V,U---UV, with V ;= A, for i=1, ---, . Now let U=N@V,; V)UN(Dy; VF)
UV,.\U---UV,. It will be noticed that Dy is a complete disk system for U and
0.U=F. We can easily see that W UU=(S*—°"V )UN@V,; V)=S*—°V, is a
solid torus by or [Ho]. (See Figure 1.)

Vl—N(aVl ’ l) N(aVI ’ l)

- oo “"\. ,...- 2RI 7 RIS
2
g ":- s & .- e
:=' \

We have the following claim:

Claim 1. There exists a meridian disk D for W JU with DN(V,\U---UV,)
=@.

Proof. Let W=W,UU. We may show that
(%) W—>(V,uU - UV, )=r(D*XS?).

If (%) is true, then we see that the homomorphism z,(0W)—m,(W—"°(V,\---
UV,)) of fundamental groups induced by the inclusion is not injective, and
thus that there exists a simple essential loop a in 0W such that a bounds a
disk D in W—°(V,U---UV,) by the loop theorem, and D is a desired meridian
disk.

We now show (*) by induction on ». If r=1, then there is nothing to
prove. So, we assume that r=2. We know that W—°"(V,\U---UV,_)=(r—1)
(D*XS") by the induction hypothesis, and that V, is contained in *(W—"°(V,\U---
UV,-1). Let us consider the following diagram of homomorphisms of funda-
mental groups induced by inclusions.

/ m(Vs) \
AN

> ﬂl(W— (VzU Uvr l))
ﬂl(W— (Vz\.,’ UV IUVT))

ﬂl(avr)

i

1
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The map i, is injective because V, is an exterior of a nontrivial knot. If
7, is injective, then both 7, and 7, are injective by Van Kampen’s theorem, and
then we have an injection from Z@Z to the free group of rank r—1, which
is a contradiction. Therefore, 7, is not injective. By the loop theorem, we
have a simple essential loop B8 in 0V, such that B bounds a disk E in W—
(V- UV, ,UV,). Let S=N@V,UE; W—°(V,U--UV,_). Then, we can
easily see that S is homeomorphic to a one-punctured solid torus and so (W—
(VU UV,_))—°S is homeomorphic to a one-punctured (r—1) (D*XS'). Now
we can conclude that W—°(V,U---UV,)=r(D?*XS?!), and completing the proof
of Claim 1. O

By Claim 1 we can choose a meridian disk D for the solid torus WpUU
such that DNU consists of some disks and an annulus A. We may assume
that DN\U has the minimum number of disks among all such meridian disks.
It follows from the choice of D that the connected planar surface P=DNWyg
is incompressible in Wr.

The proof of is divided into two cases.

Case I. Wy is a handlebody (i.e. B;=D?XxS* for each 7): In this case, we
have a similar result to Haken’s lemma (Casson and Gordon [CG], Lemma 1.1)
for DCWgUU. This result enables us to construct a 2-sphere in S® which
gives a non-trivial decomposition for (FCS?).

We have the following claim:

Claim 2. There exists a complete meridian-disk system Dw for W such that
Pf\Dwz ¢

Proof. Let Dy=D,\U---UD, be a complete meridian-disk system for Wg,
and we assume that PN\ Dy has the minimum number of components among
all such meridian-disk systems. By incompressibility of P and the standard in-
nermost circle argument, we may assume that PN Dy consists of simple proper
arcs in P,

We suppose that there exist arcs a; in PN\ Dy which are inessential in P,
and let V, be the disks on P cut off by a@;, We choose an innermost arc, say
a;, so that ¥V, does not contain any other @;. We assume that «;CPND,, and
a, divides D, into two subdisks, say d,’ and d,”. Then, we have proper disks
D,/=V,ud, and D,”=V,Ud,” in Wy. We can deform D,/UD,” into general
position in Wy, so that

PN\(D,\UD,"\UD,\J --- UD)=PN\Dy—a,,
(D1/UD1”)0DW:¢ .

and
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(In fact, D,/UD,” is obtained from D, by a modification V along V, in the
sense of [Sul, Def. 3.1]. See Figure 2.) Since D,’\UD,” is contained in the 3-
ball B*=cl(Wz—N(Dy ; Wg)), both aD,” and dD,” bound disks on aB® It is
easily checked that one of D’=D,/UD,\J---UD, and D”"=D,"\UD,\U---\UD, is
a complete meridian-disk system for Wz. This contradicts to the minimality of
PN\ Dy, and so PN\ Dy does not contain inessential arcs.

—

% 3

Figure 2

We now suppose that each component 8, of 8=PN Dy is an essential arc
in P. Let DNF=C,U---\UC, be simple loops. Let Q be the planar surface
obtained from P by cutting along the arcs B, that is, Q=cl(P—N(PN Dy ; P)),
which is properly embedded in the 3-ball B*=cl(Wr—N(Dw ; Wg)). Since P is
incompressible in Wz, Q is incompressible in B®. Therefore we see that each
component of Q is a disk and thus that C;N\8+ @ for each 7.

Now we say that an arc B; is of typel (resp. of type II) if the two points
0B8: contains a single component of DNF (resp. two distinct components of
DNF). Then, from the proof of Lemmas 1 and 2 of Ochiai [Oc], there exists
a disk C; such that each arc in 8 which meets C; is of type I, and some
sequence of isotopies of type A at these arcs (see Jaco p. 24) has been to
reduce the number of disks in DN\U. This contradicts to the minimality of
DNU (and PN\ Dy), and completing the proof of Claim 2. [

Since P is incompressible in Wy, by Claim 2, we conclude that P is a disk,
and so DU consists of the annulus A. Now we have the following.

Claim 3. There exists a complete disk system Dy* for U with Dy*N\A=Q.

Proof. We remember that D, is a complete disk system for U, and let
Dy=D,J---UD,_,. 1If DyNA=@, then Dy is a required system for U. Thus,
we may suppose that DyN\A+ @ and that each component of DyNA is an arc
since A is incompressible in U. It will be noticed that each arc in DyNA is
inessential in A, since its both endpoints are contained in one boundary com-
ponent AN, U=0ANF of A. Let a be an arc in DyNA which is innermost
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on A, and let V be the disk on A cut off by «. We assume that aCD;NA4,
and a divides D, into two subdisks, say d,” and d4,”. Then, we have proper
two disks D,/=VuUd,’ and D,”=VUd,” in U. We can deform D,’\UD,” into
general position in U, so that

g (D/UD"UDy,\J--\UD,_ ) NA=DyNA—a,
an
(D1/UD1/’)mDV=® .
We may assume that D,"\UD,” is contained in one of N@V,; V), Vs, -, V..
If Dy/UD,”"CN@V,; V,) (resp. D,/'"UD,”CV; for some ¢), then both D,” and
D,” bound disks on aN@V,; V) (resp. dV,) and cut off 3-balls from N(@V,;V,)
(resp. V), since both N@V,; V,) and V,; are od-irreducible and irreducible. By
a similar way to the proof of Claim 2, it is easily checked that one of Dy,’'=
D,/UD,\U---UD,_, and Dy"=D,"\UD,\J---UD,_, is a complete disk system for U.
By the repetition of the procedure, we can get rid of all arcs in DyNA,
and we have a required complete disk system Dy*. [

Now let W*=cl(U—N(Dy*; U)), and let N* be the component of W* which
corresponds to F X[ in Definition 1.1(2). Then, we can see that only one com-
ponent of ON* contains some disks in c/(ON(Dy*; U)—oU). Now we denote
this component by d,N*. Since only one component of 0A is contained in
0.N* and 0A does not separate d,N*, we can take a simple loop y in 0, N*
such that yN\dA consists of one point and y\N(Dy*; U)=¢@. Let

A=Ccl(@N(PUy; Wg)—F),

where P=DN\Wp is a disk. Then, A is a proper disk in Wy, and 0A bounds
a disk in 0,N*. Hence 0A bounds a proper disk, say A* in N* and thus in
U=W*UN(Dy*; U)CTVp.

Let 23=AUA*, Then X is a 2-sphere which gives a decomposition for
(FS?®) into a surface of genus 1 and a surface of genus n—1. This completes
the proof of Case . O

Case II. Wy is not a handlebody: In this case, we may assume that B,z
D*x St for i=1, .-, s, B;=D*XS" for j=s+1, .-, n and s=1.

If DNU has no disks, that is DN\U is an annulus, then we can construct
a 2-sphere which gives a decomposition for (FCS?®) as in Case I. Therefore,
we may suppose that DU has some disks. We have the following claim by
similar arguments to the proofs of Claim 2 and Claim 3.

Claim 4. There exists a complete disk system Dy for Wyr such that each
component of PN\ Dw 1s an essential arc in P. [J
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Let Wy, ---, W, be the components of c/(Wr—N(Dyw ; Wg)) with W;=B,; for
i=1, -, s.

We suppose that PN\ Dy + @, and let d,, ---, d» be the disks of DU and
let C;=ad; for i=1, ---, m. Then we have the following claim.

Claim 5. There exists C, with C,N(PN\Dw)=@.

Proof. We suppose that Claim 5 is false. Then for every 7, there exists
an arc in PN\ Dy that meets C;. By the technique of Ochiai [Oc], there exists
C; such that each arc in PN\ Dy that meets C; is of type II, and some sequence
of isotopies of type A reduces the number of disks in DU, and contradicting
minimality of DN\U. O

Let C, be a loop with C,N\(PNDy)=¢@, and let Q be the component of
planar surface c/(P—N(PNDw; P)) with QDC,. It will be noticed that Q is
a planar surface properly embedded in some W, and Q is incompressible in W;
since P is incompressible in W,. Hence C, is essential in dW; and bounds the
disk d, in UCVr. Since C, does not separate dW,; we can take a simple loop,
say 7, on dW; such that yN\C, consists of one point and yN\N(Dw; Wr)=@.
Now let

A=cl(ON(d,Uy; Vr)—dW},).

Then A is a proper disk in Vz and 6A bounds a disk in W;. Hence 0A bounds
a proper disk, say A’, in W,CWpg.

Then the 2-sphere 3} = AUA’ gives a decomposition for (FCS®) into a
surface of genus 1 and a surface of genus n—1.

If PNDw=¢, then we may assume that P=DN\Wpr is contained in some
W, and we have a 2-sphere which gives a decomposition for (FCS®) by the
same argument as above (provided that P is substituted for Q).

This completes the proof of Case II, and we complete the proof of [Theoreml.

O
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