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Summary. In this paper, we prove that, for each pair n, d of positive in-
tegers with n<d, there is a subgroup G,; of R™*! satisfying dim G,4=n and
dim(G,4)?=d. We also prove that there is a separable metrizable precompact
topological group H,, satisfying the same property.

1. Introduction

In the present paper we consider the topological dimension of products in
separable metrizable topological groups. One of the most interesting parts in
dimension theory is to investigate the behaviour of dimension functions in pro-
ducing product spaces. It is known that for finite dimensional separable metri-
zable spaces X and Y with dim X>0 and dimY >0, the inequality dim (XXY)
>max{dim X, dimY} holds if X or Y is compact. In 1967, Anderson and
Keisler have shown that the compactness can not be dropped in the theorem
above. Indeed, they have proved that for each positive integer n there is a
subspace X of R™*! such that dim X=dim X“=n. In 1985, Keesling has
shown that there is a subgroup of R"*' having the same properties. On the
other hand, Kulesza [8] improves the theorem of Anderson and Keisler in a
different direction with Keesling’s one.

Theorem ([8, Theorem 31). For each pair n, d of positive integers with
n=d, there is a subspace X,q of R™*' such that dim X,;=n and dim (X,;)?=d.

The purpose of the present paper is to show that there are a subgroup of
R"*' and a separable metrizable precompact topological group which have the
same properties as Kulesza’s space. All spaces considered here will be separable
metrizable spaces. By a dimension we mean covering dimension dim. We
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refer the readers to and for dimension theory.

Let R, @ and Z denote the reals, rationals and integers respectively. Let
I denote the closed interval [—1,1]. Let w be the first infinite ordinal and ¢
denote the cardinality of the continuum that we think of as an initial ordinal.
Follows from [1], by a hyperplane in R® we mean a translation of a linear
subspace of R*. For a hyperplane H in R", let H be the set of all translations
of H. Hyperplanes H and K of dimensions dy and dx are said to be in general
position if for H'<H and K’eR, H'NK’+¢ implies H'NK’ is a hyperplane
in R* such that dim (H'"\K’)=max {0, dy+dx—n}.

2. A subgroup of the Euclidean space R"*!

The following theorem improves theorems due to Keesling and Kulesza
mentioned in the introduction simultaneously.

Theorem 2.1. For each pair n, d of positive integers with n<d, there is a
subgroup Gnq of R™' such that dim G,,=n and dim (G..)*=d.

Proof. Follows from [8], for given n, m>2 and n<d<nm—m we construct
a subgroup G of R™ with dim G=n—1 and dim G?=d for all g=m. The proof
proceedes in six steps.

Step 1. We define a bijection
e:{(U,9:/=12,--,m—1, and i=l,2, ---, n}\U{(m, n)}

I {1) 2; ) n(m_1)+l}
as follows; '
o 7, if i=n,
o, )= o e
m—-1)(n—0)+75+1, if i<n—1.
For j<m, we put
1 { min {7 : ¢(j, )<nm—d}, if 1<7<m—1,
] =
n, if j=m.
Furthermore, we put
Js={A), A(N+1, -+, n},
M=U{{j}><]f:]=1) 2’ oy m}‘-
We consider

=1
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where R ,,=R and I ;,=I for each (j, 7). Notice that we consider R*=
IT?-: R, for a suitable ; to the occasion. Let {(Ag.4y, Beoy): J<mand i<n}
be the standard essential family for I*™, i.e.,

Ay.o=r3 (=1 and B ,=nF,Q),
where ;4 : I*™—1; ;, is the projection. We put
K={"{Kqy.v: U, H&EM} : K4 is a separator of A, 4, and B4y in 1™},

Then we have two lemmas follow from Kulesza [8]. (Notice that the cardinality
of the complement of M is nm—(nm—d)=d in Lemma 2.2.)

Lemma 2.2. Let Y be a subspace of R*™ with YNK+#¢ for every KeX.
Then dimY =d.
Lemma 2.3. 7,(K)=II{l; «:(j, )M} for each K X, where my: ["™—

{1y (G, )EM} is the projection.
Step 2. Let

C={C: C is a continuum from Agq,,, to Bq,; in R"}.

The following lemma is well known (cf. [1], [11]).

Lemma 2.4. Let Y be a subspace of R™ with YNC+#¢ for every Cec.
Then dimY =n—1.

Step 3. For each ¢>m, we construct hyperplanes in R™. Let

Hy={(x, x, ---, x)eR™: x=(x(1), x2), ---, x(n))=R"},
and for each j=1, 2, ---, m—1,
Hy={(x, x, -, x)H,: x(k)=0 for ke],}.
Then H, is a linear subspace of R™ with dim H,=n and H, is a linear sub-

space of R™ with dim H,=(j)—1 for j=1, 2, ---, m—1. For each j=0, 1, 2, -,

m—1 and each pz(ph pZ, Tty pm)Equ: where pi=(pt(l)) pi(Z), Ty pi(q))qu,
let

pf+1Hf={(pj+l(1)x: pi+1(2)x) Tty pj+1(‘])x) : (x, X, - +x)EHI}'
Let

H(P)=p1H0+P2H1+ +pmHm—l .

Then H(p) is a linear subspace of R™ satisfying
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dim Hp)<n+ 'S A —D=n-+n(m—1)—(nm—d—1)=d+1
j=1

Finally, we put
H={H(p): p=Q*™}.

Step 4. The following lemmas can be proved by arguments similar to that

of and [8].

Lemma 2.5. For each ¢>m there are countably many spheres Si, i€w, in
R™ satisfying the following conditions :

0) SNZ™=¢ for each icw.

1) dim S;=nqg—d—1 for each icw.

(2) For each icw, S is contained in a hyperplane H; in R™ with dim H,=

ng—d.
(3) H, is in general position with respect to each H ' H and each He 4.
4) dim (R™—\J{S;:i€w})<d. '

Lemma 2.6. For each He %, H'€H and each icwo, |H'N\S| =2.

Now, for each ¢>m, we put

Step 5. We enumerate X by X={K,:a<c} and C by C={C,: a<c} such
that both K, and C, contain the origin. We shall inductively construct sub-
groups Y, and G, of R" satisfying the following conditions: For each a<c,

6) Y.NC.#9,

©6) (GI™NK,#¢,

(7 (Go)*N\Tre=¢ for each ¢>m,

8 |Gq.l=Zw-|la+l]|, and

9) Z"CGpCY .CG, if f<a. :

We put Y,=G,=Z". Then it is clear that Y, and G, satisfy the conditions
(5)-(9) for a=0. Suppose that «>0 and for each S8<a subgroups Yz and Gg
of R" satisfying the conditions above are constructed. First, we shall con-
struct Y,. We put

U,=U{Gps: ,8<a}.
It follows that U, is a subgroup of R" satisfying

10) (Ua*N\Tre=¢ for each g>m,

11) |U.l=e-|a+1].

For each ¢>m, we put

Be=U{m:(@Q-(HPIN(S+U)M): pEQ™, icw, and k=g},
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where 7, : R"=T[{, (R"),—(R"™), is the projection. If follows from
that

|HOIN(S +u)| <2 for each p=Q?™ and each us(U,)".
Hence '
THONSHU)) | S |(U) | <o |a+1].

Therefore |B,|<w-|a+1|<c. Thus there is YaECo—\J{By: g>m}. Let
Ya:Ua+Qy a-

Then Y, is a subgroup of R™ satisfying the condition (5). Furthermore, we

have the following claim.

Claim 1. (Yo' Trg=¢ for each g>m.

Proof. Fix ¢>m. Suppose that ( Y )M Tre#¢. Then there are
U=y, Uy, -, udeU,)Y, P1=(:(1), $:(2), -+, P1(@)EQs and i€w |
such that u+p,y¥eS,, Whére YE=Vay Va, -, y,,)eHo.‘ Hence -
PYEES—uC S+ UL |
We put p=(p,, 0,0, -, 0)Q*™. Then We have p,y¥ep,H,CcH(p). Hence
| PYESHBNS+UP .

On the other hand, it follows from (10) that there is k<q such that p,(k)+0.
Thus -

Ya=Tk(P1y%/ P1(R)ETH(Q - (H(DN(S:+ U )))CT B, .

This completes the proof of the claim.

{

Now, we shall construct G,. We inductively find, for =12 -, m

’

ri=(r A1), r(AN+1), -, 7:(”))Ei_gj)l G.o
such that, at each stage k2<m, letting
E;={x€R": n; (x)=r;} for j=1,2, ---, &k,
where I ‘ ‘

n’ . n
Tyt RP=TI Ry, —> II Ry
i=1

t=2(J)
is the projection, and choosing x;=E; arbitrarily, for all ¢>m,
*) (Ya+Qx1+Qx2+ +ka)qunq=¢ .

Assume that t<m and that we have 7y, 7,, -+, 7:_1.
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Claim 2. There is a subfamily 4" of U{ﬁ: He 4} such that

12) |4 Zw-|la+l]|, and

(13) U{(Y,+Qx+Qx,+Qxs+---+Qx, ) : xER", x;,€EE,;, 1<j<t—1}
C\U{H’ : H' e 4%,

Proof. We put

w={H(p)+y+0: pe@™, ye(V.y, and 3e( S 3 @n) |-

k=1 t=2(k)
It is clear that | 4"|<w-|la+1|. To show that 4" satisfies the condition (13), let
xeR*, x;€E; for each j<t—1, and

o=(a,, 0y, -, O'q)E(Ya+Qx+Qx1+Qx2+ v Qx0T
where
Cr=Yr+spx+six+sixs+ - +sttx,_,

for some y,€Y, and s, s}, s§, -, si7'€Q. Then we put

y=(yl: Ve, o0, yq)E(Ya‘)q,

p1=(31, Sg, ', sq)EQq:

{ (3{7 S'é, Ty sé)qu! if léjét—l »
Djn1=
7100 -, 0eq,  iftsjsm—1,

p":(pl: bsy pm)Equ,
x*=(x, x, ---, x)€H,, and

(0; 0, ) O)EHI’ if t..s—]gm—l ’
x¥=

(x.;r x;: Tty x;)EHj} if lg.]gt'—l )
where
x;6), for iZA())—1,

| o
0, for A(H)<itn.

Furthermore we define

t-1 n

3=(8, 3, -, 3 &( Q)"

k=1 i=2Ck)

as follows: For each j<q and i<n,
_ Seishre@) i€ Jal, if ieJ, for some &,
51(1)=

s . otherwise.

Since x;E; for each j<t—1, it follows that
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G=p1x*¥+ psxT+ -+ +PpuXh1+y+0
epHo+pHi+ - +puHn 1 +y+0
=H(p)+y+os4".

This completes the proof of the claim.
For each ¢>m, we put
Fa={x€R": (Yo+Qx+Qx:+Qxs+ - +Q%:_1)'NTo#¢

for some x,€E;, j=1, 2, ---, t—1},
and
Bqt=”J,(th),
where

”Jc:ant_l_IlR(‘-‘) —> II Ru.s
is the projection. "I‘hen we have
Claim 3. |By|=<w-|a+1| for each q>m.

Proof. Let
Fau=U{(Yoa+Qx4+Qx,+Qx:+ - +Qx, 1 'NThe: xER", x;€F,, 1Sj<t—1}

and ¢: F,,—Fi; be a mapping satisfying

¢(x)€(Ya+Qx+Qxl+Qx2+ +th-—l)qunq

for some x;€E;, j=1, 2, .-, t—1. For each a=(a(a(t)), a(A(t)+1), ---, a(n))E By,
there is x,=F,; such that ,; (x,)=a. We define a mapping ¥ : By,—F}, as

. , - Ula)=¢(x,) for each a=B,; .
To show that
|T-T(a)| <o |a+1] for each a=B,,,
let a, be B, with T(a)=T(b). Let ¥(a)=(a,, 03, -+, d¢) and T(b)=(zy, 73, ***, Ty),

where for each k=1, 2, ---, g,
Or=Yr+SsXo+sixi+sixet -+ sk %y, -
Tv=yit+viXotviz izt - vk Tz,

for some y., yi€Y,., x; z;€E; and s, v, si, vieQ. It follows from the in-
ductive assumption (*) and Claim 1 that there is 2<q such that v,#0. Since
x;, z;€E; for each j=1, 2, .-, t—1, it follows that
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n.,,(ak>=<m,<y'k>+s,,a+:§ siry(A@), rA@O+1), -, r4n)), and

R (e =@ D vab+ Bl A0, IO+, o, v

Thus we have the following :

b= (R0 st S (1= 3O, rHAO+D, -, 7))
Therefore, it follows that
(14) |T"¥(a)| <w-|a+1] for each acB,, .
On the other hand, it follows from (13) that
FiLC\U{HNT g HE 4%
=U{HNS; ' He 4" and icw}.

Thus it follows that |Fi,|<w-|a+1| by and (12). Hence we have
| Byl S0 |a+1].

It follows from Claim 3 that there is

n

re€ Il Iq.oy—\J{Bg:g>m}.

A=At

It is clear that the condition (*) is satisfied for r,, 7, -, 7,. Ther_efope we
complete the inductive procedure for finding r,, 7,, -, #p.

It follows from that there is x=(x,, x,, -, xn)=K, such that
ns(x5)=ry for each j=1,2, ---, m. Let

Ga=Ya+Qx1+Qx2+ QX .

Then G, is a subgroup of R* with [G.|<w-|a+1|. Since x,&E; for each j,
it follows that (G,)*"\Tr,=¢. Furthermore itis clear that (G,)"N\K,=>x. The
subgroups Y, and G, of R" satisfy the conditions (5)-(9).

Step 6. Finally we put
C=U{Gq: a<c}.

Then G is a subgroup of R* and it follows from (7) that G'N\T,,=¢ for all
q>m. Hence dim G*<d by (4) in Lemma 2.5 It follows from (6) and
2.2 that dimG™=d. Hence dim G?=d for all g=m and hence dim G?=d by
[1, Lemma 4] or [10].

It follows from (5) and that dim G=n—1. On the other hand,
since G has no non-empty open set of R*, dim G<n—1. Hence the theorem is
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proved.

Remark. If we do not require that the group G is a subgroup of R™*},
then there is another way for finding a separable metrizable topological group
G satisfying dim G=dim G®=n. Indeed, let X be a separable metrizable space
satisfying dim X=dim X*=n ([T]). Let F.(X) be the free topological group of
X equipped with the Graev’s metric topology (see [6] or [2]). It follows from
and that F,(X) is a separable metric topological group satisfying

(a) dim Fo(X)=sup{dim X™: mew}=n.

But we can not apply this argument to find a separable metric topological
group G, satisfying dim G,.=n and dim (G,q)*=d for n<d. Because, it fol-
lows from the condition (a) that dim F,(Xnq)=dim (F,(X,4))*=d for a space X4
with dim X,,=n and dim (X,.)*=d. Thus the topological group G.. described
in is the first example of an n-dimensional separable metrizable
topological group satisfying dim (G.s)*=d even if one does not require the
additional condition ‘to be a subgroup of R"*".

3. A separable metrizable, precompact group

We shall turn to the precompact topological groups. A topological group
is said to be precompact if it is isomorphic to a subgroup of a compact group.
Shakhmatov has proved in that for each positive integer n there is an n-
dimensional separable metrizable, precompact topological group G satisfying
dim G®=n by use of an argument of free topological groups. W shall improve
the Shakhmatov’s theorem.

A continuous mapping f of a space X onto a space Y is said to be a local
homeomorphism if each point x of X has an open neighborhood U such that
f(U) is an open set of Y and the restriction of f to U is a homeomorphism of
U onto f(U). Let T*=S'XS'X --- XS! be the n-dimensional torus. Let A: R—S!
be a mapping defined by A(t)=(sin 2xt, cos 2xt) for teR, and h"=hXhX -
X h: R*~T" be the product mapping. It is clear that A™ is a local homeomor-
phism. Notice that for a subgroup G of R" the restriction of A" to G need
not be a local homeomorphism. However, we have the following simple lemma.

Lemma 3.1. Let G be a subgroup of R* contazmng Z™. Then the restriction
of h™ to G is a local homeomorphism.

Theorem 3.2. For each pair n, d of positive integers with n<d, there is a
separable metrizable, precompact topological group H,, such that dim H,,=n and
dim (Hnd) =d.
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Proof. Let G,; be a subgroup of R**! constructed in [Theorem 2.1.. We
put H,y=h"**(Gns). Since A™*' is a homeomorphism, H,, is a subgroup of
T™**. Hence H,, is precompact. If follows from the condition (9) in the proof
of that G,, contains Z**!. By Lemma 3.1, it follows .that the
restriction of A"*!' to G,s is a local homeomorphism. Hence locdim G,o=
locdim H,,, where locdim X is a local dimension of a space X introduced by
Dowker [4]. Since G, and H,; are metrizable, their covering dimension and
local dimension coincide. Thus dim H,,=dim G,,=n. Similarly we can show
that dim (H,4)™=dim (G,;)™ for every mcw. Thus it follows from that

dim (H,q)?=max {dim (H,q)™ : mE o} =max {dim (G,q)™ : mcw)}

=dim (Gn)*=d .
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