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1. Introduction

Waldhausen [W] showed that any Heegaard surface $H$ of the 3-dimensional
sphere $S^{3}$ is decomposed into a connected sum of unknotted tori. As its gene-
ralization, Tsukui [T1] and Suzuki [Sul] formulated a prime decomposition
theorem for any pair $(F\subset S^{3})$ of a connected, closed ($=compact$ , without bound-
ary), oriented surface $F$ in $S^{3}$ with a fixed orientation, and discuss among others
that whether such prime decompositions are unique. We refer the reader to
Tsukui [T2], Suzuki [Su2], [Su3], and Motto [M] for some related topics.

In this paper, we give an affirmative answer to a question raised by Tsukui
[Tl, Conjecture (7.2)]; that is,

Theorem. Let $(F\subset S^{3})$ be a Pair of a connected, closed, $or\ell mted$ surface $F$

of genus $g(F)=n$ in $S^{S}$ , and $V_{F}$ and $W_{F}$ be the closures of components of $S^{3}-F$.
If both $V_{F}$ and $W_{F}$ have $\partial$-Prime decompositions wzth $n$ factors, then $(F\subset S^{3})$ is
not $PrZme$.

In [T2], Tsukui gave the proof of this theorem for the case $n=2$ . As a
corollary to Theorem, we have the following by induction on $n$ .

Corollary 1. Under the hypothesis of Theorem, $(F\subset S^{3})$ has a Prime de-
composition with $n$ factors.

Combining this with the knot complement theorem due to Gordon and Luecke
[GL] and the uniqueness theorem of $\partial$-prime decomposition for a compact, orien-
table 3-manifold with connected boundary ([G], [Sw]), we have the following.

Corollary 2. Under the hypothesis of Theorem, the Prime decompOsjtlOn for
$(F\subset S^{3})$ is unique, and the knot type of $(F\subset S^{s})$ is determined by its complemmt
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$(V_{F}, W_{F})$ .
Throughout the paper, we shall only concern with the combinatorial cate-

gory, consisting of simplicial complexes and piecewise-linear maps.
After establishing two systems of proper disks in 3-manifolds in \S 1, we

prove Theorem in \S 2.

2. Preliminaries

We will make free use of notation and definitions which were introduced in
the paper [Sul].

We use a complete disk system for a compact, connected and orientable 3-
manifold with nonvoid connected boundary, which is a generalization of a com-
plete disk system for a compression body (see Casson and Gordon [CG]).

Deflnition 1.1. Let $E_{1},$ $\cdots$ , $E_{k}$ be exteriors of non-trivial knots in $S^{3}$ , and
$E_{i+1},$ $\cdots$ , $E_{n}$ be solid tori $(\cong D^{2}\times S^{1})$ .

(1) Let $M$ be a 3-manifold homeomorphic to the disk-sum $E_{1}\mathfrak{h}\ldots\# E_{n}$ . A

disjoint union $D=D_{1}U\cdots\cup D_{n-1}$ of proper disks in $M$ is said to be a decomposi-

tion disk system for $M$ iff $cl(M-N(D:M))=E_{1}\cup\cdots\cup E_{k}$ , provided that $k\geqq 1$ .
If $k=0$ , then $M$ is a handlebody $n(D^{2}\times S^{1})$ of genus $n$ , and a disjoint union
$D=D_{1}()\cdots\cup D_{n}$ of proper disks in $M$ is said to be a decomPosition disk system

iff $cl(M-N(D;M))\cong D^{3}$ , which will be sometimes called a complete meridian-
disk system.

(2) Let $F$ be a connected, closed and orientable surface, and let $d_{1},$ $\cdots$ , $d_{n}$

be mutually disjoint disks in one boundary component $F\times 1$ of $F\times I$ . Let $d_{i^{\prime}}$

be a disk in $\partial E_{i}$ for $i=1,$ $\cdots$ , $n$ . Now let $M$ be a 3-manifold obtained from
$F\times I$ and $E_{1}\cup\cdots\cup E_{n}$ by identifying $d_{\ell}$ and $d_{i}^{\prime}$ for $i=1,$ $\cdots$ , $n$ . Then, $\partial Mcon-$

sists of two components, and we denote one which corresponds to $F\times O$ by
$\partial_{-}M$ and the other by $\partial_{+}M$ . $\partial_{+}M$ is a closed orientable surface of genus $g(F)$

$+n$ .
A disjoint union $D=D_{1}()\cdots\cup D_{n}$ of $n$ proper disks in $M$ is said to be a

complete disk system for $M$ iff $\partial D\subset\partial_{+}M$ and $ cl(M-N(D;M))=(F\times I)\cup E_{1}\cup\cdots$

$\cup E_{i}$ . If $k=0$ , then $M$ is a compression body and $D$ is a complete disk system

for $M$ in a sense of Casson and Gordon [CG].

3. Proof of Theorem

Let $V_{F}\cong A_{1}\mathfrak{h}\ldots\# A_{n}$ and $W_{F}\cong B_{1}\#\ldots \mathfrak{h}B_{n}$ be $\partial$-prime decompositions for $V_{F}$

and $W_{F}$ , respectively. It will be noted that each $A_{i}$ and each $B_{\ell}$ are exteriors
of knots. If both $V_{F}$ and $W_{F}$ are handlebodies ( $i$ . $e$ . $A_{\ell}\cong B_{i}\cong D^{2}\times S^{1}$ for $i=1$ ,
... , $n$ ), Theorem is true by Waldhausen [W] (see also [T1] and [Su2]). Thus,
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we may assume that $V_{F}$ is not a handlebody and thus that $A_{i}\neq D^{2}\times S^{1}$ for $i=$

$1,$ $\cdots$ , $r$ , and $A_{j}\cong D^{2}\times S^{1}$ for $j=r+1,$ $\cdots$ , $n$ , and $r\geqq 1$ .
Let $D_{V}$ be a decomposition disk system for $V_{F}$ , and let $cl(V_{F}-N(D_{V} ; V_{F}))$

$=V_{1}\cup\cdots\cup V_{r}$ with $V_{\ell}\cong A_{i}$ for $i=1,$ $\cdots$ , $\gamma$ . Now let $U=N(\partial V_{1} ; V_{1})\cup N(D_{V} ; V_{F})$

$\cup V_{2}\cup\cdots\cup V_{r}$ . It will be noticed that $D_{V}$ is a complete disk system for $U$ and
$\partial_{+}U=F$. We can easily see that $W_{F}\cup U=(-V_{1})\cup N(\partial V_{1} ; V_{1})\cong S-V_{1}$ is a
solid torus by [F] or [Ho]. (See Figure 1.)

$Figure_{-}^{--}1$

We have the following claim:

Claim 1. There exists a meridian disk $D$ for $W_{F}\cup U$ with $D\cap(V_{2}\cup\cdots\cup V_{\tau})$

$=\emptyset$ .

Proof. Let $W=W_{F}\cup U$ . We may show that

$(*)$ $W-\circ(V_{2}\cup\cdots\cup V_{r})\cong r(D^{2}\times S^{1})$ .
If $(*)$ is true, then we see that the homomorphism $\pi_{1}(\partial W)\rightarrow\pi_{1}(W-\circ(V_{2}U\cdots$

$\cup V_{r}))$ of fundamental groups induced by the inclusion is not injective, and
thus that there exists a simple essential loop $\alpha$ in $\partial W$ such that $\alpha$ bounds a
disk $D$ in $W-\circ(V_{2}\cup\cdots\cup V_{r})$ by the loop theorem, and $D$ is a desired meridian
disk.

We now show $(*)$ by induction on $r$ . If $r=1$ , then there is nothing to
prove. So, we assume that $r\geqq 2$ . We know that $W^{o}-(V_{2}\cup\cdots\cup V_{r-1})\cong(r-1)$

$(D^{2}\times S^{1})$ by the induction hypothesis, and that $V_{r}$ is contained in $\circ(W^{o}-(V_{2}\cup\cdots$

$\cup V_{r-1}))$ . Let us consider the following diagram of homomorphisms of funda-
mental groups induced by inclusions.
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The map $i_{1}$ is injective because $V_{r}$ is an exterior of a nontrivial knot. If
$i_{2}$ is injective, then both $i_{3}$ and $i_{4}$ are injective by Van Kampen’s theorem, and
then we have an injection from $Z\oplus Z$ to the free group of rank $r-1$ , which
is a contradiction. Therefore, $j_{2}$ is not injective. By the loop theorem, we
have a simple essential loop $\beta$ in $\partial V_{r}$ such that $\beta$ bounds a disk $E$ in $W-$

$\circ(V_{2}\cup\cdots\cup V_{r-1}\cup V_{r})$ . Let $S=N(\partial V_{r}\cup E;W-\circ(V_{2}\cup\cdots\cup V_{r-1}))$ . Then, we can
easily see that $S$ is homeomorphic to a one-punctured solid torus and so $(W-$

$\circ(V_{2}\cup\cdots\cup V_{r-1}))-\circ S$ is homeomorphic to a one-punctured $(r-1)(D^{2}\times S^{1})$ . Now
we can conclude that $W-\circ(V_{2}\cup\cdots\cup V_{r})\cong r(D^{2}\times S^{1})$ , and completing the proof
of Claim 1. $\square $

By Claim 1 we can choose a meridian disk $D$ for the solid torus $W_{F}\cup U$

such that $D\cap U$ consists of some disks and an annulus $A$ . We may assume
that $D\cap U$ has the minimum number of disks among all such meridian disks.
It follows from the choice of $D$ that the connected planar surface $P=D\cap W_{F}$

is incompressible in $W_{F}$ .
The proof of Theorem is divided into two cases.

Case I. $W_{F}$ is a handlebody (i.e. $B_{i}\cong D^{2}\times S^{1}$ for each $i$): In this case, we
have a similar result to Haken’s lemma (Casson and Gordon [CG], Lemma 1.1)

for $D\subset W_{F}\cup U$ . This result enables us to construct a 2-sphere in $S^{3}$ which
gives a non-trivial decomposition for $(F\subset S^{3})$ .

We have the following claim:

Claim 2. There exists a complete meridian-disk system $D_{W}$ for $W_{F}$ such that
$ P\cap D_{W}=\emptyset$ .

Proof. Let $D_{W}=D_{1}\cup\cdots\cup D_{n}$ be a complete meridian-disk system for $W_{F}$ ,
and we assume that $P\cap D_{W}$ has the minimum number of components among
all such meridian-disk systems. By incompressibility of $P$ and the standard in-
nermost circle argument, we may assume that $P\cap D_{W}$ consists of simple proper
arcs in $P$.

We suppose that there exist arcs $\alpha_{\ell}$ in $P\cap D_{W}$ which are inessential in $P$,

and let $\nabla_{i}$ be the disks on $P$ cut off by $\alpha_{i}$ . We choose an innermost arc, say
$\alpha_{1}$ , so that $\nabla_{1}$ does not contain any other $\alpha_{\ell}$ . We assume that $\alpha_{1}\subset P\cap D_{1}$ , and
$\alpha_{1}$ divides $D_{1}$ into two subdisks, say $d_{1}^{\prime}$ and $d_{1}^{\prime\prime}$ . Then, we have proper disks
$D_{1}^{\prime}=\nabla_{1}\cup d_{1}^{\prime}$ and $D_{1}^{\prime\prime}=\nabla_{1}\cup d_{1^{\prime\prime}}$ in $W_{F}$ . We can deform $D_{1}^{\prime}\cup D_{1}^{\prime\prime}$ into general
position in $W_{F}$ , so that

$P\cap(D_{1}^{\prime}\cup D_{1}^{\prime\prime}\cup D_{2}\cup\cdots\cup D_{n})=P\cap D_{W}-\alpha_{1}$ ,
and

$(D_{1}^{\prime}\cup D_{1}^{\prime\prime})\cap D_{W}=\emptyset$ .
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(In fact, $D_{1}^{\prime}\cup D_{1}^{\prime\prime}$ is obtained from $D_{1}$ by a modification $\nabla$ along $\nabla_{1}$ in the
sense of [Sul, Def. 3.1]. See Figure 2.) Since $D_{1}^{\prime}\cup D_{1}^{\prime\prime}$ is contained in the 3-
ball $B^{3}=cl(W_{F}-N(D_{W} ; W_{F}))$ , both $\partial D_{1}^{\prime}$ and $\partial D_{1}^{\prime\prime}$ bound disks on $\partial B^{3}$ . It is
easily checked that one of $D^{\prime}=D_{1}^{\prime}\cup D_{2}\cup\cdots\cup D_{n}$ and $D^{\prime\prime}=D_{1}^{\prime\prime}\cup D_{2}\cup\cdots\cup D_{n}$ is
a complete meridian-disk system for $W_{F}$ . This contradicts to the minimality of
$P\cap D_{W}$ , and so $P\cap D_{W}$ does not contain inessential arcs.

Figure 2

We now suppose that each component $\beta_{1}$ of $\beta=P\cap D_{W}$ is an essential arc
in $P$. Let $D\cap F=C_{1}\cup\cdots\cup C_{m}$ be simple loops. Let $Q$ be the planar surface
obtained from $P$ by cutting along the arcs $\beta$ , that is, $Q=cl(P-N(P\cap D_{W} ; P))$ ,

which is properly embedded in the 3-ball $B^{3}=cl(W_{F}-N(D_{W} ; W_{F}))$ . Since $P$ is
incompressible in $W_{F},$ $Q$ is incompressible in $B^{s}$ . Therefore we see that each
component of $Q$ is a disk and thus that $ C_{\ell}\cap\beta\neq\emptyset$ for each $i$ .

Now we say that an arc $\beta_{\ell}$ is of type I (resp. of type II) if the two points
$\partial\beta_{\ell}$ contains a single component of $D\cap F$ (resp. two distinct components of
$D\cap F)$ . Then, from the proof of Lemmas 1 and 2 of Ochiai [Oc], there exists
a disk $C_{i}$ such that each arc in $\beta$ which meets $C_{i}$ is of type II, and some
sequence of isotopies of type A at these arcs (see Jaco [J] p. 24) has been to
reduce the number of disks in $D\cap U$ . This contradicts to the minimality of
$D\cap U$ (and $P\cap D_{W}$), and completing the proof of Claim 2. $\square $

Since $P$ is incompressible in $W_{F}$ , by Claim 2, we conclude that $P$ is a disk,

and so $D\cap U$ consists of the annulus $A$ . Now we have the following.

Claim 3. There exists a comPlete disk system $D_{V^{*}}$ for $U$ with $ D_{V^{*}}\cap A=\emptyset$ .

Proof. We remember that $D_{V}$ is a complete disk system for $U$ , and let
$D_{V}=D_{1}\cup\cdots\cup D_{n-1}$ . If $ D_{V}\cap A=\emptyset$ , then $D_{V}$ is a required system for $U$ . Thus,

we may suppose that $ D_{V}\cap A\neq\emptyset$ and that each component of $D_{V}\cap A$ is an arc
since $A$ is incompressible in $U$ . It will be noticed that each arc in $D_{V}\cap A$ is
inessential in $A$ , since its both endpoints are contained in one boundary com-
ponent $\partial A\cap\partial_{+}U=\partial A\cap F$ of $A$ . Let $\alpha$ be an arc in $D_{V}\cap A$ which is innermost
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on $A$ , and let $\nabla$ be the disk on $A$ cut off by $\alpha$ . We assume that $\alpha\subset D_{1}\cap A$ ,
and $\alpha$ divides $D_{1}$ into two subdisks, say $d_{1}^{\prime}$ and $d_{1^{\prime\prime}}$ . Then, we have proper
two disks $D_{1}^{\prime}=\nabla\cup d_{1}^{\prime}$ and $D_{1}^{\prime\prime}=\nabla\cup d_{1}^{\prime\prime}$ in $U$ . We can deform $D_{1}^{\prime}\cup D_{1}^{\prime\prime}$ into
general position in $U$ , so that

$(D_{1}^{\prime}\cup D_{1}^{\prime\prime}\cup D_{2}\cup\cdots\cup D_{n-1})\cap A=D_{V}\cap A-\alpha$ ,
and

$(D_{1}^{\prime}\cup D_{1^{\prime\prime}})\cap D_{V}=\emptyset$ .
We may assume that $D_{1}^{r}\cup D_{1}^{\prime\prime}$ is contained in one of $N(\partial V_{1} ; V_{1}),$ $V_{2},$ $\cdots$ , $V_{r}$ .

If $D_{1}^{\prime}\cup D_{1}^{\prime\prime}\subset N(\partial V_{1} ; V_{1})$ (resp. $D_{1}^{\prime}\cup D_{1^{\prime\prime}}\subset V_{i}$ for some $i$), then both $D_{1}^{\prime}$ and
$D_{1}^{\prime\prime}$ bound disks on $\partial N(\partial V_{1} ; V_{1})$ (resp. $\partial V_{i}$ ) and cut off 3-balls from $N(\partial V_{1} ; V_{1})$

(resp. $V_{i}$), since both $N(\partial V_{1} ; V_{1})$ and $V_{\ell}$ are $\partial$-irreducible and irreducible. By
a similar way to the proof of Claim 2, it is easily checked that one of $D_{V^{\prime}}=$

$D_{1}^{\prime}\cup D_{2}\cup\cdots\cup D_{n-1}$ and $D_{V^{\prime\prime}}=D_{1}^{\prime\prime}\cup D_{2}\cup\cdots\cup D_{n-1}$ is a complete disk system for $U$ .
By the repetition of the procedure, we can get rid of all arcs in $D_{V}\cap A$ ,

and we have a required complete disk system $D_{V}^{*}$ . $\square $

Now let $W^{*}=cl(U-N(D_{V^{*}} ; U))$ , and let $N^{*}$ be the component of $W^{*}$ which
corresponds to $F\times I$ in Definition 1.1 (2). Then, we can see that only one com-
ponent of $\partial N^{*}$ contains some disks in $cl(\partial N(D_{V^{*}} ; U)-\partial U)$ . Now we denote
this component by $\partial_{+}N^{*}$ . Since only one component of $\partial A$ is contained in
$\partial_{+}N^{*}$ and $\partial A$ does not separate $\partial_{+}N^{*}$ , we can take a simple loop $\gamma$ in $\partial_{+}N^{*}$

such that $\gamma\cap\partial A$ consists of one point and $\gamma\cap N(D_{V}^{*} ; U)=\emptyset$ . Let

$\Delta=cl(\partial N(P\cup\gamma;W_{F})-F)$ ,

where $P=D\cap W_{F}$ is a disk. Then, $\Delta$ is a proper disk in $W_{F}$ , and $\partial\Delta$ bounds
a disk in $\partial_{+}N^{*}$ . Hence $\partial\Delta$ bounds a proper disk, say $\Delta^{*}$ in $N^{*}$ and thus in
$U=W^{*}\cup N(D_{V^{*}} ; U)\subset V_{F}$ .

Let $\Sigma=\Delta\cup\Delta^{*}$ . Then $\Sigma$ is a 2-sphere which gives a decomposition for
$(F\subset S^{s})$ into a surface of genus 1 and a surface of genus $n-1$ . This completes
the proof of Case I. $\square $

Case II. $W_{F}$ is not a handlebody: In this case, we may assume that $ B_{i}\neq$

$D^{2}\times S^{1}$ for $i=1,$ $\cdots$ , $s,$ $B_{j}\cong D^{2}\times S^{1}$ for $j=s+1,$ $\cdots$ , $n$ and $s\geqq 1$ .
If $D\cap U$ has no disks, that is $D\cap U$ is an annulus, then we can construct

a 2-sphere which gives a decomposition for $(F\subset S^{s})$ as in Case I. Therefore,
we may suppose that $D\cap U$ has some disks. We have the following claim by
similar arguments to the proofs of Claim 2 and Claim 3.

Claim 4. There exists a complete disk system $D_{W}$ for $W_{F}$ such that each
component of $P\cap D_{W}\iota s$ an essential arc in P. $\square $
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Let $W_{1},$ $\cdots$ , $W_{s}$ be the components of $cl(W_{F}-N(D_{W} ; W_{F}))$ with $W_{i}\cong B_{i}$ for
$i=1,$ $\cdots$ $s$ .

We suppose that $ P\cap D_{W}\neq\emptyset$ , and let $d_{1},$ $\cdots$ , $d_{m}$ be the disks of $D\cap U$ and
let $C_{i}=\partial d_{i}$ for $i=1,$ $\cdots$ , $m$ . Then we have the following claim.

Claim 5. There exists $C_{i}$ wzth $ C_{\ell}\cap(P\cap D_{W})=\emptyset$ .

Proof. We suppose that Claim 5 is false. Then for every $i$, there exists
an arc in $P\cap D_{W}$ that meets $C_{i}$ . By the technique of Ochiai [Oc], there exists
$C_{j}$ such that each arc in $P\cap D_{W}$ that meets $C_{j}$ is of type II, and some sequence
of isotopies of type A reduces the number of disks in $D\cap U$ , and contradicting
minimality of $D\cap U$ . $\square $

Let $C_{1}$ be a loop with $ C_{1}\cap(P\cap D_{W})=\emptyset$ , and let $Q$ be the component of
planar surface $cl(P-N(P\cap D_{W} ; P))$ with $Q\supset C_{1}$ . It will be noticed that $Q$ is
a planar surface properly embedded in some $W_{j}$ , and $Q$ is incompressible in $W_{f}$

since $P$ is incompressible in $W_{F}$ . Hence $C_{1}$ is essential in $\partial W_{j}$ and bounds the
disk $d_{1}$ in $U\subset V_{F}$ . Since $C_{1}$ does not separate $\partial W_{j}$ , we can take a simple loop,
say $\gamma$ , on $\partial W_{j}$ such that $\gamma\cap C_{1}$ consists of one point and $\gamma\cap N(D_{W} ; W_{F})=\emptyset$ .
Now let

$\Delta=cl(\partial N(d_{1}\cup\gamma;V_{F})-\partial W_{j})$ .
Then $\Delta$ is a proper disk in $V_{F}$ and $\partial\Delta$ bounds a disk in $\partial W_{j}$ . Hence $\partial\Delta$ bounds
a proper disk, say $\Delta^{\prime}$ , in $W_{j}\subset W_{F}$ .

Then the 2-sphere $\sum=\Delta\cup\Delta^{\prime}$ gives a decomposition for $(F\subset S^{3})$ into a
surface of genus 1 and a surface of genus $n-1$ .

If $ P\cap D_{W}=\emptyset$ , then we may assume that $P=D\cap W_{F}$ is contained in some
$W_{j}$ , and we have a 2-sphere which gives a decomposition for $(F\subset S^{3})$ by the
same argument as above (provided that $P$ is substituted for $Q$ ).

This completes the proof of Case II, and we complete the proof of Theorem.
$\square $
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