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Abstract. The present work treats certain orientation reversing involutions
on $(4k+1)$ -dimensional homotopy spheres with $2k$-dimenstional fixed point sets.
The author calculates the explicit obstruction for these involutions to be iso-
variantly homotopy equivalent to the linear involution on the standard sphere.

1. Introduction and statement of results

The purpose of this paper is to calculate the isovariancy obstruction for
maps between certain homotopy spheres with smooth involutions. Throughout
this paper $n$ is a positive even integer. By a Kervaire manifold, we mean a
compact framed $(2n+2)$-manifold with non-zero Arf-Kervaire invariant. A
$(2n+1)$-dimensional homotopy sphere that bounds a Kervaire $(2n+2)$-manifold
(with boundary) is called a Kervaire sphere, which is not diffeomorphic to the
standard sphere $S^{2n+1}$ unless $n+2$ is a power of two. In this research we shall
treat the involutions described below. In [4] there is another description of
our involutions using the section of Brieskorn varieties around the origin. We
shall denote the standard inner product of vectors $x,$ $y\in R^{n+1}$ by $\langle x, y\rangle$ . Let
$D^{n+1}$ be the closed unit disk centered at the origin of $R^{n+1}$ and its boundary is
the unit sphere $S^{n}$ . Given a unit vector $x\in S^{n}$ , we define a linear transforma-
tion $\theta_{x}\in O(n+1)$ by

$\theta_{x}(y)=2\langle x, y\rangle x-y$ , $y\in R^{n+1}$

Consider the diffeomorphism $\phi$ of $S^{n}\times S^{n}$ defined by

$\psi_{(x},$ $y$ ) $=(\theta_{x}\theta_{y}(x), \theta_{x}\theta_{y}(y))$ .

From the relation $\theta_{Px}=P\theta {}_{x}P^{-1}$ for $P\in O(n+1)$ , we can verify that $\psi(x, y)=$

$((\theta_{x}\theta_{y})^{q}x, (\theta_{x}\theta_{y})^{q}y)$ holds. Suppose that we are given a map $\varphi$ defined on a
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subset of $C$ of a space $B$ into another space $A$ , then we shall denote by $AU_{\varphi}B$

the space obtained by attaching $B$ to $A$ via the map $\varphi$ If the map $\varphi$ is an
inclusion map of $C$ into $A$ , we shall simply write $AU_{C}B$ instead of $A\bigcup_{\varphi}B$ .
Consider the involution on $S^{n}\times S^{n}$ which maps the point $(x, y)$ to $(x, -y)$ .
Since the map $\phi$ is equivariant with respect to this involution, we may intro-
duce an involution on

$\Sigma_{q}^{2n+1}=S^{n}\times D^{n+1}\bigcup_{\phi^{q}}D^{n+1}\times S^{n}$ ,

given by $(x, y)\vdash\rightarrow(x, -y)$ , where $(x, y)$ is an element of $S^{n}\times D^{n+1}$ or $D^{n+1}\times S^{n}$ .
It is clear that the involution on $\Sigma_{0}^{2n+1}$ is equivariantly diffeomorphic to the
linear involution on the standard sphere $S^{2n+1}$ . Whereas the underlying space
$\sum_{1}^{2n+1}$ is a Kervaire sphere when we forget the involution. Among the involu-
tions for all $q$ , it is known that there are at most two equivariantly different
diffeomorphism classes represented by $\sum_{0}^{2n+1}$ and $\sum_{1}^{2n+1}$ ([4]). That is, $\sum_{q}^{2n+1}$

for $q\equiv 0,3$ mod 4 (resp. $q\equiv 1,2$ mod 4) is equivariantly diffeomorphic to $\sum_{0}^{2n+1}$

(resp. $\sum_{1}^{2n+1}$). Let us recall that an equivariant map is transverse linearly iso-
variant (t-isovariant for short) if the map keeps the isotropy group at each point
and in addition the map can be regarded as a linear bundle map around the
fixed point sets ([3]). It is known that when $n+2$ is not a power of 2, that
$\Sigma_{0}$ and $\Sigma_{1}$ are not t-isovariantly homotopy equivalent ([4]). In this paper, we
shall calculate the explicit obstruction for the existence of a t-isovariant map of
degree one from $\Sigma_{1}$ to $\Sigma_{0}$ by constructing a t-isovariant map up to a $2n$ -skeleton
of $\Sigma_{1}$ under a certain equivariant cell complex structure. About the final ob-
struction for extending this t-isovariant map, we have the following theorem.

Theorem. Under a certain construction of a t-isovariant map from $\Sigma_{1}$ to $\Sigma_{0}$

in lower dimensions, the final obstruction to building a degree one t-isovariant
map is given by the Whitehead Product $[\ell_{n+1}, \ell_{n+1}]\in\pi_{2n+1}(S^{n+1})$ .

The vanishing of the Whitehead product obstruction is a sufficient condition
for the existence of a t-isovariant map. Moreover, as we shall see later, we
construct such a map starting from a homotopy equivalence around the fixed
point set. So if the final obstruction vanishes, we have a t-isovariant homotopy
equivalence. In particular when $n=2$ or 6, $S^{n+1}$ is an H-space and $[\ell_{n+1}, \ell_{n+1}]$

vanishes. Thus we have the following corollary.

Corollary. If $n=2$ or $n=6,$ $\Sigma_{q}^{2n+1}$ for all $q$ are mutually t-isovariantly
homotoPy equivalent.
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2. Preliminary construction

Let $\chi$ be an equivariant diffeomorphism of $S^{n}\times S^{n}$ with respect to the in-
volution $(x, y)\leftarrow\rightarrow(x, -y)$ and we assume that $\chi$ induces the identity map on
homology groups. We consider two homotopy spheres with involutions:

$\Sigma_{0}=S^{n}\times D^{n+1}\bigcup_{\ell d}D^{n+1}\times S^{n}$

$\Sigma_{x}=S^{n}\times D^{n+1}\bigcup_{x}D^{n+1}\times S^{n}$

Given a map $\rho:S^{n}\rightarrow SO(n+1)$ , we define a diffeomorphism $b_{\rho}$ of $S^{n}\times D^{n+1}$ by
$b_{\rho}(x, y)=(x, \rho(x)y)$ .

Lemma 1. If there exists a t-isovariant homotoPy $eq\iota uvalence\Sigma_{x}\rightarrow\Sigma_{0}$ , then
there exists a t-isovariant homotopy equivalence $f:\Sigma_{x}\rightarrow\Sigma_{0}$ such that $f|S^{n}\times D^{n+1}$

coincides with $b_{\rho}$ : $S^{n}\times D^{n+1}\rightarrow S^{n}\times D^{n+1}\subset\sum_{0}$ for some $\rho:S^{n}\rightarrow SO(n+1)$ and
$f(D^{n+1}\times S^{n})\subset D^{n+1}\times S^{n}$ .

Proof. Since the t-isovariant homotopy equivalence induces a homotopy
equivalence at the fixed point set, the map has degree one up to sign. If the
degree at the fixed point set is minus one, we replace the t-isovariant map by
its composition with an equivariant orientation preserving diffeomorphism of $\Sigma_{0}$

which reverses the orientations of the fixed point set and its normal bundle.
Then we have a i-isovariant homotopy equivalence which induces a map of
degree one at the fixed point sphere. Since the degree one map of a sphere is
homotopic to the identity, we may deform this map by homotopy to obtain a t-
isovariant map which is the “identity” at the fixed point sphere $S^{n}\times\{0\}$ . The
t-isovariant map is a linear bundle map around the fixed point set and we may
write $f|S^{n}\times D^{n+1}=b_{\rho}$ for some $\rho:S^{n}\rightarrow SO(n+1)$ . Since the map $f$ is isovariant,
$f(D^{n+1}\times S^{n})$ does not touch $S^{n}\times\{0\}$ and we may deform $f|D^{n+1}\times S^{n}$ rel. bound-
ary to a map into

$D^{n+1}\times S^{n}\subset\Sigma_{0}\square $

since $D^{n+1}\times S^{n}$ is an equivariant deformation
retract of $\sum_{0}-S^{n}\times\{0\}$ .

We shall try to construct a t-isovariant map $f:\sum_{x}\rightarrow\sum_{0}$ starting from a
map $b_{\rho}$ for some $\rho:S^{n}\rightarrow SO(n+1)$ . Its restriction $\phi_{\rho}=b_{\rho}|S^{n}\times S^{n}$ to the bound-
ary induces a diffeomorphism $\overline{\phi}_{\rho}$ of the quotient space $S^{n}\times P^{n}$ , where $P^{n}$ is the
n-dimensional real projective space.

Lemma 2. The map $b_{\rho}$ extends to a t-isovariant map $f:\Sigma_{x}\rightarrow\Sigma_{0}$ if and only

if $p_{2}\overline{\phi}_{\rho}X$ is homotofflc to $p_{2}$ . Here $p_{2}$ : $S^{n}\times P^{n}\rightarrow P^{n}$ is the second projection and
2 is the diffeomorphism of $S^{n}\times P^{n}$ induced by $\chi$ .

Proof. The map $f$ can be isovariant if and only if $f(D^{n+1}\times S^{n})$ does not
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meet the fixed point set $S^{n}\times\{0\}\subset\Sigma_{0}$ . This is possible if and only if the map
$\overline{\phi}_{\rho}$ : $S^{n}\times P^{n}\rightarrow S^{n}\times P^{n}$ can be extended to a map

$D^{n+1}\times P^{n}\rightarrow(\Sigma_{0}-S^{n}\times\{0\})/involution\simeq D^{n+1}\times P^{n}\simeq P^{n}$

Since $\chi$ induces the identity map on homology, we may assume that $\chi(*, y)=$

$(*, y)$ where $*is$ the base point of $S^{n}$ . Since we may assume that $\rho(*)=1\in$

$SO(n+1),$ $\phi_{\rho}^{\chi}$ is the identity map of $\{*\}\times S^{n}$ . On the quotient space, this
shows that $P_{2}\overline{\phi}_{\rho}^{\overline{\chi}}|\{*\}\times P^{n}$ is the second projection, and the extended map $D^{n+1}$

$\times P^{n}\rightarrow P^{n}$ gives the homotopy between $P_{2}\overline{\phi}_{\rho}^{\overline{\chi}}$ and $p_{2}$ . $\square $

In what follows the Hopf-construction for a map $g:X\times Y\rightarrow W$ will be de-
noted by

$\Gamma(g):X*Y\rightarrow SW$ ,

where $X*Y$ is the reduced join of $X$ and $Y$ and $SW$ is the reduced suspension
of $W$ . Points of $X*Y$ and $SW$ are written as $[x, t, y]$ and $[t, w](t\in[0,1])$

respectively. The homotopy class of $\Gamma(g)$ is denoted by $[\Gamma(g)]$ . The follow-
ing lemma will be used in the proof of Lemma 4. Its proof follows directly
from the definition of the sum of homotopy classes and will be omitted.

Lemma 3. Let $f,$ $g$ be maPs $S^{m}=D_{+}^{m}\bigcup_{s^{m-1}}D^{\underline{m}}\rightarrow S^{q}$ where the base Point of
$S^{m}$ is on the equator $S^{m-1}$ . SuPpose that $f|D_{+}^{m}$ coincides with $g|D_{-}^{m}$ under the
canonical identification of $D_{+}^{m}$ with $D_{-}^{m}$ . Then the sum $[f]+[g]$ of the homotopy
classes $[f]$ and $[g]$ can be represented by a map $h$ defined by $h|D^{\underline{m}}=f|D^{\underline{m}}$ and
$h|D_{+}^{m}=g|D_{+}^{m}$ .

Lemma 4. Let $J:\pi_{n}(O(n+1))\rightarrow\pi_{2n+1}(S^{n+1})$ be the J-homomorPhism. Then
we have

$[\Gamma(p_{2}\phi_{\rho}x)]=[\Gamma(p_{2}x)]+J(\rho)$

in $\pi_{2n+1}(S^{n+1})$ .

Proof. Using the hemisphere decomposition $S^{n}\times S^{n}=(D_{+}^{n}\bigcup_{s^{n-1}}D_{-}^{n})\times S^{n}$ , we
have an identification

$S^{2n+1}=D_{+}^{2n+1}\bigcup_{s^{2n}}D_{-}^{2n+1}=D_{+}^{n}*S^{n}\bigcup_{s^{n-1}*S^{n}}D_{-}^{n}*S^{n}$

We may assume that $\rho(D_{-}^{n})=1\in O(n+1)$ and $p_{2}x(D_{+}^{n}, y)=y$ for all $y\in S^{n}$ . Then
$J(\rho)$ maps $[x, t, y]\in D_{-}^{n}*S^{n}$ to $[t, y]\in SS^{n}=S^{n+1}$ and $p_{2}x$ maps $[x, t, y]\in D_{+}^{n}*S^{n}$

to $[t, y]\in S^{n+1}$ . From the definition of Hopf-construction, $\Gamma(p_{2}\phi_{\rho}x)$ is repre-
sented by a map which coincides with $J(\rho)$ on $D_{+}^{2n+1}$ and with $\Gamma(p_{2}\chi)$ on $D_{-}^{2n+1}$ .
In view of Lemma 3, this shows our assertion. $\square $

Proposition5. $\Sigma_{0}^{2n+1}$ and $\Sigma_{1}^{2n+1}$ are t-isovariantly homotopy equivalent if
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and only if the map
$h$ : $S^{n}\times P^{n}\rightarrow P^{n}$ , $h(x, [y])=[(\theta_{x}\theta_{y})^{2}y]$

is homotopic to the second projection $p_{2}$ ; $S^{n}\times P^{n}\rightarrow P^{n}$ .

Proof. SuPpose that there exists a t-isovariant homotopy equivalence $f$ for
$ x=\psi$

$f$ : $\Sigma_{x}=\Sigma_{1}=S^{n}\times D^{n+1}\bigcup_{\psi}D^{n+1}\times S^{n}\rightarrow\Sigma_{0}=S^{n}\times D^{n+1}\bigcup_{id}D^{n+1}\times S^{n}$

where $f|S^{n}\times D^{n+1}=b_{\rho}$ for some $\rho\in\pi_{n}(O(n+1))$ and $f$ maps $D^{n+1}\times S^{n}$ into
$D^{n+1}\times S^{n}$ . When we forget the involution, the map $P_{2}\phi_{\rho}\psi:S^{n}\times S^{n}\rightarrow S^{n}$ has an
extension $D^{n+1}\times S^{n}\rightarrow S^{n}$ . Therefore its Hopf-construction $\Gamma(P_{2}\phi_{\rho}\psi)$ must be
null homotopic. By Lemma 4, we must have $[\Gamma(p_{2}\psi)]+[J(\rho)]=0$ in $\pi_{zn+1}(S^{n+1})$ .
It is well-known that $[\Gamma(p_{2}\psi)]=[J(\theta)]=[\ell_{n+1}, \iota_{n+1}]$ is a nonzero element of
order two unless $n=0,2$ or 6 and it vanishes under suspension. The homotopy
group $\pi_{n}(O(n+1))$ vanishes for $n=2$ or 6, and in other cases for even $n$ , the
group is isomorphic to $Z/2\oplus Z/2$ if $n\equiv 0$ mod 8 and to $Z/2$ otherwise. When
$n\neq 2,6,$ $\theta$ gives one generator, and when $n\equiv 0$ mod 8, there is another $Z/2$

generator that survives to a nonzero stable class of $\pi_{n}(O)$ . But since the stable
J-map $\pi_{n}(O)\rightarrow\pi_{n}^{S}$ is injective when $n\equiv 0$ mod 8, we cannot take this element as
$\rho$ . Thus the only choice for $\rho$ is $\theta$ . It is not hard to verify that $ P_{2}\phi_{\theta}\psi:S^{n}\times$

$S^{n}\rightarrow S^{n}$ is given by $(x, y)->(\theta_{x}\theta_{y})^{2}y$ . If we consider the map on the quotient
space, we get the conclusion by Lemma 2. $\square $

3. The last isovariancy obstruction

Now we have come to a quite concrete problem about the extensibility of
the map

$h$ : $S^{n}\times P^{n}\rightarrow P^{n}$ $h(x, [y])=[(\theta_{x}\theta_{y})^{2}y]$

over $D^{n+1}\times P^{n}$ . Our next step is to calculate this obstruction. To do this we
shall introduce the following notations:

$X=D^{n+1}\times P^{n}$ , $\tilde{X}=D^{n+1}\times S^{n}$ , $X^{\perp}=\{(x, [y])\in X|\langle x, y\rangle=0\}$ ,

$\tilde{X}_{+}=\{(x, y)\in\tilde{X}|\langle x, y\rangle\geqq 0\}$ , $\tilde{X}_{-}=\{(x, y)\in\tilde{X}|\langle x, y\rangle\leqq 0\}$ ,

$Y=S^{n}\times P^{n}$ , $\tilde{Y}=S^{n}\times S^{n}$ ,

$\tilde{Y}_{+}=((x, y)\in\tilde{Y}|\langle x, y\rangle\geqq 0\},$ $\tilde{Y}_{-}=\{(x, y)\in\tilde{Y}|\langle x, y\rangle\leqq 0\}$ ,

$Y^{\perp}=Y\cap X^{\perp}$ , $\tilde{Y}^{\perp}=\tilde{Y}_{+}\cap\tilde{Y}_{-}$ .

The next proposition says that the map $h$ is ‘almost’ extensible and the
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suspension of the extension obstruction is given by a Whitehead product.

Proposition6. The map $h:Y\rightarrow P^{n}$ has a t-isovariant extension to a 2n-
skeleton of $X$ and the last obstruction $\zeta$ that lies in $\pi_{2n}(P^{n})$ may be regarded as
an element of $\pi_{2n}(S^{n})$ . We can find an extension of $h$ in such a way that the
$susPension$ of the last obstruction $\zeta$ is equal to $[\ell_{n+1}, \ell_{n+1}]$ .

Proof. On $Y^{\perp}$ we have $h(x, [y])=[y]$ . Hence we have an extension $h^{\prime}$

over $X^{\perp}$ by defining $h^{\prime}(x, [y])=[y]$ . The given involution exchanges $\tilde{Y}_{+}$ with
Y-on $\tilde{Y}$ and $\tilde{X}_{+}$ with $\tilde{X}_{-}$ on $\tilde{X}$ that are separated by $\tilde{X}^{\perp}$ . The map $h^{\prime}$ maps
the point $(x, y)\in\partial\tilde{X}_{+}=\tilde{Y}_{+}U_{Y}^{\sim}\perp\tilde{X}^{\perp}$ to $[(\theta_{x}\theta_{y})^{2}y]$ if $(x, y)\in\tilde{Y}_{+}$ and to $[y]$ if
$(x, y)\in\tilde{X}^{\perp}$ . When $x$ and $y$ are linearly independent vectors, we may write

$y=(\cos u)x+(\sin u)e$

using the unit vector $e$ which is normal to $x$ and is contained in the plane
spanned by $x$ and $y$ . Then we can write

$(\theta_{x}\theta_{v})^{2}y=\cos(-3u)x+\sin(-3u)e$ .
This formula facilitates our understanding of the map $(\theta_{x}\theta_{y})^{2}$ . If we could
extend the map $h^{\prime}$ to the interior of $\tilde{X}_{+}$ , then the map $h$ has an extension to
the whole $X$ . We should remark that this extension problem is equivalent to
the following extension problem without actions: $ls$ the map $h_{1}$ : $S^{n}\times S^{n}\rightarrow S^{n}$

defined by

$h_{1}(x, y)=\left\{\begin{array}{ll}(\theta_{x}\theta_{y})^{g}y & (if \langle x, y\rangle\geqq 0)\\y & (if \langle x, y\rangle\leqq 0)\end{array}\right.$

extensible to whole $D^{n+1}\times S^{n}$ ?
If $\langle x, y\rangle\leqq 1/2$ , then $\langle x, h_{1}(y)\rangle\leqq 1/2$ holds. Therefore $h_{1}$ is homotopic to $h_{2}$

defined by

$h_{2}(x, y)=\left\{\begin{array}{ll}(\theta_{x}\theta_{y})^{t}y & (if \langle x, y\rangle\geqq 1/2)\\-x & (if \langle x, y\rangle\leqq 1/2).\end{array}\right.$

since the set $\{(x, y)|\langle x, y\rangle\leqq 1/2\}$ has $\{(x, -x)|x\in S^{n}\}$ as a deformation retract.
The well-definedness of $h_{2}$ is clear from the definition of $\theta$ or from the explicit
formula for $(\theta_{x}\theta_{y})^{2}y$ mentioned above. Using the notation $y=\cos ux+\sin ue$ ,
we find that the homotopy

$H(x, y, t)=\cos(2t-3)ux+\sin(2t-3)ue$ , $(0\leqq t\leqq 1)$

deforms $h_{2}$ to $h_{\theta}$ which is defined by $h_{s}(x, y)=-\theta_{x}y$ . Since $h_{s}|S^{n}\times\{pt\}$ is
null homotopic, we take one of its null homotopies as an extension over $D^{n+1}$

$\times\{pt\}$ . Thus we have obtained an extension over a $2n$ -skeleton of $D^{n+1}\times S^{n}$ .
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This defines the last obstruction $\zeta\in\pi_{2n}(S^{n})$ . If we take another choice of null
homotopies as an extension over $D^{n+1}\times\{pr\}$ by an element of $\pi_{n+1}(S^{n})\cong Z/2$

generated by a stable class $\eta$ , the obstruction $\zeta$ is changed by $[\eta, \ell_{n}]$ from the
definition of Whitehead products. From the EHP exact sequence

$\pi_{2n+2}(S^{2n+1})\rightarrow^{P}\pi_{2n}(S^{2n})\rightarrow^{E}\pi_{2n+1}(S^{n+1})\rightarrow^{H}\pi_{2n+1}(S^{2n+1})\cong Z$ ,

we find that the obstruction of extending $h_{1}$ over $D^{n+1}\times S^{n}$ is equal to the
suspension $E\zeta\in\pi_{2n+1}(S^{n+1})$ and this is equal to the final obstruction of extending
$h,$ , which is equal to $J(-\theta)=[e_{n+1}, \ell_{n+1}]$ by the property of the J-homo-
morphism. $\square $

Proof of Theorem. The obstruction $[\ell_{n+1}, \ell_{n+1}]$ in Proposition 5 was cal-
culated fixing an extension on $X^{\perp}$ . This obstruction might vanish if other
extensions were to be chosen on $X^{\perp}$ . However, if $n+2$ is not a power of two,

this obstruction cannot vanish from the result of [5], Corollary 5. This com-
pletes the proof when $n+2$ is not a power of two. Even when $n+2$ is a
power of two, the same argument applies, but in this case, if the Whitehead
product vanishes, the obstruction is zero and we can construct a t-isovariant
homotopy equivalence from $\sum_{1}$ to $\Sigma_{0}$ . $\square $
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