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Abstract. We consider Riemannian metrics, invariant with respect to a given
smooth proper action. Then, we describe the structure of a manifold admit-
ting an integrable invariant metric and prove that these metrics are “rare”
among all invariants metrics, except of course some extreme cases.

1. Introduction

1.1. Let $(G, M)$ be an effective, smooth proper action of the connected Lie
group $G$ on the (connected) paracompact $C^{\infty}$-manifold $M$. Then, there is a
Riemannian metric $g$ on $M$ invariant under the action of $G$ i.e., $G$ becomes a
closed subgroup of the isometry group $I(M)=I(M, g)$ for this metric (cf. [5]).

Suppose now that the orbits of the action are of the same dimension. Then,

it is defined on $M$ a distribution $\mathfrak{N}(g)$ consisting of the g-orthogonal comple-
mentary to the orbits subspaces.

We call the metric $g$ integrable whenever $\mathfrak{N}(g)$ happens to be integrable.
An integrable metric admits local orthogonal cross sections, provided that there
is only one orbit type of the action $(G, M)$ (cf. [2], [7]).

With the above notation our main result is the followlng:

1.2. Theorem. SuPpose that the Proper action has only one orbit tyPe and

let $g$ be a G-invariant metric on M. Then, $\mathfrak{N}(g)$ always has a prolongation to

an integrable distribution $\mathfrak{D}(g)$ on M. Furthermore, if $\mathfrak{N}(g)$ is itself integrable

then it gives rise to a flat connection in the principal bundle associated to $(G, M)$ .

Then, we have two applications involving the orthogonal complementary

distribution $\mathfrak{N}$ .

1.3. When $\mathfrak{N}(g)$ is itself integrable, although $(G, M)$ may be non principal,

the representation of $\mathfrak{N}(g)$ given by the above stated Theorem has strong im-
plications on the equivariant structure of $M$. In fact, we are able to obtain
the obstruction morphism construncted in [2] in terms of holonomy morphisms
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and reductions. Thus, we rediscover in a different contex the structure theorem
from [2], about actions admitting local orthogonal cross sections (cf. 4.1 below).

1.4. Concerning all G-invariant metrics, it is expected that among them the
integrable ones should be rare. This fact was established by H. Abels (cf. [1]).
As an application of our approach to G-spaces, we publish a proof of this in
the following formulation.

1.5. Proposition. Let $G$ be a connected Lie group and $(G, M)$ a smooth
Proper action. Then, under milde restrictions the G-invariant metrics which
admit non-integrable orthogonal distribution form an open and dense subset in the
set of all G-invariant metrics.

The proof of our main result appears in Section 3, while in Section 2 we
survey some properties of proper G-spaces and Section 4 is devoted to the ap-
plications.

2. Remarks about the geometry of certain proper $G$-spaces

Given the smooth proper action $(G, M)$ we select some G-invariant metric
$g_{0}$ and keep this fixed for the next of this section. Through every point $z\in M$

there exists a special slice $S$ for the action, the ”Koszul-slice” (cf. [6; 2.2.2]),
which consists of geodesic arcs orthogonal to the orbit $G(z)$ , at $z$ . Furthermore,
on the open-dense subset of the principal orbits we have

$G(S)=G(z)\times SD$

where $‘‘=D$ means equivariant diffeomorphism and $S$ denotes Koszul slices (cf.

[3]).

2.1. A satisfactory globalization of the above product structure is achived
if the following additional condition is assumed (see also [2]).

(IGC) There is up to conjungancy, only one isotropy group.

Indded, let $x\in M,$ $H=G_{x},$ $N(H)$ be the normalizer of $H$ in $G,$ $K=N(H)/H$
and

$M^{H}=\{z\in M|H\subset G_{z}\}=Fix(H, M)$ .
Then, $M^{H}$ is a regular, totally geodesic submanifold of $M$ [$4$ ; Vol. II p. 61],
which also admits a differentiable, proper and free action of $K$ . Meanwhile, $K$

may be identified with Diffeo $G(G(x))$ , the group of G-diffeomorphisms of $G(x)$ .
Let $p_{H}$ denotes the restriction of the natural map $p:M\rightarrow G\backslash M$ to $M^{H}$ . The
followin $g$ nice discription for $(G, M)$ is originally due to Borel.
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2.2. Proposition [3; Ch. II, 5.11]. Supp0se that the pr0per smooth acti on
$(G, M)$ satisfies (IGC). Then, the map $p$ is the projection in a fiber bumdle with
associated prjncipal bundle the $K$-space $M^{H}$ and projectim $p_{H}$ . In particular

$M=_{D}G(x)\times KM^{H}$ (twisted product).

If, following [2], for $g_{0}$ we further assume

(NI) The distribution $\mathfrak{N}(g_{0})$ is integrable,

then, another type of fibering of $M$ over $G\backslash M$ is also possible. Indeed, let
$N(x)$ denote the maximal integral manifold of $\mathfrak{N}$ through $x$ . Then $p|N(x)$ :
$N(x)\rightarrow G\backslash M$ is a regular covering map and its group of deck transformations
$H(x)$ can be realized as a subgroup of $K$ . The obstruction morphism for $(G, M)$

is obtained as follows:
Let $c:[0,1]\rightarrow M,$ $c(O)=c(1)=x$ be a closed path and $\overline{c}$ denote the lifting of

$p\circ c$ with respect $p|N(x)$ , starting at $x$ . The correspondence $[c]\rightarrow\overline{c}(1)$ defines
a morphism

$\phi_{x}(:=\phi)$ : $\pi_{1}(M, x)\rightarrow K$ ,

with ${\rm Im}\phi=H(x)$ .

2.3. $Prop_{08}ition[2;1.14]$ . Suppose that $(G, M)$ admits local orthogonal

cross sections. Then $p:M\rightarrow G\backslash M$ is the (locally trivial) fiber bundle with fibre
$G/G_{x}$ , structure group $H(x)$ and associated princiPal fiber bundle the covering

space $p|N(x);N(x)\rightarrow G\backslash M$ . Furthermore,

$M=G(x)X_{{\rm Im}\phi}N(x)D$

In Section 4 we shall indicate how this fibration can be obtained from Pro-

position 2.2 and our prolongation of $\mathfrak{N}$ .

3. Proof of Theorem 1.2.

In this section we deal with the proper smooth action $(G, M)$ satisfying

(1GC) and fixe some G-invariant metric $g_{0}$ . With the notation of Section 2 still

in force, we first examine some differential-geometric aspects concerning $(G, M)$ .

3.1. For $h\in H$ , the differential $(dh)_{x}$ maps $T_{x}M$ onto itself and preserves
the orthogonal splitting

$T_{x}M=T_{x}G(x)\oplus T_{x}S$ .
Let

$D_{x}=\{\theta\in T_{x}M:(dh)_{x}(S)=\theta, \forall h\in G_{x}\}$ .
Then, beacause of (IGC), $N_{x}$ $:=T_{x}S$ is contained in $D_{x}$ and

$D_{x}=F_{x}\oplus N_{x}$ , while $F_{x}=D_{x}\cap T_{x}G(x)$ .
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The correspondence $x\rightarrow N_{x}$ defines a G-invariant distribution $\mathfrak{N}$ , complementary
to the G-orbits. If $y=gx$ , then

$G_{y}=g^{-1}G_{x}g$

and, as an easy calculation shows,

$F_{y}=(dg)_{x}(F_{x})$ .
Finally the correspondence $x\rightarrow F_{x}$ defines a G-invariant distribution $\mathfrak{F}$ tangent
to the orbits. We set

$\mathfrak{D}=\mathfrak{F}\oplus \mathfrak{N}$ .
Looking at a normal neighbourhood of $x\in M$, we obtain

$D_{x}=T_{x}M^{H}$ ,

which implies that $\mathfrak{D}$ is integrable. Let $y\in M$ and $D(x)$ be the maximal integral
manifold of $\mathfrak{D}$ , through $x$ . If we consider a path $\gamma$ in $G\backslash M$ from $p(x)$ to $p(y)$ ,
then $\gamma$ has some lifting $\gamma$ in $M$ starting at $x$ . Beacause of the trivializations

$G(S_{z})=G(z)\times SD$

$f$ lies entirely on slices and (IGC) implies that $ G(y)\cap D(x)\neq\emptyset$ . We summari$ze$
the above discussion in the following.

3.2. Proposition. If (IGC) holds, then $\mathfrak{D}$ is integrable with maximal integral
manifold $D(x)$ , through $x$ , the connected compOnent of $M^{H}$ which contains $x$ .
Furthermore, $D(x)$ intersects every G-orbit.

3.3. It is now clear that $\mathfrak{F}$ is also integrable and in the G-space

$G(x)=G/HD$ Fix $(H, M)\cap G(x)\cong N(H)/H$ .
Contrary to this, $\mathfrak{N}$ is not always integrable. The integrability of $\mathfrak{N}$ yields
another slise $s*$ at $x$ , on the integral manifold $N(x)$ [$6;2.2$ Lemma]. The
next result shows that some ”Koszul-slice” $S$ and $s*$ are in fact the same.

3.4. Lemma. If $\mathfrak{N}$ is integrable then it is geodesible, that is every integral
manifold of $\mathfrak{N}$ is a totally geodesic, immersed submanifold.

Proof. Let $x*$ be a fundamental (: Killing) vector field of the action and
$U,$ $V$ vector fields of $M$ such that $U(y),$ $V(y)\in N_{y}$ for all $y\in M$. Using the
easily obtained relation

$\langle X^{*}, [U, V]\rangle=-2\langle X*, \nabla_{V}U\rangle$ ,

the lemma follows.

3.5. As 3.2. suggests, $\mathfrak{N}$ has always a prolongation to an integrable dis-



ON THE INTEGRABLE G-INVARIANT METRICS 91

tribution, namely $\mathfrak{D}$ . On the other hand, the integrability of $\mathfrak{N}$ may be a con-
sequence either of some special structure of $G/H$ , or of the ”rigidity” of the

orbits.

3.6. Corollary. Each one of the following conditions impljes that En is in-

tegrable.
(a) The linear isotroPy representation does not fix any non zero vector.

Equuvalently stated, dim $F_{x}=0$ .
(b) The local isometries for some orbit, in the Riemannian structure induced

from $M$, are reduced to the identity only.

3.7. We complete now the proof of our main result. Because of the ex-
istence of local orthogonal cross sections, the distribution SW is integrable. This,

in view of 3.4, implies that the ”Koszul-slices” are in fact local sections of $p$ :
$M\rightarrow G\backslash M$, which are everywhere orthogonal to the orbits. Because of 3.1 and
3.2, $\mathfrak{N}$ defines also an integrable distribution in $M^{H}$ . Thus, $\mathfrak{N}$ defines a flat,

K-invariant connection in the principal K-bundle $p_{H}$ : $M^{H}\rightarrow G\backslash M$.

4. Applications

A. The obstruction morphism for actions admitting local orhogonal cross
sections.

4.1. If for the action $(G, M)$ and the G-invariant metric $g_{0}$ the conditions
(IGC) and (NI) from Section 2 are satisfied, using Theorem 1.2, we have a
flat connection $\mathfrak{N}$ in the associated principal K-bundle $p_{H}$ : $M^{H}\rightarrow G\backslash M$. Using

folk results, the holonomy group $\Phi(x)$ of this connection must be a discrete
subgroup of $K$ and its holonomy bundle through $x$ is obviously $N(x)$ . Also,

the group $\Phi(x)$ may be identified with the group of deck transformations of
the regular covering $p_{H}|N(x):N(x)\rightarrow G\backslash M$. Finally,

$M^{H}=K\times\Phi(x)N(x)D$

(cf. [4; Vol. I; Ch. 11, 9]).

4.2. Proposition [2; 1.12]. SuppOse that the smooth effective prOper action
$(G, M)$ admits local orthogonal cross sections. Then there is a homomorphism

$\phi$ : $\pi_{1}(M, x)\rightarrow Diffeo^{G}(G(x))$

and
$M=G(x)\times{\rm Im}\phi N(x)D$

In fact, ${\rm Im}\phi\subset N(H)/H$ .
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Proof. The orbit map $p:M\rightarrow G\backslash M$ induces an epimorphism

$(p_{x})_{*}:$ $\pi_{1}(M, x)\rightarrow\pi_{1}(G\backslash M, p(x))$ .
Let $\phi=\Phi_{x^{\circ}}(p_{x})_{\#}$ , where

$\Phi_{x}$ : $\pi_{1}(G\backslash M, p(x))\rightarrow K$

is the holonomy homomorphism of $\mathfrak{N}$ . Since $K\subset Diffeo^{G}(G(X)),$ ${\rm Im}\phi$ acts G-
equivariantly on $G(x)$ and we have

$M=G(x)X_{K}M^{H}=G(x)X_{K}(K\times\Phi(x)N(x))=G(x)\times{\rm Im}\phi N(x)DD_{D}$

where some standard results about twisted products involving group actions
were used (cf. [3; Ch. I]).

4.3. For smooth proper actions another kind of sections was considered in
[7; 3.1], where further supposed that the integrable $\mathfrak{N}$ has closed integral
manifolds. This is not necessarily the case for an action admitting local or-
thogonal cross sections. Of course results of ”local” nature are true in both
cases (cf. [2; 1.9] in connection to [7; 4] and our 3.6(a) compared to [7; 5.3]).
It is the condition (IGC) which leads to global results like 4.2.

Example. Consider the torus $T^{2}$ as the orbit space of $R^{2}$ under the usual
action of the integer lattice. On $R^{2}$ we define the Riemannian structure assum-
ing that for tan $\phi\in(R-Q)$ , the vectors $(\cos\phi, \sin\phi)$ and $(0,1)$ form an ortho-
normal framming and project this structure on $T^{2}$ . Let $(R, R^{2})$ be now the proper
smooth action with $(t, (x, y))\rightarrow(x, t+y)$ . Then, it preserves the above defined
metric of $R^{2}$ and projects to an isometric $S^{1}$-action on $T^{2}$ . This action admits
local orthogonal cross sections and the maximal integral manifolds of $\mathfrak{N}$ are
the projections of the lines $y=(\tan\phi)x+c$ . As $\tan\phi\in(R-Q)$ , these are dense
subsets of $T^{2}$ and $(S^{1}, T^{2})$ has not sections.

B. Non-integrable G-invariant metrics.

If the action $(G, M)$ has orbits of codim $-1$ , then every G-invariant metric
is (trivially) integrable. If (IGC) is satisfied, this is also true, provided that
$\dim F_{x}=0$ (cf. 3.6 $(a)$). The next result shows that, except of these two cases,
there are many non integrable metrics.

4.4. Proposition. Let $(G, M)$ be an effective smooth Proper action with $mly$

one orbt type. SuppOse further that the orbts of the action are of codimenston
greater than one and that the linear isotropy representatjOn fixes some non zero
vector. Then, the G-invariant metrics which are not integrable form an open and
dense subset in the space of all G-invariant metrics ($eq\iota uppied$ with the $C^{\infty}-$
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topology).

Proof. We first prove that the non integrable metrics form an open set.

Let $g^{*}$ be a non integrable G-invariant metric. Then there are vector fields
$X$ and $Yg^{*}$-orthogonal to the orbits of the action and a point $x\in M$ such that
$g^{*}(\theta, [X, Y](x))\neq 0$ , for some $\theta\in T_{x}G(x)$ . Given another G-invariant metric $g$ ,

the projections of $X,$ $Y$ in $\mathfrak{N}(g)$ yield vector fields $\overline{X},\overline{Y}$ g-orthogonal to the
orbits. The correspondence $g\rightarrow g(\theta, [\overline{X},\overline{Y}](x))$ involves, in local coordinates,

only the local coordinates $(g_{lj})$ of $g$ and their derivatives. Hence, it is con-
tinous and if $g$ is close enough to $g^{*}$ , then $g(\theta, [\overline{X},\overline{Y}](x))\neq 0$ .

We now show that, an appropriate small pertubation of the G-invariant
integrable metric $g_{0}$ gives a new G-invariant metric $\tilde{g}$ with $\mathfrak{N}(\tilde{g})$ non integrable.
Indeed, for $x\in M$, let $v$ be some non zero vector of $F_{x}$ and $S$ a ”Koszul-
slice” for $g_{0}$ , at $x$ . Because of 2.1, the correspondence

$hx\rightarrow(dh)_{x}(v)\in T_{hx}G(x)$

defines a vector field on $G(x)$ . Using the trivialization

$G(S)=G(x)\times SD$

we can extend this field to a G-invariant vector field fi on the open set $G(S)$ .
Let the vector fields $X_{1},$ $X_{2},$ $\cdots$ , $X_{k},$ $k=co\dim T_{x}G(x)$ be selected in order that
$\{X_{1}(z), X_{2}(z), \cdots , X_{k}(z)\}$ is a $g_{0}$-orthonormal basis of $T_{f}S$ , for all $z\in S$ . Then
the vector fields $\tilde{X}_{i}=(dh)(X_{\ell}),$ $i=1,2,$ $\cdots$ , $k,$ $h\in G$ are G-invariant and define
an orthonormal basis in $T_{hz}S$ . Furthermore, let $\nu;S\rightarrow R$ be a non constant,

smooth function with compact support and $\tilde{\nu};G(S)\rightarrow R$ defined by $\tilde{\nu}(hz)=\nu(z)$ ,
$z\in S$ . We define the new metric $\tilde{g}$ on $M$ setting

$\tilde{g}|M-G(S)=g_{0}|M-G(S)$ , $\tilde{g}|T_{hx}G(x)=g_{0}|T_{\hslash x}G(x)$

and assuming that, on $G(S)$ the vector fields $\{X_{1}+\tilde{\nu}7,\tilde{X}_{2}, \cdots , \tilde{X}_{k}\}$ define the
$\tilde{g}$ -orthogonal bases on the complementary to the orbits subspaces. We claim
that $\mathfrak{N}(\tilde{g})$ is non integrable. Indeed, we have the relation

$[\tilde{X}_{1}+\tilde{\nu}\nu,\tilde{X}_{2}]=[\tilde{X}_{1},\tilde{X}_{2}]+\tilde{\nu}[V,\tilde{X}_{2}]+\tilde{X}_{2}(\tilde{\nu})V$ ,

where we can suppose that $\nu(x)=0$ and $X_{2}(\nu)(x)\neq 0$ . Therefore, the summand
$\tilde{X}_{2}(\tilde{\nu})7$ is not indentically zero and it is tangent to the orbit $G(x)$ at $x$ . Also
note that

$\tilde{\nu}(x)[\nu,\tilde{X}_{2}](x)=0$ and $[\tilde{X}_{1},\tilde{X}_{2}](x)\in \mathfrak{N}(\tilde{g})=\mathfrak{N}(g_{0})(x)$ .
Hence, for the2vector fields $\tilde{X}_{1}+\tilde{\nu}\nu$ and $\tilde{X}_{2}$ , the Frobenious integrability con-
dition fails at $x$ .
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