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Abstract. Two kinds of the stochastic differential equations of the McKean
type are considered. The one contains a large parameter «>0 and describes
the state of the particle in two dimension by its position and velocity varia-
bles, corresponding to the Fokker-Planck equation known as the Kramers
equation. Here the phase variables split into the slow position and the fast
velocity. The other describes the limit system of the position variable in
one dimension as a—oo, corresponding to the Fokker-Planck equation known
as the Smoluchowski equation. For the position variable, the limit distribu-
tions of the fluctuation and the deviation from the limit system are obtained,
with the help of estimates for the rate of decay of the remainder term. For
the velocity variable, the limit distributions of the rescaled processes and the
stability over an infinite time interval are obtained.

1. Introduction and motivation

Let (2, F, P) be a probability space with an increasing family {F,;¢=0}
of sub-g-algebras of F and let w(t) be a one-dimensional Brownian motion
process adapted to F,. Let a be a large parameter such that a>»1. Then our
goal of this paper is to study a rigorous detail of the limit behaviors as a—
for the solution (x%(¢), y%(¢)) of the following two-dimensional stochastic differ-
ential equation with mean-field of the McKean type:

dx*t)y=y*t)dt,
(L.1) dy*®O)=[—ary*t)—ag(x*®)—ay{y*®)—E[y*®)1} 1di+addw(t),
(2%(0), y*(O)=(¢, n=¢ .
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Here and hereafter {7, §, k} is a family of positive constants, g(x) is a scalar
function on R!=(—oo, o) and E[ ] denotes the mathematical expectation, and
also ¢=(&, n) is a two-dimensional random vector being independent of the two-

dimensional Brownian motion process.
The equation arises from the equation [I.I} with a large parameter
B>1 written below, under consideration that

a=pf, z@®)=x(pt) and y*O)=PRy(Bt),
1.1y dx(t)=y@)dt,
dy®)=[—Beyt)—g(x(®)—Pr{y®)—E[y®)1} 1dt+ /B odb(t),

where b(t) is a one-dimensional Brownian motion process. The solution (x(t),
y(@®) of (1.1} is an example of a formulation of the response (x(t), %)) of the
oscillator

i+ Bri+g(x)+Br{x—E[4]} =+/B db

to the formal white noise 5. Here the dotted notation indicates the symbolic

derivative d/dt.
The reduced equation for x°%(t) as a—oo can be derived by with the

following result :

-1 R Kk
w2 O R (GO _’_r)E[g(x(t))]]dt-i—x_'_rdw(t‘)“,
x(0)=¢,

where ¢ is the first component of the initial state ¢ in [I.1).
Assumption 1.1. There exists a constant />0 satisfying
lg(x)—g(x)| =l x—x'|
for all xeR! and x'= R

Assumption 1.2. The random vector ¢=(§, ) is independent of the two-
dimensional Brownian motion process, satisfying

Ellp|™]<co for an integer m=2.

Theorem 1.1 (t5], [6]). Suppose that Assumptions 1.1 and 1.2 hold. Then
the following results hold with the same exponent m as in Assumption 1.2:

@) iggE[ossggrlx“(t)lm]gMexp [NT*™]

for every T<oo, where M and N are positive constants being independent of a
| (M depends on T and N does not depend on T).
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(i) E[sup |x0)~x®)""| —0 a5 a—eo
ostsT
for every T <oo, where x(t) is the solution of (1.2).
(ili) For the solution y*(t) of [(I.I), define 5%(t) by
FO)=(1/va)y“t/a).
Then '
~Sa 5 2m - > —
E| sup 170501 | —0  as a0
for every T<oco. Here §(t) is the Ornstein-Uhlenbeck process satisfying the fol-
lowing Langevin equation : _
dit)y=—&k+7)Ft)dt+odw(t),  §(0)=0

with the one-dimensional Brownian motion process W(t) given by

Wt)=~a w(t/a).

The above result (ii) of corresponds to the so-called Smolu-
chowski-Kramers approximation. In case y=0, Schuss ([7], Ch. 6) gives several
derivations for the limit of x%() as a—oo, Karatzas and Shreve ([4], p. 299)
treats a model with a bounded drift coefficient, and besides Gardiner ([3], p.
196, 1.1. 11-16) suggests necessity of successful development of such a scheme
of systematic approximation on the stochastic differential equation. Being in-
spired by them, we seek details of various convergences to the limit system
of as a—co with rigour.

Notation 1.1. We shall use the following notations :

Is=exp[—ate+)11| exp Late+nulndu

1 e
_ﬂaGIB(l—exp [—a(+7t]),  where n=y%0),

17(:):&7 exp [——a(rc+r)t:|S: exp [a(s+7)u]g(x*(w)du ,

I¢(t)= K—% exp [—a(/c-i—r)t]S:exp [a(k+7)uln*(u)du,

whé're n*(w)=E[y*(u)],

Ig(t):k—_?—:?-; exp [——a(/c—i—r)t]S:exp [ale+7)uldw(u),
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Igt)= # exp [—axt]S: exp [axu](E[n] + —i—E[g(x"(u))])du

:x—_%[E[n];l;(l—exp [—axt])

+%exp [—axt]| exp [arul ELg(x=(u)] du.
Remainder term
Re®)=I13O)+11®)—Is®)— 150+ 120,
re@®)=I13)+13®)—I5@0)+15@) .

Deviation process
Av)=x*(t)—x(@),

where x%(t) and x(¢) are the solutions of [(1.I) and [(1.2), respectively.

According to the decomposition formula (6.5) and the deviation pro-
cess A%*(t) satisfies

aety=——={ To(x ") —g(x(w)) du
(1.3) :

7 ¢ o _ )
B T(IE-I—IC)SOE[g(x (u)—g(x(u)ldu+R@).

In particular, if g(x)=constant, then A*(¥)=R*(t).

Notation 1.2. We say a sequence {X*} of random elements converges in
distribution to the random element X, and write

(1.4) X=X

if the distributions p* of X* converge weakly to the distribution g of X : E[f(X*)]
—E[f(X)] for each bounded and continuous function f on R. When holds,
we will frequently abuse terminology by saying that X* converges weakly to X.

The contents of this paper are as follows:

Section 2. Theorems

Section 3. Limit distribution of fluctuation of position process
Section 4. Limit behavior of rescaled velocity process

Section 5. Exponential estimate for remainder term

Section 6. Appendix A (Decomposition of processes)

Section 7. Appendix B (Estimate for processes)

Each proof of the theorems in Section 2 is given in Sections 3, 4 and 5, with
the help of auxiliary estimates in Sections 6 and 7. We will refer to Sections
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6 and 7 for the exact proof of the auxiliary estimates.

Result 1.1 (Fluctuation of position process). As the estimate [(7.11) shows,
A%(t) satisfies

(1.5) E[lA“(t)I’]=O(al—2+%) for 0<t<T,

where a constant in O may depend on 7. This implies that the variable
A/a A%(t) can have a limit distribution as a—oo. Further the relation gives
us that

E[‘ «/&'A“(é)ﬂ= 0(%+1) for 0<t<T.

Therefore, it might be expected that the process va A%(t/a) also has a limit
distribution as a—o.
shows that

1.6) VaA t)=W  as a—o for each t>0,

where W is a Gaussian random variable with mean 0 and variance

0 v 1
2 __
7 —(H'T) 2(+7)
shows that
\/EA“(:tI—)=>U(t) as a—oo for all t=0,

where U(?) is the Ornstein-Uhlenbeck process governed by (2.2), since —U(t)
and U(¢) have the same probability distribution.

Result 1.2 (Rescaled velocity process). As the second equation of sug-
gests, the velocity process y*(t) is wide band noise process which blows up to
white noise as a—oc. How to transform the space-time parameter in order to
get a nontrivial limit of y*(f) as a—o ? For this question, the convergence
(iii) of is one result.

shows that

\/%y“(t) =W, as a—oo for each t>0,
where W, is a Gaussian random variable with mean 0 and variance
P
M PERR

Theorem 2.4 shows that




46 K. NARITA

y“(é)—ﬂ exp (—(’c_;m) —= W) as a—w

for all t=0 with a one-dimensional Brownian motion process W@).
Of special interest is the behavior of y%(#) over an infinite time interval

0<t<co. Then, [Theorem 2.5 shows a stablhty such that (1/+/a)y%(@®) is uni-
formly bounded in mean square.

Result 1.3 (Behavior of remainder term). As follows from the estimate
(7.5), R*(t) satisfies

BLIR®I1=0(5+=) for 0stsT,
where a constant in O may depend on 7. So, for any ¢>0
P(|R*(t)| >¢) ~— 0 as a—oo ,
On the other hand, Notation 1.1 implies
| R®=re()—I3(t) .

If the function g(x) and the initial vector ¢=(§, n) are bounded, then it can be
proved from Notation 1.1 that |7*(#)| =0(1/a) uniformly in =0 with probability
1. Now, I5@) is the pathwise unique solution of the Langevin equation :

1.7 dI§t)=—alk+n)I5t)dt+ E;?_—);dw(t) with 71¢(0)=0.

Here, it can be proved from that for each t>0, P(|I%(t)|>c) goes
to zero as a—oo exponentially fast. Therefore, it is plausible that this ex-
ponential decay can be transferred to the remainder term R%(t).

and show that the large deviation principle holds
for R*(¢) and R*(t/a).

Remark 1.1. - For a>»1, put ¢e=1/a. Then the equation is equivalent
to the following equation with a small parameter ¢: :
dx*{t)=y@)dt, |
edy O)=[—&y*O)—g(x*O)—r{y*O—E[y*®)]} 1dt+0dw(),
(x%(0), y:O)=(¢, 7=9¢,

or equivalently, ,
' eit+ei+g(x)+r{x—E[%]} =d0w .

In the above system, x°(t) changes at a normal rate and y*(t) changes at a
much faster rate. Thus, our investigation is related with smgular perturbatzons
of stochastic differential equations of the McKean type.
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2. Theorems

Theorem 2.1. Suppose that g(x) is a thrice continuously differentiable func-
tion satisfying

lg’(x)|+197(x)|+19"(x)| <A  for all xER'

with a constant A>0. Let $=(& 7) be the same random vector as in Assumption
1.2. Then ~/a A*(t) converges weakly to W as a—oo for each t>0, where W is
a Gaussian random variable with mean 0 and variance

d\v 1
2 —
7 —(x+r) 2e+7)
and independent of t>0.
Theorem 2.2. Suppose that g(x) is a differentiable function satisfying
lg’(x)|<B for all xR}

with a constant B>0. Let ¢=(&, n) be the same random vector as in Assump-
tion 1.2. Let T<oo be arbitrary and fixed. Then

2.1 £ |vaa(L) v [k ( S+ 5+1)

for 0<t<T, where K(T) is a positive constant depending on T and being inde-
pendent of a. Here U(t) is the Ornstein-Uhlenbeck process satisfying the follow-
ing Langevin equation :

(2.2) dU@)=— &+ U@)dt+ k%dw(t), U@0=0
with the one-dimensional Brownian motion process w(t)=+a w(t/a).

Theorem 2.3. Suppose that the same assumptions as in Theorem 2.2 hold.
Then (1/+/a)y*(t) converges weakly to (k+7)W as a—oo for each t>0, where W
is the same Gaussian random variable as in Theorem 2.1.

Theorem 2.4. Suppose that the same assumptions as in Theorem 2.2 hold.
Define Y*(t) by

t t
Y"(t):y"((;;>—17 exp (_(_IE_-_I-&I)_) , where 77=y“(0).
Let T<co be arbitrary and fixed. Then
E[1Y*@)—8W(®)|*]

<R fi-exo (- S+ Hi—e (-2

a

2.3
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for 0=St<T, where K(T) is a positive constant depending on T and being inde-
pendent of a, and besides W(t) is the one-dimensional Brownian motion process
given by Wt)=aw(t/a?).

Theorem 2.5. Suppose that g(x) is a bounded function satisfying .Assumption
1.1, such that |g(x)|<C for all x=R" with a constant C>0. Let o=(&, n) be
the same random vector as in Assz_tmptz'on 1.2. Then

2.4) sup EH:}&—_— y“(t)‘g]gﬁ(%-}—l),

t20

where M is a positive constant being independent of a. Namely,

el ol 0 =<

azl tz20

Now, according to [2], Ch. 5, we will give the definition of large deviations.
Let {g%},2: be a family of probability measures in R!, and put

He(z)=log Sm exp [zx]p(dx).

Let A(a) be a numerical-valued function converging to +c as a—o. We as-
sume that the limit

. 1 ..., _
Ll_r.l;lo E—(—&—)H (Aa)2)=H(z2)

exists for all zeR'. We will denote by L(x), the Legendre transformation of
H():
L(x)=sup{zx—H(2)}.

Definition 2.1. The family {p”‘}a;, is said to satisfy the large deviation
principle with the action functional A(a)L(x) if it satisfies the following Condi-
tions (0), (I) and (II):

Condition (0). The set @(s)={x; L(x)<s} is compact for s=0.

Condition (I). For any ¢>0, any >0 and any x=R?, there exists a,>0
such that

2y ; p(y, x)<e} zexp{—A(a)[L(x)+6]} for all a=a,.
Here and hereafter, for yeR' and x=R!, o(y, x) is defined by
p(¥, x)=|y—=x|.

Condition (II). For any &>0, any #>0 and any s>0, there exists a,>0

such that

2y ; p(y, O(s)=e} <exp{—A(a)(s—0)}  for all a=a,,
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where
ey, O(s))=inf{p(y, 2); z=D(s)}.

Theorem 2.6. Suppose that g(x) is a bounded and differentiable function
satisfying
|g(x)|+1g’(x)|SD  for all xR!

with a constant D>0. Let ¢=(§, 5) be any two-dimensional random vector inde-
pendent of the two-dimensional Brownian motion process, satisfying ¢l <a with
probability 1 with a constant a>0. Let v¢ be the probability distribution in R*
of the remainder term R*(t). Then, for each t>0, the family {v§} .z, satisfies
the large deviation principle with the action functional A(a)L(x), where

1

1, _
A)=a, L(x)—%;x and o= (IH-T) 2(k+7)

In the following, we consider the rescaled process R*(t/a) for the remainder
term R“(t) of Notation 1.1. Put

a __Z_ —pa _1__ a a
@5 A= {E] -0+ o))+ L Blote),
vghere 7=3%0) and n*t)=FE[y%®#)]. For R*() and A*®), define R2@) and
A%(t) by »
R“(t):R"‘(—:?) and ﬁ“(t):A“(%).
Then, according to (6.8), Re(t) satisfies the following equation :

2.6) dﬁ"(t)=——(/c+r)k“(t)dt+zlt—;l"(t)dt+ O )da(), Re©)=o0,

(_ £+
where W) is given by d@)=vaw(t/a).

Now, for a>1, set e=1/a. Then, emphasizing the dependence on the small
parameter <1, we set

Rt)=R*t) and A@®)=A4°0).
Then (2.6) can be rewritten as follows :
2.7 dR‘(t):[—(x+?’)R‘(t)+eA‘(t)]dt+\/'s“(—;_—?_—r>dw(t), R*(0)=0.
By C([0, o); RY) (resp. C([0, T]; RY)) we denote the space of all continuous
functions ¢(t), 0<t<oo (resp. 0<t<T), with range R

Theorem 2.7. Suppose that the same assumptions as in Theorem 2.6 hold.
Let {P¢}oce<: be the family of probability measures induced by Re()={R(t)} o<e<1
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on C([0, o); RY). Define S(p) on C([0, T]; R") by

I .%ST(%)” {% go(t)+(lc+7‘)§0(t)}2df

0

2.8 S(p)= ) . .
l if ¢(0)=0 and ¢(t) is absolutely continuous on [0, T],
(o ]

otherwise.

Then {P®}oce<: satisfies the large deviation principle with the action functional
(1/€)S(e).

[n the above theorem, we say that the family {P®},ccc; On C([0, o0); RY)
satisfies the large deviation principle with the action functional (1/¢)S(g) if it
satisfies the conditions (0), (I) and (II) in [2] (p. 80) with A(e)=1/¢, which is an
analogue of the above Definition 2.1 with metric space (R, o(y, x)=|y—x]|)
replaced by (C([0, T); RY), p(p, ¢)=supsscsr|@t)—d®)|).

3. Limit distribution of fluctuation of position process
In order to prove Theorems 2.1 and we prepare several lemmas.

Lemma 3.1. For the process I%(t) given by Notation 1.1, define W*(t) by
Wet)=+/a 1%(t). Then W(t) satisfies the following Langevin equation:

3. dW“(t)=—a(/c+T)W“(t)dt+\/cT(m—_?:—3 dw(t), wWe(0)=0.

Moreover, for each t>0, Wa(t) converges weakly to W as a—oo, where W is a
Gaussian random variable with mean 0 and variance

0\ 1
2
7 “(x+r> 2G+7)
and independent of t>0.

Proof. By Remark 6.1, since I%(¢) satisfies the Langevin equation [1.7),
We(t) automatically satisfies [3.1). Evidently, W<e(f) is a Gaussian stochastic
process with mean m*(t)=+/a E[1$(¢)]=0 and variance v*(#)=aE[|I§(®)|?]. The
estimate (7.2) applies to the moment of I¢(¢), and so

ve(t)=0*[l—exp{—2a(k+7)t}], where “2=(x_j:?)2§@lTr7'

Thus, m*()=0 for all {=0, and moreover
ve(t) —> o? as a—oo for each t>0.

Accordingly, for each >0, the limit distribution of W*(t) as a—oo is the normal
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distribution with mean 0 and variance ¢2, which follows from (p. 303) by
consideration of the characteristic functions. Hence the proof is complete.

Lemma 3.2. Suppose that the function g(x) satisfies the global Lipschitz con-
dition in x&R'. Let & be any random variable independent of the one-dimensional
Brownian motion process w(t), such that E[|&|**]1<oco for an integer n=1. Let
%(t) be the solution of (1.2) with the initial state x(0)=¢&. Then

3.2) E[lx®|**]1<A+E[|&]**]) exp [Kt]—1  for all t=0

with a constant K>0 depending only on the family {n, |, &, 1, 6} of constants,
where | is the Lipschitz constant for g(x).

Proof. Under the assumptions, has the pathwise unique solution x(z).
Ito’s formula applies to x(¢)**, and so

2N — _5___ 2n—-1
3.3 dx(t) _A(t)dt+x+r(2n)x(t) dw(t),

where

— ___1__ —_ r en—1
A® ={= 79O~ L Elgzon}enxe

1 6 2 2n~2
+5(m) (2n)2n—1)x(t)"2.

Set c=max{/, |g(0)|}. Then, since

lg(x)|<c(+]x]|)  for all x&R*,
we have

lg(x)x®*He(lx |24 | x |27 <2c(1+ | x| 2")
for all xeR!, and so
(3.9 lg(x@)x @)~ <2c+ | x@)|2")  for all t=0.

Use the Young inequality :
If a>0, >0, p>1 and 1/p+1/9=1, then ab<a®/p+bi/q.
Here, put

2n

a=|E[g(x@®)]|, b=|x@)I|**!, p=2n and 9=5—1,

and note that
lg() [P <AL+ | x| )PP <2221 (14| x| ™)

for all x=R'. Then we see
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|ELg(x@N]I-1x@)[*

_l_ 2n 2n—1 2n
(3.5) <5 ELlgx@)|*1+ 75— x()]
1 2n—1
< _—_s2n9gn-1 y|en on
< 52+ B 20D+ S5 1 5()]
for all t=0. Moreover
(3.6) [x@)|2" 21+ | x(8)| 2" for all +=0.

Therefore, by (3.4), [(3.5) and [(3.6), the drift coefficient A(t) in [3.3) satisfies

1 2n
A®| éx—_’_r(Zn)(ZC){1+ | x(@®)1*"}

r 2n92n -1 N 2n _ 2n
(3.7 +/c(x+7’) {2 ' A+EL| 2@ " D+@n—D | x@®)|*"}

0 \¢ .. on
+(7) n@r =D+ 101}
for all t=0. Take expectations on [3.3). Then, by we get
— ("t
E[|x(t)l‘"]gE[|E|’"]+KS°{1+E[Ix(u)l”"]}du

for all =0, where K is a positive constant depending on the family {n, ¢, «, 7, 8}
of constants. The estimate follows from the specic Gronwall-Bellman
inequality : If ¢(¢) is a nonnegative and continuous function satisfying

go(t)§52t+ﬁls:ga(s)ds+53 for all =0
with contants ,>0, d,=0 and 4,=0, then
0 0
go(t)é(a—’:- +8,) exp [a]—5  for all 0.
Hence the proof is complete.
Next we proceed to a key lemma for the proof of [Theorem 2.1

Lemma 3.3. Suppose that the function g(x) and the random vector ¢=(§, )
satisfy Assumption 1.1 and Assumption 1.2, respectively, and suppose that f(x) is
a twice continuously differentiable function satisfying

[FE+ 1@+ f7(x)|SD  for all x€R!

with a constant D>0. For the process I%(t) given by Notation 1.1, set We(H)=
JaT#(t), and let x(t) be the solution of (1.2) with the initial state x(0)=§. Let
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T <oo be arbitrary and fixed. Then

. b 2 — 1 1
3.8) E[(SOW @) f(xw)du)) ]gK(T)(?—k—;) for 0<t<T,
where K(T) is a positive constant depending on T and being independent of a.

Proof. For simplicity, set
x,)=Wt) and x.,)=f(x@)).
Then and Ito’s formula imply the following equations:

aO=—awtW®,  bO=va(L)-

dxy(t)=a,t)dt+b.(t)dw(t),

39) ax={~ o 0O s BLaG}/(xe)

1

0\,
+5 () 1o,

ba(t) =;f—_;f’(x(t)).

dlx,®)xo(t)]=2x,(t)d x2(2)+ x2(t)d x,(t)+ b, (£)De(t)dE ,
namely,

diw@®f(x@)]
=Wet){a(t)dt+b(t)dw(t)} —a(k+7) {(Wa(t) f(x(t))} dt
_/ O DRV N
+va( ) feandw+va( ) F ot

Taking notice of the term {W<*@®)f(x@®))}dt, we get

1

6100 [ Weafundu= s

[F1<t>+Fz<t>+.Fs(t>+ VEFWO+VTFLD)|,

where

FO=W0)f (xO)—W*@) f(x@O)=—W)f(x@®)) ,

FO={Wewawadu, Fo=(Wwbwduw,

Fy=_0{ fxyduw and Fo=(cp:) | fwndu.

In order to prove we must evaluate each moment of F,(¢) for 1=</<5.
Under Assumption 1.1, we note that
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lg(x)|<c(l+]x])  for all xR,

where c=max{/, [g(0)|} with the Lipschitz constant />0 for g(x). In the fol-
lowing, we shall denote various positive constants being independent of a by
the same symbol K (K may depend on {D, ¢, «, 7, 8} of constants).

Step 1. Since f(x) is bounded, as follows from the estimate (7.2), F.(t)
satisfies

(3.11) E[IF®OI"]=KE[|W*®IF]=KaE[|I5®)|*]<Ka(l/a)<K

for all t=0.
Step 2. The Schwarz inequality, together with the inequality such that
lxy|=(lx|2+|y|?/2 for xR! and y=R!, implies

| B2t W) ax(w)|*du

<t{! 3 1)1+ las)| Y du
Now, the estimate (7.3) yields
E[\Wew)|*]=a*E[|I{(w)|*]<a’K(1/a®)<K  for all u=0.

On the other hand, since |g(x)|<c(1+|x|) for all xR, and since |f’(x)|+
[f(x)| <D for all xR, the drift coefficient a,(x) in satisfies

la(u)| K1+ | xw)|+E[|x(w)|])  for all u=0.
This yields
Ella,(w)|*1=KQA+E[|x(w)|*])  for all u=0.

Accordingly, the estimate assures us of the following result:

(3.12) ELIF®| Itk | A+ EL) ()| Ddu

gtKS:(HE[leI‘]) exp [Ku]du

SKT*(1+E[|&14]) exp [XT] for 0xt<T.
Step 3. Since f’(x) is bounded, and by since

E[1Wew)|?]=aE[|I{w)|} 1=K for all =0,
F,(t) satisfies

(3.13) E[lFs(t)I2]éKS:E[IW“(u)lzjdugthKT for 0<t<T.

Step 4. Since f(x) is bounded, F,(t) satisfies
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(3.14) E[IE0)|7]= (;%)2 E[(S: f(x(u))dw(u))z] <Ki<KT

for 0=i<T.
Step. 5. Since f’(x) is bounded, Fy(t) satisfies

(3.15) E[|Fs® | 1<Ki*<KT?® for 0<t<T.
Lastly, take expectations on the square of (3.10) and use the inequality such
that (x;+%s+ -+ +x5)2<5(x2+x34 --- +x2). Then, by (3.11)~(3.15) we obtain
t 2
E[(|weasewndu) |
1 2
é(m) 5(E[lF1(t)l2+E[|Fz(t)lz:l-l-E[lFs(t)l’]
+aE[IF®|*1+aEL Fi®I4])
- 1 1
<R+ D)

for 0<t<T with a constant K(7)>0 depending on 7 and being independent
of a. Hence the proof is complete.

Next we will show that

V@ (A%(t)—R(t)) —> 0  in mean square as a—o .

Lemma 3.4. Suppose that g(x) is a thrice continuously differentiable function

satisfying
g’ )+ 197 +1g"(X) <A for all xeR'

with a constant A>0. Let ¢=(&, ) be the same random vector as in Assumption
1.2. For the deviation process A*(t)=x%t)—x(t) and the remainder term R*(t)
given by Notation 1.1, set

Xet)=+a(A*@)—R®) .
Let T<oo be arbitrary and fixed. Then

(3.16) E[IX“(t)l”]gM(T)(&l-,,—l—al—z-{—%) exp [M(T)Y]  for 0<t<T,

where M(T) is a positive constant depending on T and being independent of «.

Proof. According to (1.3) and (6.6), ~/a A(t) satisfies

vas®=— | (vl g G w)du

r( T .
| EUV@ A ) g C ) du+ VRO,
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where
C(u)=x(u)+0*(w)A*(u) and 0<O*(u)<1.

Since +va A*(u)=X*(u)++/a R*(u), we have

X=Xyt v/ R} €
3.17)

7 . o s
x(lc—i—r)S ENX*(w)+va R w)} g’ €*(w)]du.

First, the mean value theorem is applicable to g’(x), and so
9'(x+h)=g'(x)+hg”(p), p=x+6,h, 0<0,<l.

This implies
g9'Q*(u)=g’'(x(u)+h*(u)g”(p*(w)),

where
h*(u)=60*w)A%(u), p*(w)=x(u)+65(u)h*(u) and 0<O%u)<1.

Secondly, Notation 1.1 implies
R*(u)=r*(u)—I%(w) with r*(u)=I%u)+I1%u)—I¢u)+Iu).
So, the integrand of the right-hand side of (3.17) is rewritten as follows :
{(X*(w)+~aR*(u)} g’ €*(w))
=X*(u)g’'€*(w))++/a R*(u){g’(x(u)+h*(u)g”(o*(u))}
=.X“(u)g’(C"(u))+ Ve {r*(u)—I5w)} g"(x(u))++/a R*(u)h*(u)g”(p*(w))
=X(u)g' Q)+ &r*(W)g (2 (w)—Wa(w)g (x(W)+ /& Re(u)h*(u)g”(p*(u)),

where We(u)=+/a I§(u). Substituting the above expression into the right-hand
side of (3.17), we get the following relation :

X(@) =———- Fe(t)— E[F*®)],

x(x +r)
Fet)y=X “(t)+ VEX =X O+ a X D),

(3.18) ¢ ¢
xso={ x“wg'@wdu, Xso={rwg =wndu,

x50={ Weag x@)du, Xe®=| Rwh=wg"(oxu)du .

In order to prove (3.16) we must evaluate each E[|X%(t)|%] for =1, 2, 3 and 4.
In the following we shall use the Schwarz inequality such that

(S:k(u)q(u)du)zg A%‘S: | k(w)|2du
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if jg(u)| <A for all =0 with a constant A>0.
Step 1. Since |g’(x)| <A for all xeR!, X4(@) satisfies

ELIX30)11= 4% EDX )| Ddus AT | BLIXw)|"]du  for 0st<T.
Step 2. By (7.7), since
ELlr@)|ISK(T)(o;)  for 0st<T,

where K(T) is a constant depending on 7 and being independent of a, X%(t)
satisfies

E[|X‘§(t)12]_§A2tS:E[lr“(u)lzjdugAszK(T)(c%) for 0<t<T .
Step 3. In set f(x)=g’(x). Then yields

E01x50) 1 1=E[ (W cydu) |sRT (+1) for 0st=T,

where K(T) is a positive constant depending on 7" and being independen of a.
Step 4. Since |g”(x)| < A for all x=R?, and since

[A%(u)| =10%(w)A*(u)| <|A*(u)] for all u=0,

X¢(t) satisfies
| Xs@ < A% | R || A(w)|*du

< a4(' 2 (1RG0 |+ | A%)  dc,
where the inequality, such that 2|xy|=|x|*+|y|? for x&R' and yeR, is
used. Now, as follows from and [7.12), both R*(x) and A*(u) satisfy that

E[IR“(u)]4]§K(T)(0%+$) for 0<u<T
and

E[ A0 IS RTY (4 +35)  for 0susT,

2
where K(T) and I?(T) are positive constants. Accordingly, X{(t) satisfies
1 ~ 1 1
E[lX;'(t)I”]gAm?{K(T)+K(T)}(a—4+ ) for 0st<T.

Lastly, consider the square of (3.18) and use the inequality such that
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(a1+a,+ -+ +as)?*<8(al+aj+ -~ +aj) for a,, a,, -, a;=R".

Then, by Steps 1, 2, 3 and 4 we see

E[lX“(t)IZJéS‘{(x_il_r)z‘l'(,;(x:-r))z}

X {EL|X3®)1*1+aE[| X3(t)| 1+ E[IX50) "] +aE[| X20) |71}

gJVI(T){S:E [1 X)) 2]du+(£; + Z} + %)} for 0<t<T

with a constant M(T)>0 depending on T and being independent of a. Hence
by the Gronwall-Bellman inequality we get (3.16), showing the proof.

Proof of Theorem 2.1. For the deviation process A%(t) and the remainder
term R*(t), set X*(t)=+/@A*(t)—+/a R%(t). Further, put We@)=+/a I%{).
Then, by Notation 1.1, since R*(t)=r*(t)—I1%(), we have

(3.19) (—We®)—va A*t)=—(X*t)+ar®)) .
First, it follows from that

Wet)==>W  as a—co for each >0,

where W is a Gaussian random variable with mean 0 and variance
J\v 1
ol={—) =t
(x+r> 2(e+7)
This convergence with Example 25.8 in (p. 288) implies that

(—We(t) == (—W) as a—o for each t>0.
Therefore

(3.20) (—We@t))==W  as a—oo for each t>0,

since —W and W have the same normal distribution with mean 0 and variance
a®. Secondly, it follows from (3.16) and that

E[|1X*®)++/ar*®|®21S2{E[| X%t)|*+aE[|r*@®)|*]}
gz{mT)(o% + 0—}5 4 §)+aK<T)(a1-2)}

for 0=<t<T with constants N(7T)>0and K(T)>0 depending on 7. This implies
that

X +/ar*t) — 0 in mean square as a—o for 0<t<T.

Thus, the relation yields
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3.21) (=We@)—+/aA%(t) =0 as a—co for 0<t<T.

Therefore, appealing to Theorem 25.4 in (p. 285), by and we
can conclude that

JaA ) =W  as a—co for each t>0.

Hence the proof is complete.

Proof of Theorem 2.2. Set D*(t)=+/a A%(/a). Then, by the equations
(1.3) and (6.6), D*(t) satisfies

De(t)= (l)xirs De()g'(¢(;)) s
oo (S,

Lo(s)=x(s)+0%(s)A%(s) and 0<O%(s)<]1.
Set U*(t)=+/a I%(t/a). Then, by Notation 1.1, since Re(t)=r*({t)—1%(t), we see
~ Ra i — T _t_ JJ
V&R (a)—-\/ar (a) Ua(t).
Therefore, D*(t) satisfies

D=(t)—(— U“(D)——(—),;LTS D(9)8'(¢())ds

~(D e LB ©a (€ (5) Jastvar(Z).

Now, W=(t) is the solution of [3.I), and so U*(¢t) satisfies

where

(3.22)

dU*t)=—&+nU(t)dt+ —x---_?_—};dw(t) with  U#*(0)=0,

where w(t) is the one-dimensional Brownian motion process defined by w(t)=
Jaw(/a). Namely, U%t) is the solution of which has the pathwise uni-
que solution U(¢), and hence U*(t)=U(t). Take the square of (3.22). Then,
using the Schwarz inequality and appealing to the boundedness condition on
g’(x), we can find a positive constant C being independent of a, such that

ETID*®)—(=U@)1*]
(3.23) =E[|D*@)—(=U*)|*]

<c{(G) BT Do) ds+ak]

(@)

Let T<o be arbitrary and fixed. Then, according to the estimates and
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(7.7}, there exist constants M(T)>0 and K(T)>0 depending on 7T and being
independent of «, such that

. 1,1
sup BLIA*G)| <MD+ )
and
« 1
sup ELIre() 1<K (T)(;).
Choose a so large that a»1. Then, since

0=s><t <t<T for 0<s<t<T,

Q
Qlﬂ

the following estimates hold :

EL1D%s) "] =aE| |a*(5)]| ]
(3.24)
ga(oss%ETE[lAa(u)m)gM(T)(%H) for 0<s<t<T.
(3.25) aE[ (—)H<a OSS%ETE[!r“(u)Iz:l)<K(T)() for 0<t<T.

Substituting (3.24) and (3.25) into [3.23), we obtain
E[|D*(t)—(—U@®)|%] gC{(Elé)tS:M(T)(%+1)ds+K(T)(-‘%)} for 0<t<T,

showing [2.1). Hence the proof is complete.

4. Limit behavior of rescaled velocity process
Here we prove [Theorem 2.3, [Theorem 2.4 and [Theorem 2.5.

Proof of As follows from the formula (6.7), y*(¢) satisfies

\_/1& YEO=Z*®)+k+W(E),

where
Zt)=—7= \/— 7 exp [—a(k+t]—(k+NvVa 1§+ @+ vVa I5¢),
7=y%0), WO=+ali@),
and I%(¢), I3(t) and I5(t) are given in Notation 1.1. Namely
(4.1) (x+r)W“(t)~-j= ()y=—Z4t).
First, implies
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We@t)=—=W  as a—oo for each t>0,

where W is the Gaussian random variable with mean 0 and variance

gie(_0_ )2 1
k+7/ 2e+7) "

So, Example 25.8 in (p. 288) implies
4.2) (E+7We(t) = (k+7)W as a—oo for each t>0.

Next we will evaluate the moment of Z%(t). Since (a+b+c):<3(a*+b*4-c?) for
real numbers a, b and ¢, Z%(t) satisfies

E0I 20123 (5)ECI71%] exp [—2a(s-+71]

+w+7)aELITT® 1]+ (+ )’ EL1 T5(0)] ’J] :

Under the assumptions, all conditions of are satisfied, and hence
implies

E[) Z®)|*] sK[(i—) exp [—2a(c+7)t]

+a{E[(1+ sup | £%(w)| 2]}{1(1‘; a(/c-H’))}z]

0osus
for all t=0 with a constant K >0 being independent of ¢ and a. Here

I 1
a(k+7) a(k+7)

for all t=0. Note that the estimate (i) of holds for x%(t). Then
we can find a constant M(¢)>0 depending on ¢ such that

At s alk+7)= {1—exp[—at+el}=

E[lZ“(t)|”]§M(t)[( : ) exp [—2a(e+7)t 3+(:1{)]

a
for all t=0. Thus, Z*(t)—0 in mean square as a—o, and hence
4.3) Zt)=0 as a—oo for all t=0.
Therefore, combining Theorem 25.4 in (p. 285) with the relations [(4.1),

and [(4.3), we can conclude that

\/l&— y(t) = (k+7)W as a—oo for each t>0.

Hence the proof is complete.
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Proof of [Theorem 2.4. Set
ya (e+7)t e
Yeit)=y ( ) vexp( p ), where 9=y%0).
Then, as follows from (6.7), Y *(t) satisfies
a —_— . a L —Ja _i_’_ — Ja .t_
o vem=—G+na{ls(5)—15(5) - 15(5)} -
Introduce a one-dimensional Brownian motion process W@) by

Wt)=aw(t/a?) ,

where w(t) is the same Brownian motion process as in [I.I). Then, by
since

dI§)=—a(e+7)I5t)dt+ 'Ct?jT dw(t) with I¢(0)=0,
the following equation holds:
wf T\ e’ 0 -5
alt ()=—(e+)| 13(g5)du+ | W),
Substituting this form into the third term of the right-hand side of [4.4), we get

Yet)— 5W(l‘)—-—(l€+)’)al< ) (A:—I—T)al( ) (Ic+7‘)2§ “( 2)du.

|

Thus the Schwarz inequality yields

ELIY “—3Wn|1<3{s+1raE |
(4.5)

)

+a+rt| B[ |13(5

11(z3)

]+(x+r)2a2E[

aul)

for all t=0. By the assumption, since |g’(x)|<B for all xeR!, the function
g(x) satisfies Assumption 1.1. Further, the random vector ¢=(¢, ) satisfies
Assumption 1.2, and so E[|n|]<oo. Therefore, by we can find a
constant K>0 such that

{EAIE
for all t=0, where i=1 and 2. Here

(Ic+7’) {1“6"”(_@%@)} :

Choose a so large that a@»1. Let T<co be arbitrary and fixed. Then, since
0<s/a*<t/a*<t<T for 0<s<t<T, the estimate (i) of implies

(1+, sup_ 1% )A(5; ate+1)

o0ssst/a?

Wz ale+p) =
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B[, sup |x“<s>|m]gE[0ssggr|x“<s>|m]gC<T>

0ssst/a?

with a constant C(T)>0 depending on T, where m is the same exponent as in
Assumption 1.2. Accordingly, we can find a constant C(T)>0 depending on T

such that
IECNEIECE

4.6) <CD{A(5; at+n)}

=E(T)(a(lc{|—r) )Z{I—exp (é (—x{ﬁ)}z for 0T .

Moreover, by we see that for all u=0
A UN|E]_f O \2, U .
£ 13G) [ |=(55) G 2aetm)

:(ch—;')z(2a(lc1+ 7) ){1 B <_ _2_("1:[)_{‘)} '

Substituting and (4.7) into the right-hand side of (4.5), we obtain (2.3).
Hence the proof is complete.

4.7

For the proof of we prepare the following lemma.

Lemma 4.1. Suppose that g(x) satisfies the global Lipschitz condition in x< R!
and that |g(x)|<C for all x=R' with a constant C>0. Let ¢=(§, 5) be the
same random vector as in Assumption 1.2. For the solution y*(t) of (1.1), set
n*)=E[y*t)]. Then

4.8) |n"(OI SECIy1] exp (—ast)+ < (1—exp [ —ax])

for all t=0, where p=y*(0). Moreover
sup{sup |na<z)|}sN<oo .
azl 20
Proof. Since [g(x)|=C for all x&R?, the expression (6.3) implies
t
In*®)| <E[In|]exp [—axt]+a exp [—alct]soeXp laxu] | ELg(x*(u))]|du

<E[|p|]exp [—art]+aC exp [—axt]S:exp [axu]du,

which yields (4.8). Hence the proof is complete.
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Proof of [Theorem 2.5. The expression (6.7) implies

L yety=y L exp [—a(e+Dt—G+DvaI)
Va Vva

+E+NVal§t)+e+r)valgt),

and so
el
@9) <4[(3)ECI71%] exp [—2ate+7)1]

+e+ el ECITE0 191+ EL 1509+ ELI 50141} ]

Hereafter, for p>0 and ¢=0, put

1 1
Al ap)= c—ﬁ)—(l—exp [—apt]), so that  A(t; ap)< ah "
In the definition of I'%(¢) and I¢(¢) cited in Notation 1.1, use the condition that

|g(x)| <= C for all x&R!, Then we have

C C 1
FAG) <_—2(t a(x—i—r))“x—l—ra(lc-i—r) for all 1=0.

Further, under the assumptions, [Lemma 4.1 applies to I%(¢), so that

150)| < 1 exp [—ate+1t]| exp [ate+7)uln*w)| du

k+7
~rTN2(t a(H_T))SH—T a(xif) for all ¢1=0.
On the other hand, Lemma 7.2 implies
ELII5®]*]= (-~—) At ; 2a(k+7))
for all t=0.

g(x—l-?’) 2a(lc+7)
Therefore, substituting these estimates into the right-hand side of we get

E U\/i& »¥@)| ’]gM[(%) exp [—Za(x-i-T)t]-i-a{Elé-i— %}]

for all t=0 with a constant M >0 being independent of ¢ and «. Therefore we
get [2.4). Hence the proof is complete.
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5. Exponential estimate for remainder term

In order to prove [Theorem 2.6 we prepare two lemmas.

Lemma 5.1. Let 1%(t) be the process given by Notation 1.1, and by pf denote
the probability distribution in R of I%(t). Then, for each t>0, the family
{ué} 221 satisfies the large deviation principle with the action functional A(a)L(x)
in the sense of Definition 2.1, where

1 : 1
Kay=a, L(x)=35x" and 0”=(;;§7) 2e+7) "

Proof. As follows from Remark 6.1 and Lemma 712, I is a Gaussian
stochastic process with mean 0 and variance
a a 27 — l 2
v ()=ELI15()| 1= — 0¥(1—exp [—2a(s+7)f]),
where

PRERIE
T \e+7/ R@k+7)

By M*(z) denbte the moment generating function of I%(¢), and put
He(z)=log M*(z) and (a)=a.
Then, since M"(z):E[exp{ng(t)}]=exp{v"(t)z”/_2}, we see

IS VR _ V2
mH ‘(l(a)z')— 50 (1—exp [—2a(s+7)t])z
—>%azz2 as a—oo for each t>0.

Define the function H(z) by
H(z2)=(0%/2)z% .

To this function H(z), the Legendre transform is defined by

L(x):sgp {zx—H(2)}.

Since z=z(x)=x/0* is the solution of the equation H’(z)=x, L(x) is determined
from the formula

L(x)=z(x)x—H(z(x)).
Namely

1
L(X)Zﬁxz .

The function L(x) is continuous and strictly convex. Thus, Theorems 1.2 and
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1.1 in [2] (p. 140 and p. 138) apply to the family {u#}..: for each ¢>0, which
implies that Conditions (I) and (I) of are satisfied. Hence the
proof is complete.

Lemma 5.2. Suppose that g(x) is a bounded and differentiable function satis-
fying
lgx)|+19’(x)|=<D  for all x&R!

with a constant D>0. Let ¢=(&, 7) be any two-dimensional random vector inde-
pendent of the two-dimensional Brownian motion process, such that

l§pl=a with probability 1

with a constant a>0. Let R*(t) be the remainder term defined by Notation 1.1,
and let RE(t) be the solution of the following Langevin equation:

+

where w(t) is the same Brownian motion process as in (1.1). Then

5.1) dR?,‘(t):—a(/c+r)Rg(t)dt—-E—a—rdw(t), R&(0)=0,

(5.2) |R“(t)—Rg(t)|§I?(—al—> for all t=0 with probability 1,
where K is a positive constant being independent of t and a.

Proof. For R%(t) and R2(t) in the hypothesis, set
Va)=R*®)—R3@).
Then, since R*(¢) satisfies the equation [6.8), V*(¢) is the solution of the follow-
ing equation:
t
0

vew=—at+n| Vewdut | awadu,

where
a —_— r a _1'__ a T a
6.9 A=L{EmI—nO}+ {1+ e Ol Bl
7=y%0) and a*O)=E[y*@)].
Namely
d

Vet =—a(e+n)VO+A®  with V40)=0.
The ‘solution is given by the form
(5.4) Ve(t)=exp [—alk+ r)t]S:exp [a(k-+7)u] A%(w)du .

The boundedness condition on g(x) and ¢=(&, 7) applies to (5.3), and so
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|A*@®)| <M1+ |n=@®)|)  for all =0

with a constant M >0 being independent of ¢ and a. Further, under the assump-
tions, all conditions of are satisfied, and hence implies

|n*(u)|<N  uniformly in #=>0 and a=1
with a constant N>0. Accordingly
(5.5) | A*(u)| SM(1+<N)  uniformly in ¥=0 and a=1.
Therefore, by we see

V@) <MA+N) exp [—a(fc+r)t]S: exp [a(e+7)uldu

=M (1+N)

1
2 7) (1—exp[—a(e+7)]),

showing [5.2). Hence the proof is complete.

Remark 5.1. The processes /§(¢) and R§(¢) are the pathwise unique solu-
tions of the Langevin equations [(1.7) and [(5.1), respectively, and hence

R5)=—13@).

Therefore, R§(t) and I4(t) have the same normal distribution.

Proof of By ¢ denote the probability distribution in R! of
R4%(t). Then we must show that for each t>0 the family {vf}..: satisfies Con-
ditions (I) and (II) of Definition 2.1. In the following, let ¢>0, >0, x=R! and
s>0 be arbitrary. Since ¢(x), g’(x) and ¢=(& %) are bounded,
implies

|R*(t)—x| < |R*)—R§® |+ | R§(t)—x ]|
(5.6)

—~71 «
gK(-E)-HRO(t)—x] for all 1=0
with a constant K>0. Choose a so large that ¢e—K(1/a«)>0. Then
=71
{1R“(t)—x|<e}2{|R‘g(t)~x|<s—K(—E)}.

Let p# be the probability distribution of 7¢(t). Then, by Remark 5.1, the pro-
bability distribution of Rg(¢) is equivalent to p#, for which holds.
Thus
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vi{y; 0@y, x)<el=P(|R*()—x| <e¢)

= P(| R§®)—x| <5—’?(‘§))

=ut{y; o0, m<e—E(3)}

geXp{——a[L(x)+0j} for each t>0,
where -

I i (L0 1
L(x)~ﬁx and o _(E+T) 2e+7)

Here and hereafter, for yeR! and x&R', p(y, x) is defined by
P(y; x)"_".y_xl-

Namely, for each t>0, {v?#}..: satisfies Condition (I) of Definition 2.1l
Next, put @(s)={x; L(x)<s}. Then it follows from (5.6) that

p(R*®), O(s)=inf{|R*®)—=x| ; x=P(s)}
1

<K()+inf{|R§(h)—x| ; x€0(s))

R(2)+oRs0), 9(s)

and so

(o(Re(t), DNz e} S {o(R3®), DHze—K(3)}.

By Remark 5.1, applies to the family of probability distributions of
R%(®). Thus

vily; p(y, O(s)Hzel =P(p(R(t), D(s))z¢)

<P(o(R5®), D(s)ze—K (%))

=,,g'{y s 00y, D(s)ze—K (&)}

gexp{—a(s—ﬁ)} for each t>0.

Namely, for each >0, {¥#} 4. satisfies Condition (II) of Definition 2.1. Evidently,
the function L(x)=x2/(20?) satisfies Condition (0) of Definition 2.1. Hence the
proof is complete.

Proof of Theorem 2.7. For a1, put e=1/a, so that ¢ is a small param-
eter. Consider the following one-dimensional stochastic differential equations:
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6.7 dR4(t)=[—(k+7)REB)+eA()]di+ d?(— ,—Cg_—r)du")(t) , Ri0)=xeR'.

5.8) dI;(t)=—(x+r)I;(t)dt+«/e"(—xf_—r)dw(t), [50)=x .

Here w() is the one-dimensional Brownian motion process given by @)=
& w(t/a) with the same Brownian motion process w(t) as in [1.I}. For x&R'
and T <co, define S: r(p) by the following equation :

';_3 oT (E-%)_z {% ¢(t)+('5+7)90(t)}zdt

(5.9) Sz (@)= if p(0)=x and ¢(t) is absolutely
continuous on 0=t<T,

) otherwise.

Let {Q%}ocsc: be the family of probability measures on C([0, «); R") of the
space of continuous functions w: [0, co)—R!, induced by I:(-)={I&(®)}o<e<1,
where I:(t) is the solution of (5.8). Then {Q%}.«.«: satisfies the large deviation
principle with the action functional (1/¢)S: r(¢), where S: r(p) is defined by
(5.9), in the sense of [Z] (p. 80 and p. 146). Now, by {Pf}i<.<: denote the
family of probability measures on C([0, o0); R'), induced by Re()={R4®)} o<e<s
with the solution R%(¢) of (5.7).
Under the assumptions, implies that

|ne@®)|=|E[y*@#)]|<N<co  uniformly in a=1 and t=0.

For a>1, let A*(t) be the process given by (5.3). Define A%(t) by A*(t)=A%{/a),
emphasizing the dependence on the small parameter 0<e=1/a<1. Then, since
0<t/a=t for all =0, it follows from that

| Axt)| =| A%(t/a)|<A  for all =0 uniformly in &
with the same constant A=M(1+N)>0 as in [5.5). Accordingly

sup|eA*(t)|—> 0 as ¢—0.
tz0

Therefore, by only minor change of the proof of Theorem 3.1 in [2] (p. 154),
we can obtain that {P$}.<.<: satisfies the large deviation principle with the
same action functional (1/¢)S: r(¢) as in [5.9). If we set x=0 in (5.7), then
we have that R§F)=R:(t), where R*(t) is the solution of (2.7) with the initial
state R*(0)=0. Namely, (1/¢)S, r(¢) is the action functional corresponding to
the measures induced by R*:(¥). Hence the proof is complete.
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6. Appendix A (Decomposition of processes)

Under Assumptions 1.1 and 1.2, let (x%(¢), y2(t)) be the solution of
with the initial state (x2(0), y*(0))=(¢, n)=¢, and set n*(t)=E[y*®)]. For '
0=7=<4, let I%() be the same processes as in Notation 1.1.

First, y*(t) and n*(¢) satisfy the following linear equations :

61 dy O=[—a@+1y O—agE O +arn*®ldt+addu®, y 0=y,
62 En=—am O—aElg@®)], n“O=Ely].

Solving (6.1) and (6.2), we have the following expressions :

6.3)  no(t)=exp[—axt]E[7]—a exp [——alct]S:exp [aru] E[g(x*(u))]du,

ye(ty=exp [—ate+]x[ || exp [atetrul {(—ag(x=w)+arnaw) du
(6.4)

t
—|—a6§Oexp [a(r-+7)u]dw(u)-+ 7;] :
Secondly, substitute (6.4) into
t
x“(t)=$+Soy“(u)du ,

and change the order of integration in the double integral. Then we have the
following expression of the position process:

a e __‘}‘_ ¢ a _— T ¢ ae | __6“ a
65 w0=¢= | g@andu— TS EloGeodu+ - w+Re),

where R4%() is the remainder term given by Notation 1.1. Next, let x(¢) be
the solution of [1.2), and put A*(t)=x%({t)—x(). If g(x) is differentiable, then
by the mean value theorem we can rewrite (1.3) as follows:

a —_,L ¢ a rpa . 7 ¢ a r(ra a
€6 AW=— [ Awe @ — TS ElaTag € unldu+Re@),

where
C¥(u)=x(u)4+60*(w)A*(w) and 0<O%(u)<1.

On the other hand, (6.4) can be rewritten as follows:
6.7) ye@)=nexp [—a®+nt]—ak+nIi®)+al+Ist)+alk+1)15).

Remark 6.1. For 0</=<4, each I%(t) satisfies the following linear equations :
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4 Is0=—ate+DIsO+y,  15O=0 (1=50).

d aft)— a _l__ a a(())—
_tI 1O)=—akc+n{0t)+ x+7‘g(x @), 1$0)=0.

4 rarpn— « 7 a (e
alz(t)— a(lc+7‘)12(t)+x_|_7,E[y ®1, 14(0)=0.
[/ 4 —_— a 6 a —
dIs@t)= a(x+7)13(t)dt+x———+rdw(t), 14(0)=0.
d a —— a (24 a —
—dtl4(t)~—alc14(t)+{x E[r)]+~(——-—+ El[g(x (t))]} 12(0)=0.

In fact, consider the linear equation of the form
dX(t)=[—apX@t)+A®t)ldt+bdw(t)

with positive constants a, p and b, integrable function A() and Brownian motion
process w(t). Then the solution X(¢) is given by

X(@)=exp[—a pt][S:exp [apu] {AGw)du+bdw(w) -I—X(O)] .
This formula together with Notation 1.1 gives the above remark.

Remark 6.2. The remainder term R%(¥) satisfies the following stochastic
differential equation :

(6.8) dR(t)=—a(k+7)R*(t)dt+ A*(t)dt— ri—rdw(t) ,  R*(0)=0,

where

as=T Bty 1m0} +{n+ oG+l Blot@)]
and w(?) is the same Brownian motion process as in (1.1).
In fact, Remark 6.1 implies‘
(6.9) dR*t)=—a(e+){I5@)+19@)— ) —I§()} dt—axlf(t)dt

+[{r;+——g< “en}+ TT{E[n]—n“O‘)}

T N S
ki Elos O |dt— - dwid).

Note that I&(O)+I5@t)—I5@t)—I1§@t)=R*({t)—I¢(#). Observe the definition of 7¢(t)




72 K. NARITA

and the form (6.3) for n*(t), so that

(6.10) “(t)-ma;{E[nJ ne(t)}.

Then, by substituting [(6.10) into (6.9), we can obtain 6.8).

7. Appendix B (Estimate for processes)

Under Assumptions 1.1 and 1.2, let (x2%(), y%()) be the solution of
with the initial state (x*(0), y*(0))=(¢, »)=¢, and set n*t)=E[y%(t)]. For
0=<7<4, let 1%(t) be the same processes as in Notation 1.1.

Notation 7.1. For t=0 and p»>0, define the function Alt; p) by

At p)=—;;<1—exp [—pt]).

Remark 7.1. The following inequalitis hold for A(t; p):
(i) A(t; p)<t for all t=0 uniformly in p>0.
(i) A¢t; p)<1/p for all t=0.

Lemma 7.1. Suppose that the function g(x) and the initial vector ¢=(§&, )
satisfy Assumptions 1.1 and 1.2, respectively. Then

lg(x)| =cl+1x])  for all x€R*,

where c=max{l, |g(0)|} with the Lipschitz constant | for g(x). Further, for
i+3, each I%(t) satisfies the following estimates :

IS <I71A¢t; a(k+7)) for all t=0, where n=y%0).

|1«;(t)|glﬁr(1+o§3§t |x2(W)| )At; als+7)) for all t20.

[ne@®)|=exp [—axt]E[lny]+cE[l+osst!1‘;s)t|x"‘(u)l]{al(t; ax)} for all t=0.
15015 B0y 0+ £ B[ 1+ gup |l ]} atetn) sfor it 120
|20l < x—_'_—r{E[lnl]+ %E[1+ossl'1‘15)t|x“(u)l]} At; ax) for all 120.

Proof. If « and p are positive constants and A(¢) is a function satisfying
0supzlh(u)|<c>o for every t< o, then
sus
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(7.1 lexp [—~apt]S: exp[apuih(u)du l é(osslig; | h(u)| )Z(t sap).

The above inequality (7.1) applies to Notation 1.1 as follows:
In I§(), use (7.1) with h(u)=7, where np=y%(0).
In I49(t), use (7.1) with h(u)=g(x*(u)).
In the formula (6.3) for n%(t), use (7.1) with h(u) E[g(x“(u))]
In I74(t), use (7.1) with A(u)=n%*(u).
In Ig@), use (7.1) with A(u)=FE[n]+QA/e)E[g(x*(w))].
Then the proof is complete.

Lemma 7.2, The process 1%(t) has the following moments:
0

(7.2) E[|1:0))%]= (+—) At; 2a(k+7)) for all t=0.

7.3) E[|I:0)|]= 6( )Za(xl—l—r) (¢ ; 20641~ 2t date+7))} for all 120,

For any integer m=2 and every T <o,

2| sup, 17301+

(7.4)
<2+ 2[({—) m@m—1)T(J &n- 2(T))”2+—:?_~72m(T Jm- I(T)b"z]

where

];‘,(t):(i)zn(n(2n—1))"t”“2(t; 2na(k+7)) .

£+
Proof. Put

f=E[II5®)|*] and fO=ELII$®I"].

Then

ELII5®)1%]= E[(;% exp [—ale+7)]| exp late+nulduww) |

(—_?_—T) exp [—Za(/c—i—r)t]S:exp Ralk+7)uldu,

which shows (7.2). Since [%(¢) satisfies the Langevin equation of Remark 6.1,
Ito’s formula yields

4T3 1 T=] ~date+ DI T301+6(-3-) 11501

+4(x—j-_-r—)1 st dw(t).
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Taking expectations, we have the linear ordinary differential equation of first
order:

& O=—dale+1)f (+6( o ) F®, f0=0.
The solution is given by
Fo)=exp [—-4a(lc+7‘)t]S exp [4a(lc—|—r)u]6( ) Fow)du,

where f.(x) has the explicit form (7.2), which shows (7.3). The estimate (7.4)
follows from (p. 309). Hence the proof is complete.

Lemma 7.3. Suppose that the function g(x) and the initial vector ¢=(¢, 7)
satisfy Assumptions 1.1 and 1.2, respectively. Then, for every T >0 there exists
a constant K(T)>0, for which the following estimates hold :

(7.5) E[lR“(t)l“’]gK(T)(&l—z-i-%) for 0<t<T.
1 1

(7.6) E[]R“(t)l‘]éK(T)(c?-i—a—,) for 0<t<T.

@7 E[Ir“(t)lzng(T)(&l—z> for 0<t<T.

Proof. By (ii) of Remark 7.1, since for a>0 and p>0
At ap)g&—l‘; for all =0,
implies that for 7/+#3, each I¢(t) satisfies
a a l
(7.8) 1130 é@'i(t)(z) for all t=0

with random processes ¥'4(). Under Assumptions 1.1 and 1.2, the moment
‘estimate (i) of holds for x%(¢) and the moment condition such that
E[|¢|**]<c with n=1 and 2 holds for ¢=(§, ). So, we can find a constant
H(T)>0 such that for 73,

(7.9) E[IT{®I]<H(T) for 0<t<T

with n=1 and 2. On the other hand, by Lemma 7.2, there exists a constant
C>0 being independent of ¢t and a such that

(7.10) ELII501m1=C(oy)  for all 120

with n=1 and 2. Further, the Schwarz inequality implies that
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ELIR0)|")S5 3 ECIT017),  ELIR®I1S5 3 ELIT0)1*]
and

ECir ®|*]1=4 Z ELITTOIM] .

Thus, by (7.8)~(7.10) we get (7.5)~(7.7), showing the proof.

Lemma 7.4. Suppose that the function g(x) and the initial vector o=, n)
satisfy Assumptions 1.1 and 1.2, respectively. For the solutions x%(t) of (1.1) and
x(t) of (1.2), set

Avt)y=x2({t)—x() .

Then, for every T >0 there exists a constant D(T)>0 depending on T and being
independent of a, for which the following estimates hold:

7.11) E[1A%)]] éD(T)(Elé n 21!-) exp[D(T)]  for 0<t<T.
(7.12) E[[A“(t)l‘]éD(T)(c—tlz—l— 0%) exp[D(T)]  for 0<t<T.

Proof. Let T'<oo be arbitrary and fixed, and consider the interval 0=¢=<7.
Then the Schwarz inequality applies to (1.3) with the following estimates:

[A%(®)]?

T gl (T s rau () T BTt R0,
A=)

(7.14) §323[<xi—}—)‘T”S:|Aa(u)|4du+(<"ﬁ) T3S E[|A*(w)|*]1du+ | R“()] ]

for 0<t<T. Here, the constant / in (7.13) and (7.14) is the Lipschitz constant
for g(x). Take expectations on (7.13) and (7.14), and use the estimates
and of for R*(t). Then we have

E[la®)*]< 3[{(Kir)2+(K(KZT))Z}TS:EEIA“W) | 2]du+K(T)(C%+i—)]

and

Eniaee =39 {(o) + (. 5s) 17, EL1 A% VdutK(T) i) |

for 0<t<T. Therefore, by the Gronwall-Bellman inequality we get (7.11) and
(7.12), showing the proof.



76

(1]
[2]

(3]
(4]
(5]
(6]

(7]

K. NARITA

References

P. Billingsley, Probability and Measure, Wiley, New York, 1979.

M.L Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems,

Springer-Verlag, New York, 1984.

C.W. Gardiner, Handbook of Stochastic Methods, Second Edition, Springer Series
in Synergetics 13, Springer-Verlag, Berlin, 1990.

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-

Verlag, New York, 1988.

K. Narita, The Smoluchowski-Kramers approximation for stochastic Lienard equa-

tion with mean-field, Adv. Appl. Prob., 23 (1991), 303-316.

, Asymptotic behavior of velocity process in the Smoluchowski-Kramers
approximation for stochastic differential equations, Adv. Appl. Prob., 23 (1991),
317-326.

Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley,
New York, 1980.

Mathematical Information System Laboratory
Department of Industrial Management

and System Science

Faculty of Technology

Kanagawa University

Rokkakubashi Knagawa-ku

Yokohama 221, Japan



	1. Introduction and motivation
	Theorem 1.1 ...

	2. Theorems
	Theorem 2.1. ...
	Theorem 2.2. ...
	Theorem 2.3. ...
	Theorem 2.4. ...
	Theorem 2.5. ...
	Theorem 2.6. ...
	Theorem 2.7. ...

	3. Limit distribution ...
	4. Limit behavior of rescaled ...
	5. Exponential estimate ...
	6. Appendix A (Decomposition ...
	7. Appendix B (Estimate ...
	References

