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Abstract. We consider Riemannian metrics, invariant with respect to a given
smooth proper action. Then, we describe the structure of a manifold admit-
ting an integrable invariant metric and prove that these metrics are “rare”
among all invariants metrics, except of course some extreme cases.

1. Introduction

1.1. Let (G, M) be an effective, smooth proper action of the connected Lie
group G on the (connected) paracompact C>-manifold M. Then, there is a
Riemannian metric g on M invariant under the action of G i.e., G becomes a
closed subgroup of the isometry group I(M)=I(M, g) for this metric (cf. [BD-
Suppose now that the orbits of the action are of the same dimension. Then,
it is defined on M a distribution N(g) consisting of the g-orthogonal comple-
mentary to the orbits subspaces.

We call the metric g integrable whenever (g) happens to be integrable;
An integrable metric admits local orthogonal cross sections, provided that there
is only one orbit type of the action (G, M) (cf. [2], [7D.

With the above notation our main result is the following:

1.2. Theorem. Suppose that the proper action has only one orbit type and
let g be a G-invariant metric on M. Then, R(g) always has a prolongation to
an integrable distribution D(g) on M. Furthermore, if N(g) is itself integrable
then it gives rise to a flat connection in the principal bundle associated to (G, M).

Then, we have two applications involving the orthogonal complementary
distribution R.

1.3. When R(g) is itself integrable, although (G, M) may be non principal,
the representation of R(g) given by the above stated Theorem has strong im-
plications on the equivariant structure of M. In fact, we are able to obtain
the obstruction morphism construncted in [2] in terms of holonomy morphisms
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and reductions. Thus, we rediscover in a different contex the structure theorem
from [2], about actions admitting local orthogonal cross sections (cf. 4.1 below).

1.4. Concerning all G-invariant metrics, it is expected that among them the
integrable ones should be rare. This fact was established by H. Abels (cf. [1).
As an application of our approach to G-spaces, we publish a proof of this in
the following formulation.

1.5. Proposition. Let G be a connected Lie group and (G, M) a smooth
proper action. Then, under milde restrictions the G-invariant metrics which
admit non-integrable orthogonal distribution form an open and dense subset in the
set of all G-invariant metrics.

The proof of our main result appears in Section 3, while in Section 2 we
survey some properties of proper G-spaces and Section 4 is devoted to the ap-
plications.

2. Remarks about the geometry of certain proper G-spaces

Given the smooth proper action (G, M) we select some G-invariant metric
go and keep this fixed for the next of this section. Through every point ze M
there exists a special slice S for the action, the “Koszul-slice” (cf. [6; 2.2.2]),
which consists of geodesic arcs orthogonal to the orbit G(z), at z. Furthermore,
on the open-dense subset of the principal orbits we have

G(S)fG(z) XS,
where “f” means equivariant diffeomorphism and S denotes Koszul slices (cf.

(3D

2.1. A satisfactory globalization of the above product structure is achived
if the following additional condition is assumed (see also [2]).

(IGC) There is up to conjungancy, only one isotropy group.

Indded, let x&M, H=G,, N(H) be the normalizer of H in G, K =N(H)/H

and
MA={zeM|HCG,}=Fix(H, M).

Then, M¥ is a regular, totally geodesic submanifold of M [4; Vol. II p. 617,
which also admits a differentiable, proper and free action of K. Meanwhile, K
may be identified with Diffeo 9(G(x)), the group of G-diffeomorphisms of G(x).
Let px denotes the restriction of the natural map p: M—G\M to M#. The
following nice discription for (G, M) is originally due to Borel.
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2.2. Proposition [3; Ch. I, 5.11]. Suppose that the proper smooth action
(G, M) satisfies IGC). Then, the map p is the projection in a fiber bundle with
associated principal bundle the K-space M¥ and projection py. In particular

MﬁG(x)X «MH (twisted product).
If, following [2], for g, we further assume
(NI) The distribution M(g,) is integrable,

then, another type of fibering of M over G\M is also possible. Indeed, let
N(x) denote the maximal integral manifold of R through x. Then p|N(x):
N(x)— G\M 1is a regular covering map and its group of deck transformations
H(x) can be realized as a subgroup of K. The obstruction morphism for (G, M)
is obtained as follows: :

Let ¢: [0, 1]1—M, c(0)=c(1)=x be a closed path and ¢ denote the lifting of
pec with respect p|N(x), starting at x. The correspondence [¢] —¢(1) defines

a morphism
$:(:=¢): m(M, x) — K,
with Im ¢=H(x).

2.3. Proposition [2; 1.14]. Suppose that (G, M) admits local orthogonal
cross sections. Then p: M—G\M is the (locally trivial) fiber bundle with fibre
G/G,, structure group H(x) and associated principal fiber bundle the covering
space p|N(x): N(x)—>G\M. Furthermore,

| M—;-G(x)xlmqu(x).

In Section 4 we shall indicate how this fibration can be obtained from Pro-
position 2.2 and our prolongation of R.

3. Proof of Theorem 1.2,

In this section we deal with the proper smooth action (G, M) satisfying
(IGC) and fixe some G-invariant metric g,. With the notation of Section 2 still
in force, we first examine some differential-geometric aspects concerning (G, M).

3.1. For heH, the differential (dh), maps T M onto itself and preserves
the orthogonal splitting
T M=T.Gx)PT.S.
Let _
D.={9€T M: (dh)()H=3, YheG.}.
Then, beacause of (IGC), N,:=T.S is contained in D, and

D,=F,®N,., while F,=D.N\T.G(x).
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The correspondence x— N, defines a G-invariant distribution R, complementary
to the G-orbits. If y=gx, then

Gy=8"'G:g

and, as an easy calculation shows,
F,=(dg).(F:).

Finally the correspondence x—F. defines a G-invariant distribution & tangent
to the orbits. We set

D=FDN .
Looking at a normal neighbourhood of x=M, we obtain

D,=T .MH,
which implies that ® is integrable. Let y=M and D(x) be the maximal integral

manifold of D, through x. If we consider a path 7 in G\M from p(x) to p(»),
then 7 has some lifting # in M starting at x. Beacause of the trivializations

G(S,) = G(z)X S,

7 lies entirely on slices and (IGC) implies that G(y)N\D(x)+# @. We summarize
the above discussion in the following.

3.2. Proposition. If (IGC) holds, then D is integrable with maximal integral
manifold D(x), through x, the connected component of M¥ which contains x.
Furthermore, D(x) intersects every G-orbit.

3.3. It is now clear that % is also integrable and in the G-space
G(x)?G/H, Fix(H, M)NG(x)=N(H)/H.
Contrary to this, R is not always integrable. The integrability of % yields

another slise S* at x, on the integral manifold N(x) [6; 2.2 Lemma]. The
next result shows that some “Koszul-slice” S and S* are in fact the same.

3.4. Lemma. If N is integrable then it is geodesible, that is every integral
manifold of N is a totally geodesic, immersed submanifold.

Proof. Let X* be a fundamental (: Killing) vector field of the action and
U, V vector fields of M such that U(y), V(y)eN, for all yeM. Using the
easily obtained relation

X*, [U, V)==2(X*, T,U>,
the lemma follows.

3.5. As 3.2. suggests, % has always a prolongation to an integrable dis-
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tribution, namely ®. On the other hand, the integrability of R may be a con-
sequence either of some special structure of G/H, or of the “rigidity” of the
orbits.

3.6. Corollary. Each one of the following conditions implies that N is in-
tegrable.

(a) The linear isotropy representation does not fix any non zero veclor.
Equivalently stated, dim F,=0.

(b) The local isometries for some orbit, in the Riemannian structure induced
from M, are reduced to the identity only.

3.7. We complete now the proof of our main result. Because of the ex-
istence of local orthogonal cross sections, the distribution R is integrable. This,
in view of 3.4, implies that the “Koszul-slices” are in fact local sections of p:
M—G\M, which are everywhere orthogonal to the orbits. Because of 3.1 and
3.2, M defines also an integrable distribution in M¥. Thus, N defines a flat,
K-invariant connection in the principal K-bundle pn: M#—G\M.

4. Applications

A. The obstruction morphism for actions admitting local orhogonal cross
sections.

4.1. If for the action (G, M) and the G-invariant metric g, the conditions
(IGC) and (NI) from Section 2 are satisfied, using Theorem 1.2, we have a
flat connection M in the associated principal K-bundle py: M¥—G\M. Using
folk results, the holonomy group @(x) of this connection must be a discrete
subgroup of K and its holonomy bundle through x is obviously N(x). Also,
the group @(x) may be identified with the group of deck transformations of
the regular covering py|N(x): N(x)—»G\M. Finally,

MHfod’(z)N(x)
(cf. [4; Vol. I; Ch. T, 9]).
4.2. Proposition [2; 1.12]. Suppose that the smooth effective proper action
(G, M) admits local orthogonal cross sections. Then there is a homomorphism

é6: m(M, x) —> Diffeo®(G(x))
and ,
M =G(x)X1mgN(x).

In fact, Im¢C N(H)/H.
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Proof. The orbit map p: M—G\M induces an epimorphism
(B2)e: m(M, x) —> 7 (G\M, p(x)).
Let ¢=@.(p.)s, Where
D.: m(G\M, p(x)) — K

is the holonomy homomorphism of %. Since K c DiffeoS(G(X)), Im¢ acts G-
equivariantly on G(x) and we have

M=G)X kM =G(x)X k(KX o) N(x) = G(2) X1mg N(x),

where some standard results about twisted products involving group actions
were used (cf. [3; Ch. II]).

4.3. For smooth proper actions another kind of sections was considered in
[7; 3.1], where further supposed that the integrable M has closed integral
manifolds. This is not necessarily the case for an action admitting local or-
thogonal cross sections. Of course results of “local” nature are true in both
cases (cf. [2; 1.9] in connection to [7; 4] and our 3.6(a) compared to [7: 5.3]).
It is the condition (IGC) which leads to global results like 4.2.

Example. Consider the torus 7'? as the orbit space of R? under the: usual
action of the integer lattice. On R? we define the Riemannian structure assum-
ing that for tang<=(R—@Q), the vectors (cosg, sing) and (0, 1) form an ortho-
normal framming and project this structure on 7'2. Let (R, R?) be now the proper
smooth action with (¢, (x, y))—(x, t+). Then, it preserves the above defined
metric of R® and projects to an isometric S'-action on 7. This action admits
~ local orthogonal cross sections and the maximal integral manifolds of R are
the projections of the lines y=(tang)x+c. As tang<(R—Q), these are dense
subsets of 7% and (S!, T has not sections.

B. Non-integrable G-invariant metrics.

If the action (G, M) has orbits of codim —1, then every G-invariant metric
is (trivially) integrable. If (IGC) is satisfied, this is also true, provided that
dim F>=0 (cf. 3.6 (a)). The next result shows that, except of these two cases,
there are many non integrable metrics.

4.4. Proposition. Let (G, M) be an eﬂective smooth proper action with only
one orbit type. Suppose further that the orbits of the action are of codimension
greater than one and that the linear isotropy representation fixes some non zero
vector. Then, the G-invariant metrics which are not integrable form an open and
dense subset in the space of all G-invariant metrics (equippied with the C=-
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topology).

Proof. We first prove that the non integrable metrics form an open set.
Let g* be a non integrable G-invariant metric. Then there are vector fields
X and Y g*-orthogonal to the orbits of the action and a point x&M such that
g%, [X, Y1(x)#0, for some 9T ,G(x). Given another G-invariant metric g,
the projections of X, Y in M(g) yield vector fields X, ¥ g-orthogonal to the
orbits. The correspondence g—g(9, [X, Y1(x)) involves, in local coordinates,
only the local coordinates (g;;) of g and their derivatives. Hence, it is con-
tinous and if g is close enough to g*, then g(9, [X, Y ](x))=0.

We now show that, an appropriate small pertubation of the G-invariant
integrable metric g, gives a new G-invariant metric § with $(§) non integrable.
Indeed, for x=M, let v be some non zero vector of F, and S a “Koszul-
slice” for g,, at x. Because of 2.1, the correspondence

hx —> (dh):(v)ETr:G(x)
defines a vector field on G(x). Using the trivialization
G(S)fG(x)xS

we can extend this field to a G-invariant vector field ¥ on the open set G(S).
Let the vector fields X, X,, ---, X, k=codim T,G(x) be selected in order that
{X.(z), Xo(2), -+, Xi(2)} is a go-orthonormal basis of TS, for all zeS. Then
the vector fields X,=(dh)X,), i=1, 2, ---, k, h&G are G-invariant and define
an orthonormal basis in 7,,S. Furthermore, let v: S—R be a non constant,
smooth function with compact support and ¥: G(S)—R defined by $(hz)=u(2),
zeS. We define the new metric & on M setting

FIM—G(©S)=g0IM—G(S),  §ITrG(x)=g0l TrzG(x)

and assuming that, on G(S) the vector fields {)?1—!—:”)‘7, )?2, e X.} define the
g-orthogonal bases on the complementary to the orbits subspaces. We claim
that MN(§) is non integrable. Indeed, we have the relation

[X+o¥, X=[X, XJ1+50V, X1+ X007,

where we can suppose that y(x)=0 and X,(v)(x)#0. Therefore, the summand
Xg(ﬁ)V is not indentically zero and it is tangent to the orbit G(x) at x. Also
note that

sV, X1(0)=0 and [X, X1(x)eR@=R(g)(®).

Hence, for the2vector fields X, +o¥ and X,, the Frobenious integrability con-
dition fails at x.
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